Skip to content
2000
Volume 19, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Advanced drug delivery methods have emerged mainly because of the limitations of traditional drug delivery systems like oral and intravenous routes, along with fluctuating concentrations of drugs that have compromised therapeutic outcomes. An implantable drug delivery system (IDDS) presents an attractive alternative: long-term, continuous drug release improves therapeutic efficacy while minimizing toxicity and side effects. IDDS, first presented in the 1930s as subcutaneous hormone pellets, have gained much attention recently in drug delivery due to their controlled release of drugs in a localized and sustained manner. In systemic treatments, drugs administered through IDDS evade first-pass metabolism and enzymatic degradation within the gastrointestinal tract, therefore enhancing drug bioavailability. The most suitable properties of IDDS are its application with drugs that have poor stability or solubility in oral formulations. Even though implantation is invasive, the benefits of infrequent administration, higher patient compliance, and being able to discontinue therapy when side effects are present far outweigh the disadvantages. Today, IDDSs are used in a myriad of therapeutic areas: contraception, chemotherapy, and pain management, to name a few. Future developments in such technologies, fine-tuning these systems further, will revolutionize drug therapy by bringing even better and more patient-friendly drugs with both better efficacy and sustained periods of effects.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878369501250404184028
2025-12-01
2025-11-16
Loading full text...

Full text loading...

References

  1. BaryakovaT.H. PogostinB.H. LangerR. McHughK.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems.Nat. Rev. Drug Discov.202322538740910.1038/s41573‑023‑00670‑0 36973491
    [Google Scholar]
  2. KumarA. PillaiJ. Implantable drug delivery systems: An overview.Nanostructures for the Engineering of Cells.Tissues and Organs. William Andrew201847351110.1016/B978‑0‑12‑813665‑2.00013‑2
    [Google Scholar]
  3. DhankarS. A bird view on the role of graphene oxide nanosystems in therapeutic delivery.Curr. Nanosci.202420111
    [Google Scholar]
  4. FayzullinA. BakulinaA. MikaelyanK. ShekhterA. GullerA. Implantable drug delivery systems and foreign body reaction: Traversing the current clinical landscape.Bioengineering202181220510.3390/bioengineering8120205 34940358
    [Google Scholar]
  5. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
  6. StewartS.A. Domínguez-RoblesJ. DonnellyR.F. LarrañetaE. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications.Polymers20181012137910.3390/polym10121379 30961303
    [Google Scholar]
  7. VermaR.K. GargS. Drug delivery technologies and future directions.Pharm. Technol.2001252114
    [Google Scholar]
  8. RajgorN. PatelM. BhaskarV. Implantable drug delivery systems: An overview.SRP2011229110.4103/0975‑8453.86297
    [Google Scholar]
  9. YangJ. ChengY. GongX. An integrative review on the applications of 3D printing in the field of in vitro diagnostics.Chin. Chem. Lett.20223352231224210.1016/j.cclet.2021.08.105
    [Google Scholar]
  10. HopeA. WadeS.J. AghmeshehM. VineK.L. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment.J. Control. Release202234139941310.1016/j.jconrel.2021.11.043 34863842
    [Google Scholar]
  11. FredenbergS. WahlgrenM. ReslowM. AxelssonA. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review.Int. J. Pharm.20114151-2345210.1016/j.ijpharm.2011.05.049 21640806
    [Google Scholar]
  12. Pons-FaudoaF.P. BalleriniA. SakamotoJ. GrattoniA. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases.Biomed. Microdevices20192124710.1007/s10544‑019‑0389‑6 31104136
    [Google Scholar]
  13. ZhouH. HernandezC. GossM. GawlikA. ExnerA. Biomedical imaging in implantable drug delivery systems.Curr. Drug Targets201516667268210.2174/1389450115666141122211920 25418857
    [Google Scholar]
  14. BalaR. MadaanR. ChauhanS. Revitalizing allicin for cancer therapy: Advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy.Naunyn Schmiedebergs Arch. Pharmacol.2024397270372410.1007/s00210‑023‑02675‑3 37615709
    [Google Scholar]
  15. GargN. Vincristine in cancer therapy: Mechanisms, efficacy, and future perspectives.Curr. Med. Chem.202410.2174/0109298673319496240911060138 39318002
    [Google Scholar]
  16. BakshiS. Annona Muricata: Unveiling its potential as a complementary and alternative cancer therapy.J Pharm Technol Res Manag202311210711310.15415/jprtm.2023.112003
    [Google Scholar]
  17. AhmedM.S. KhanI.J. AmanS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  18. KciukM. GargN. DhankharS. Exploring the comprehensive neuroprotective and anticancer potential of Afzelin.Pharmaceuticals202417670110.3390/ph17060701 38931368
    [Google Scholar]
  19. RydzJ. SikorskaW. KyulavskaM. ChristovaD. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.Int. J. Mol. Sci.201416156459610.3390/ijms16010564 25551604
    [Google Scholar]
  20. VisanA.I. Popescu-PelinG. SocolG. Degradation behavior of polymers used as coating materials for drug delivery—A basic review.Polymers2021138127210.3390/polym13081272 33919820
    [Google Scholar]
  21. MartinsC. SousaF. AraújoF. SarmentoB. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.201701035 29171928
    [Google Scholar]
  22. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  23. BagherifardS. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies.Mater. Sci. Eng. C2017711241125210.1016/j.msec.2016.11.011 27987680
    [Google Scholar]
  24. MengE. HoangT. Micro- and nano-fabricated Implantable drug-delivery Systems.Ther. Deliv.20123121457146710.4155/tde.12.132 23323562
    [Google Scholar]
  25. TanF. ZhuY. MaZ. Al-RubeaiM. Recent advances in the implant-based drug delivery in otorhinolaryngology.Acta Biomater.2020108465510.1016/j.actbio.2020.04.012 32289495
    [Google Scholar]
  26. LangerR.S. WiseD.L. Medical applications of controlled release.FL, USACRC Press LLC Boca Raton2019
    [Google Scholar]
  27. AlmoshariY. Osmotic pump drug delivery systems—A comprehensive review.Pharmaceuticals20221511143010.3390/ph15111430 36422560
    [Google Scholar]
  28. RimonM.T.I. HasanM.W. HassanM.F. CesmeciS. Advancements in insulin pumps: A comprehensive exploration of insulin pump systems, technologies, and future directions.Pharmaceutics202416794410.3390/pharmaceutics16070944 39065641
    [Google Scholar]
  29. DashA. CudworthG.I.I. Therapeutic applications of implantable drug delivery systems.J. Pharmacol. Toxicol. Methods199840111210.1016/S1056‑8719(98)00027‑6 9920528
    [Google Scholar]
  30. DhankharS. ChauhanS. MehtaD.K. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  31. AroraA. BehlT. SehgalA. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  32. Corb AronR.A. AbidA. VesaC.M. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of Akkermansia muciniphila as a key gut bacterium.Microorganisms20219361810.3390/microorganisms9030618 33802777
    [Google Scholar]
  33. BalmayorE.R. AzevedoH.S. ReisR.L. Controlled delivery systems: From pharmaceuticals to cells and genes.Pharm. Res.20112861241125810.1007/s11095‑011‑0392‑y 21424163
    [Google Scholar]
  34. BlackshearP.J. Implantable drug-delivery systems.Sci. Am.19792416667310.1038/scientificamerican1279‑66 504981
    [Google Scholar]
  35. PatilP. UphadeK. SaudagarR. A review: Osmotic drug delivery system.Pharma Sci. Monitor201892
    [Google Scholar]
  36. StevensonC.L. TheeuwesF. WrightJ.C. Osmotic implantable delivery systems.Handbook of Pharmaceutical Controlled Release Technology.Boca Raton, FLCRC Press2000
    [Google Scholar]
  37. ChappelE. Implantable drug delivery devices. Drug Delivery Devices and Therapeutic Systems.Elsevier202112915610.1016/B978‑0‑12‑819838‑4.00001‑8
    [Google Scholar]
  38. CaoL. MantellS. PollaD. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology.Sens. Actuators A Phys.2001941-211712510.1016/S0924‑4247(01)00680‑X
    [Google Scholar]
  39. SpeedJ.S. HyndmanK.A. In vivo organ specific drug delivery with implantable peristaltic pumps.Sci. Rep.2016612625110.1038/srep26251 27185292
    [Google Scholar]
  40. DanckwertsM. FassihiA. Implantable controlled release drug delivery systems: A review.Drug Dev. Ind. Pharm.199117111465150210.3109/03639049109026629
    [Google Scholar]
  41. KumarS. BehlT. SachdevaM. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  42. FongJ. XiaoZ. TakahataK. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.Lab Chip20151541050105810.1039/C4LC01290A 25473933
    [Google Scholar]
  43. SaharanR. KaurJ. DhankharS. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.202412428929910.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  44. VincentC. BenoltR. OnoriM. Implantable drug delivery systems-design process.Int. J. Precis. Eng. Manuf.2006744046
    [Google Scholar]
  45. MagillE. DemartisS. GaviniE. Solid implantable devices for sustained drug delivery.Adv. Drug Deliv. Rev.202319911495010.1016/j.addr.2023.114950 37295560
    [Google Scholar]
  46. SharmaP. KaushikP. Kumar SharmaS. DhankharS. GargN. RaniN. Exploring microsponges in dermatology: Opportunities and hurdles ahead.Micro Nanosyst.2024162657410.2174/0118764029295903240328054858
    [Google Scholar]
  47. SinghR. BathaeiM.J. IstifE. BekerL. A review of bioresorbable implantable medical devices: Materials, fabrication, and implementation.Adv. Healthc. Mater.2020918200079010.1002/adhm.202000790 32790033
    [Google Scholar]
  48. KravanjaK.A. FinšgarM. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients.Mater. Des.202221711065310.1016/j.matdes.2022.110653
    [Google Scholar]
  49. BhujbalS.V. MitraB. JainU. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies.Acta Pharm. Sin. B20211182505253610.1016/j.apsb.2021.05.014 34522596
    [Google Scholar]
  50. SiemannU. Solvent cast technology–A versatile tool for thin film production.Scattering methods and the properties of polymer materials.Springer200511410.1007/b107336
    [Google Scholar]
  51. StewardP.A. HearnJ. WilkinsonM.C. An overview of polymer latex film formation and properties.Adv. Colloid Interface Sci.200086319526710.1016/S0001‑8686(99)00037‑8 10997764
    [Google Scholar]
  52. KudłakB. OwczarekK. NamieśnikJ. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—A review.Environ. Sci. Pollut. Res. Int.20152216119751199210.1007/s11356‑015‑4794‑y 26040266
    [Google Scholar]
  53. HalagaliP. A review on employing twin screw hot melt extrusion technology for the enhancement of the solubility profile of poorly aqueous-soluble APIs.Neuroquantology202220142505
    [Google Scholar]
  54. PatilH. TiwariR.V. RepkaM.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation.AAPS PharmSciTech2016171204210.1208/s12249‑015‑0360‑7 26159653
    [Google Scholar]
  55. CensiR. GigliobiancoM.R. CasadidioC. Di MartinoP. Hot melt extrusion: Highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process.Pharmaceutics20181038910.3390/pharmaceutics10030089 29997332
    [Google Scholar]
  56. UtomoE. Classification, material types, and design approaches of long-acting and implantable drug delivery systems. Long-Acting Drug Delivery Systems.Elsevier2022175910.1016/B978‑0‑12‑821749‑8.00012‑4
    [Google Scholar]
  57. ZemaL. LoretiG. MelocchiA. MaroniA. GazzanigaA. Injection molding and its application to drug delivery.J. Control. Release2012159332433110.1016/j.jconrel.2012.01.001 22245483
    [Google Scholar]
  58. ReynaertsD. PeirsJ. Van BrusselH. An implantable drug-delivery system based on shape memory alloy micro-actuation.Sens. Actuators A Phys.1997611-345546210.1016/S0924‑4247(97)80305‑6
    [Google Scholar]
  59. Rothen-WeinholdA. BesseghirK. VuaridelE. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants.Eur. J. Pharm. Biopharm.199948211312110.1016/S0939‑6411(99)00034‑X 10469929
    [Google Scholar]
  60. DawoodA. MartiB.M. Sauret-JacksonV. DarwoodA. 3D printing in dentistry.Br. Dent. J.20152191152152910.1038/sj.bdj.2015.914 26657435
    [Google Scholar]
  61. WangJ. ZhangY. AghdaN.H. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective.Adv. Drug Deliv. Rev.202117429431610.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  62. ParhiR. A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives.J. Drug Deliv. Sci. Technol.20216410257110.1016/j.jddst.2021.102571
    [Google Scholar]
  63. ParkH. ParkK. Biocompatibility issues of implantable drug delivery systems.Pharm. Res.199613121770177610.1023/A:1016012520276 8987070
    [Google Scholar]
  64. RajabianA. McCloskeyA.P. JamialahmadiT. MoallemS.A. SahebkarA. A review on the efficacy and safety of lipid-lowering drugs in neurodegenerative disease.Rev. Neurosci.202334780182410.1515/revneuro‑2023‑0005 37036894
    [Google Scholar]
  65. DhankharS. MujwarS. GargN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  66. DhankharS. Cognitive rehabilitation for early-stage Dementia: A review.CPRR20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  67. SoniD KhanH ChauhanS Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases.Int Immunopharmacol2024142Pt B11314210.1016/j.intimp.2024.113142 39298812
    [Google Scholar]
  68. LotanM. IchtM. Diagnosing pain in individuals with intellectual and developmental disabilities: Current state and novel technological solutions.Diagnostics202313340110.3390/diagnostics13030401 36766505
    [Google Scholar]
  69. MittalP. DhankharS. ChauhanS. A review on natural antioxidants for their role in the treatment of Parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  70. NarwalS. Current therapeutic strategies for chagas disease.Antiinfect. Agents202321111
    [Google Scholar]
  71. AnselmoA.C. MitragotriS. An overview of clinical and commercial impact of drug delivery systems.J. Control. Release2014190152810.1016/j.jconrel.2014.03.053 24747160
    [Google Scholar]
  72. HernandezR. The use of systemic antibiotics in the treatment of chronic wounds.Dermatol. Ther.200619632633710.1111/j.1529‑8019.2006.00091.x 17199675
    [Google Scholar]
  73. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.202319310412110.2174/1573407218666220823111344
    [Google Scholar]
  74. DhankharS. GargN. ChauhanS. SainiM. SinghT.G. SinghR. Unravelling the microbiome’s role in healing diabetic wounds.Curr. Pharm. Biotechnol.20242511310.2174/0113892010307032240530071003 38920078
    [Google Scholar]
  75. DhankharS. GargN. ChauhanS. SainiM. Role of artificial intelligence in diabetic wound screening and early detection.Curr. Biotechnol.20241329310610.2174/0122115501303253240408072559
    [Google Scholar]
  76. MenchicchiB. HenselA. GoycooleaF. Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection.Curr. Pharm. Des.201521334888490610.2174/1381612821666150820104028 26290206
    [Google Scholar]
  77. ChauhanS. Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis gaertn.(sonn.).IJPPS201467116119
    [Google Scholar]
  78. AjM.Z. Implantable drug delivery system: A review.Int. J. Pharm. Tech. Res.201241280292
    [Google Scholar]
  79. VadlapatlaR. WongE.Y. GayakwadS.G. Electronic drug delivery systems: An overview.J. Drug Deliv. Sci. Technol.20174135936610.1016/j.jddst.2017.08.008
    [Google Scholar]
  80. FreemanAI MayhewE Targeted drug delivery.Cancer198658S2)(Suppl.5738310.1002/1097‑0142(19860715)58:2+<573::aid‑cncr2820581328>3.0.co;2‑c 3521839
    [Google Scholar]
  81. ChaudharyR. GuptaS. ChauhanS. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder.Endocr. Metab. Immune Disord. Drug Targets202323449450210.2174/1871530322666220902143401 36056854
    [Google Scholar]
  82. LangerR. Implantable controlled release systems.Pharmacol. Ther.1983211355110.1016/0163‑7258(83)90066‑9 6353438
    [Google Scholar]
  83. KutnerN. KunduruK.R. RizikL. FarahS. Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems.Adv. Funct. Mater.20213144201092910.1002/adfm.202010929
    [Google Scholar]
  84. MusmadeN. An overview of in situ gel forming implants: Current approach towards alternative drug delivery system.J Biol Chem Chron201951421
    [Google Scholar]
  85. KhanW. Implantable medical devices.Focal Controlled Drug Delivery Advances in Delivery Science and Technology.Boston, MASpringer2014335910.1007/978‑1‑4614‑9434‑8_2
    [Google Scholar]
  86. SantosA. Sinn AwM. BarianaM. KumeriaT. WangY. LosicD. Drug-releasing implants: Current progress, challenges and perspectives.J. Mater. Chem. B Mater. Biol. Med.20142376157618210.1039/C4TB00548A 32262134
    [Google Scholar]
  87. HakimL.K. YazdanianM. AlamM. Biocompatible and biomaterials application in drug delivery system in oral cavity.Evid. Based Complement. Alternat. Med.20212021111210.1155/2021/9011226 34812267
    [Google Scholar]
  88. MohtashamiZ. EsmailiZ. VakilinezhadM.A. SeyedjafariE. Akbari JavarH. Pharmaceutical implants: Classification, limitations and therapeutic applications.Pharm. Dev. Technol.202025111613210.1080/10837450.2019.1682607 31642717
    [Google Scholar]
  89. El KheirW. MarcosB. VirgilioN. PaquetteB. FaucheuxN. LauzonM.A. Drug delivery systems in the development of novel strategies for glioblastoma treatment.Pharmaceutics2022146118910.3390/pharmaceutics14061189 35745762
    [Google Scholar]
  90. PankajR.K. Formulation and evaluation of implantable drug delivery system of dacarbazine by using hydrophilic polymer.JPSR2020123405412
    [Google Scholar]
  91. DasT. VenkateshM.P. Pramod KumarT.M. KolandM. SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach.J. Drug Deliv. Sci. Technol.20205510141510.1016/j.jddst.2019.101415
    [Google Scholar]
  92. IqbalM.M. Design and evaluation of subcutaneous implantable drug delivery system of tramadol using natural biodegradable polymer.Ann. Phytomed.2012123038
    [Google Scholar]
  93. CuiM. HuN. FangD. SunH. PanH. PanW. Fabrication and evaluation of customized implantable drug delivery system for orthopedic therapy based on 3D printing technologies.Int. J. Pharm.202261812167910.1016/j.ijpharm.2022.121679 35314275
    [Google Scholar]
  94. Beetha RohiniS. Formulation and evaluation of biodegradable implantable drug delivery system of clindamycin hydrochloride.CoimbatoreRVS College of Pharmaceutical Sciences2012
    [Google Scholar]
  95. Sandip Fulzele Reenu Yadav Vinod Gauttam Jyotiram Sawale Formulation and evaluation of implantable drug delivery of disulfiram.J. Pharm. Negat. Results20221759177210.47750/pnr.2022.13.S09.212
    [Google Scholar]
  96. VelivelaS. B Pati N, Babu BR. Formulation development of Temozolomide liposomal formulation in the treatment of Glioma.AJPT202111320320610.52711/2231‑5713.2021.00033
    [Google Scholar]
  97. KumarS.C. SatishC. ShivakumarH. Formulation and evaluation of chitosan‐gellan based methotrexate implants.J Macromol Sci A: Pure Appl Chem2008458643649
    [Google Scholar]
  98. AiremwenC.O. Formulation of subcutaneous implantable drug delivery system of ibuprofen using biodegradable polymers.Niger J Pharm Appl Sci Res20211041421
    [Google Scholar]
  99. StewartS. Domínguez-RoblesJ. McIlorumV. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing.Pharmaceutics202012210510.3390/pharmaceutics12020105 32013052
    [Google Scholar]
  100. AugusthyA.R. ChandranS.C. VipinK. Design and evaluation of an in situ forming implant system of an anti-inflammatory drug.Indo Am J Pharm Sci201744983994
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878369501250404184028
Loading
/content/journals/raddf/10.2174/0126673878369501250404184028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test