Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

As one of the key components of ultra-wideband (UWB) system, UWB filter has important research significance. However, the current UWB filter still has the problem of a narrow stopband and cannot suppress the interference signals in the passband.

Objective

In this paper, a novel UWB bandpass filter is proposed, which has wide stopband characteristics and good out-of-band rejection performance and implements a notch function for the WLAN band and the X satellite communication band in the passband to improve the anti-interference performance.

Methods

The filter adopts a novel composite right/left handed transmission line (CRLH-TL) structure to realize the passband characteristics with low insertion loss (< 0.8dB). The anticoupled line structures generate two transmission zeros (TZs) in the upper stopband, which improves the upper stopband performance of the filter. The short circuit step impedance resonators (SIRs) and the asymmetric coupling structure generate a notched band in the passband respectively.

Results

The simulated and measured results show that the 3dB passband range is 3.4-11.0 GHz, the out-of-band rejection is more than 20 dB in the stopband range of 12.8-28 GHz, and the dual-notched bands are located at 5.86 GHz and 8.0 GHz respectively. The measured results are basically consistent with the simulated results.

Conclusion

Compared with the existing filters, the proposed filter has outstanding advantages and has a wide range of application prospects in the field of indoor UWB positioning system.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965295538240313053613
2024-03-25
2025-09-26
Loading full text...

Full text loading...

References

  1. FCCRevision of part 15 of the commission's rules regarding ultra wideband transmission systems.2002Available From: https://www.fcc.gov/document/revision-part-15-commissions-rules-regarding-ultra-wideband-7
  2. GuptaS.C. KumarM. MeenaR. Design and Analysis of UWB Filter with Single Notch Band.Wirel. Pers. Commun.201810121091110010.1007/s11277‑018‑5750‑1
    [Google Scholar]
  3. VermaR.P. SahuB. GuptaA. A miniaturized UWB bandpass filter with tunable cut-off frequencies employing rectangular open-loop defected ground structure.Int. J. Microw. Wirel. Technol.202315101689169710.1017/S1759078723000594
    [Google Scholar]
  4. MirzaeeM. VirdeeB.S. UWB bandpass filter with notch‐band based on transversal signal‐interaction concepts.Electron. Lett.201349639940110.1049/el.2012.4203
    [Google Scholar]
  5. YangS. TongF. ChenY. ChenH. ChuJ. Highly compact UWB-BPF with a wide notch-band using a rectangular ring structure and two Y-shaped open stub resonators.AEU Int. J. Electron. Commun.202316115455610.1016/j.aeue.2023.154556
    [Google Scholar]
  6. ZhangT. TianM. LongZ. QiaoM. FuZ. High-Temperature Superconducting Multimode Ring Resonator Ultrawideband Bandpass Filter.IEEE Microw. Wirel. Compon. Lett.201828866366510.1109/LMWC.2018.2845116
    [Google Scholar]
  7. BodM. HashemiS.M. Design of a Compact UWB Filter with Low Insertion Loss and High Selectivity.J. Inst. Electron. Telecommun. Eng.20231710.1080/03772063.2023.2227597
    [Google Scholar]
  8. XieJ. TangD. ShuY. LuoX. Compact UWB BPF With Broad Stopband Based on Loaded-Stub and C-Shape SIDGS Resonators.IEEE Microw. Wirel. Compon. Lett.202232538338610.1109/LMWC.2021.3136561
    [Google Scholar]
  9. SeddikiM.L. NedilM. GhanemF. New Design of Reconfigurable Stop-band in UWB Band-pass Filter based on Resonator-loaded Slot-line.J. Inst. Electron. Telecommun. Eng.20236931356136210.1080/03772063.2020.1864237
    [Google Scholar]
  10. HsuC-L. HsuF-C. KuoJ-T. Microstrip bandpass filters for Ultra-Wideband (UWB) wireless communicationsIEEE MTT-S International Microwave Symposium Digest2005679682Long Beach, CA, USA
    [Google Scholar]
  11. KheirM. KrögerT. HöftM. A New Class of Highly-Miniaturized Reconfigurable UWB Filters for Multi-Band Multi-Standard Transceiver Architectures.IEEE Access201751714172310.1109/ACCESS.2017.2670526
    [Google Scholar]
  12. SahuB. SinghS. MeshramM.K. SinghS.P. Super-compact ultra-wideband microstrip band-pass filter with improved performance using defected ground structure-based low-pass filter.J. Electromagn. Waves Appl.201832563565010.1080/09205071.2017.1402712
    [Google Scholar]
  13. ShomeP.P. KhanT. A quintuple mode resonator based bandpass filter for ultra-wideband applications.Microsyst. Technol.20202672295230410.1007/s00542‑019‑04697‑5
    [Google Scholar]
  14. LiuZ.H. LiuB.G. WangY.C. ChengC.H. A miniaturized ultra‐wideband filter with ultra‐wide stopband and high selectivity using a capacitive loading stub in a multimode structure.Microw. Opt. Technol. Lett.202365373373810.1002/mop.33552
    [Google Scholar]
  15. ShomeP.P. KhanT. KoulS.K. AntarY.M.M. Two decades of UWB filter technology: Advances and emerging challenges in the design of UWB bandpass filters.IEEE Microwave MagazineIEEE202122810.1109/MMM.2021.3078040
    [Google Scholar]
  16. GhazaliA.N. HussainJ. Broadband Bandpass Filter for UWB Networks with Multiple In-Band Transmission Zeros.J. Inst. Electron. Telecommun. Eng.20236985566557310.1080/03772063.2021.1973588
    [Google Scholar]
  17. SazidM. RaghavaN.S. GhazaliA.N. UWB‐BPF based on broadside coupled technology with triple‐notched passband.Microw. Opt. Technol. Lett.20236571910191610.1002/mop.33651
    [Google Scholar]
  18. Ching-Wen Tang Ming-Guang Chen A Microstrip Ultra-Wideband Bandpass Filter With Cascaded Broadband Bandpass and Bandstop Filters.IEEE Trans. Microw. Theory Tech.200755112412241810.1109/TMTT.2007.908671
    [Google Scholar]
  19. DanaeianM. ZarezadehE. GholizadehM.H. MoznebiA.R. KhalilpourJ. A Compact and Sharp Rejection Ultra-Wideband Bandpass Filter Based on Short and Open Stub-Loaded Multiple Mode Resonators.J. Electr. Eng. Technol.202015146947610.1007/s42835‑019‑00235‑5
    [Google Scholar]
  20. AnJ. WangG.M. ZengW.D. MaL.X. Composite right/left‐handed transmission line based on Koch fractal shape slot in the ground and UWB filter application.Microw. Opt. Technol. Lett.20095192160216310.1002/mop.24553
    [Google Scholar]
  21. ZengJ. LiX. QiZ. UWB bandpass filter with compact size and wide upper stopband.Microw. Opt. Technol. Lett.20206241521152510.1002/mop.32200
    [Google Scholar]
  22. LiC. MaZ.H. ChenJ.X. WangM.N. HuangJ.M. Design of a Compact Ultra-Wideband Microstrip Bandpass Filter.Electronics (Basel)2023127172810.3390/electronics12071728
    [Google Scholar]
  23. BasitA. DarazA. KhanM.I. SaqibN. ZhangG. Design, Modeling, and Implementation of Dual Notched UWB Bandpass Filter Employing Rectangular Stubs and Embedded L-Shaped Structure.Fractal Fract.20237211210.3390/fractalfract7020112
    [Google Scholar]
  24. KingslyS. ThangarasuD. KanagasabaiM. AlsathM.G.N. PalaniswamyS.K. RaoT.R. SubbarajS. SelvamY.P. SambandamP. GanesanG. Tunable Band-Notched High Selective UWB Filtering Monopole Antenna.IEEE Trans. Antenn. Propag.20196785658566110.1109/TAP.2019.2920997
    [Google Scholar]
  25. KumariP. SarkarP. GhatakR. A multi‐stub loaded compact UWB BPF with a broad notch band and extended stopband characteristics.Int. J. RF Microw. Comput.-Aided Eng.202030410.1002/mmce.22138
    [Google Scholar]
  26. GaoM. XuK. NanJ. WangL. Planar Microstrip UWB Bandpass Filter with Quad Notched Bands and High Selectivity.Recent Adv. Electr. Electron. Eng.202114449349910.2174/2352096514666210118141959
    [Google Scholar]
  27. LiQ. YangT. Compact UWB Half-Mode SIW Bandpass Filter With Fully Reconfigurable Single and Dual Notched Bands.IEEE Trans. Microw. Theory Tech.2021691657410.1109/TMTT.2020.3033830
    [Google Scholar]
  28. LiuL.Q. LaiH.S. HuH.M. ChenJ.J. WengM.H. YangR.Y. A Simple Method to Design a UWB Filter with a Notched Band Using Short-Circuit Step Impedance Stubs.Electronics (Basel)2022117112410.3390/electronics11071124
    [Google Scholar]
  29. ZengJ. LiX. QiZ. ZhuH. Compact ultra-wideband bandpass filter based on composite right/left-handed transmission line with improved out-of-band performance.Electromagnetics201939644345210.1080/02726343.2019.1641658
    [Google Scholar]
  30. MohammadiB. ValizadeA. NouriniaJ. RezaeiP. Design of a compact dual‐band‐notch ultra‐wideband bandpass filter based on wave cancellation method.IET Microw. Antennas Propag.2015911910.1049/iet‑map.2014.0372
    [Google Scholar]
  31. GhazaliA.N. SazidM. PalS. A dual notched band UWB-BPF based on microstrip-to-short circuited CPW transition.Int. J. Microw. Wirel. Technol.201810779480010.1017/S1759078718000594
    [Google Scholar]
  32. GhazaliA.N. SazidM. PalS. A compact broadside coupled dual notched band UWB-BPF with extended stopband.AEU Int. J. Electron. Commun.20178250250710.1016/j.aeue.2017.10.021
    [Google Scholar]
  33. LongZ. TianM. ZhangT. QiaoM. WuT. LanY. High-temperature superconducting multimode dual-ring uwb bandpass filter.IEEE Transactions on Applied Superconductivity20203021410.1109/TASC.2019.2951745
    [Google Scholar]
  34. BandyopadhyayA. SarkarP. GhatakR. A Bandwidth Reconfigurable Bandpass Filter for Ultrawideband and Wideband Applications.IEEE Trans. Circuits Syst. II Express Briefs20226962747275110.1109/TCSII.2022.3167028
    [Google Scholar]
  35. KammaA. DasR. BhattD. MukherjeeJ. Multi Mode Resonators Based Triple Band Notch UWB Filter.IEEE Microw. Wirel. Compon. Lett.201727212012210.1109/LMWC.2017.2649383
    [Google Scholar]
  36. GhazaliA.N. SazidM. PalS. Multiple passband transmission zeros embedded compact UWB filter based on microstrip/CPW transition.AEU Int. J. Electron. Commun.202112915354910.1016/j.aeue.2020.153549
    [Google Scholar]
  37. GhazaliA.N. SazidM. PalS. Design and analysis of a multiple notched UWB-BPF based on microstrip-to-CPW transition.Frequenz (Bern)2023771-291610.1515/freq‑2021‑0296
    [Google Scholar]
  38. LouazeneH. ChallalM. BoulakrouneM. Design and Fabrication of a Compact UWB BPF with Notch-band and Wide Stopband Using Dual MMRs and DGS.Prog. Electromagn. Res. Lett.2023109758310.2528/PIERL22112004
    [Google Scholar]
  39. XiaZ. WangR. XiaW. CaoX. XiongX. A UWB bandpass filter based on elliptical open stub-loaded resonator and dumbbell-sided cross-circle DGS.IEICE Electron. Express20232012202301592023015910.1587/elex.20.20230159
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965295538240313053613
Loading
/content/journals/raeeng/10.2174/0123520965295538240313053613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test