Skip to content
2000
image of Beyond the Surface: The Role of Implantable Drug Delivery Systems in Modern Medicine

Abstract

Advanced drug delivery methods have emerged mainly because of the limitations of traditional drug delivery systems like oral and intravenous routes, along with fluctuating concentrations of drugs that have compromised therapeutic outcomes. An implantable drug delivery system (IDDS) presents an attractive alternative: long-term, continuous drug release improves therapeutic efficacy while minimizing toxicity and side effects. IDDS, first presented in the 1930s as subcutaneous hormone pellets, have gained much attention recently in drug delivery due to their controlled release of drugs in a localized and sustained manner. In systemic treatments, drugs administered through IDDS evade first-pass metabolism and enzymatic degradation within the gastrointestinal tract, therefore enhancing drug bioavailability. The most suitable properties of IDDS are its application with drugs that have poor stability or solubility in oral formulations. Even though implantation is invasive, the benefits of infrequent administration, higher patient compliance, and being able to discontinue therapy when side effects are present far outweigh the disadvantages. Today, IDDSs are used in a myriad of therapeutic areas: contraception, chemotherapy, and pain management, to name a few. Future developments in such technologies, fine-tuning these systems further, will revolutionize drug therapy by bringing even better and more patient-friendly drugs with both better efficacy and sustained periods of effects.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878369501250404184028
2025-04-21
2025-09-29
Loading full text...

Full text loading...

References

  1. Baryakova T.H. Pogostin B.H. Langer R. McHugh K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023 22 5 387 409 10.1038/s41573‑023‑00670‑0 36973491
    [Google Scholar]
  2. Kumar A. Pillai J. Implantable drug delivery systems: An overview. Nanostructures for the Engineering of Cells, Tissues and Organs William Andrew 2018 473 511 10.1016/B978‑0‑12‑813665‑2.00013‑2
    [Google Scholar]
  3. Dhankar S. A bird view on the role of graphene oxide nanosystems in therapeutic delivery. Curr. Nanosci. 2024 20 1 11
    [Google Scholar]
  4. Fayzullin A. Bakulina A. Mikaelyan K. Shekhter A. Guller A. Implantable drug delivery systems and foreign body reaction: Traversing the current clinical landscape. Bioengineering 2021 8 12 205 10.3390/bioengineering8120205 34940358
    [Google Scholar]
  5. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  6. Stewart S.A. Domínguez-Robles J. Donnelly R.F. Larrañeta E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers 2018 10 12 1379 10.3390/polym10121379 30961303
    [Google Scholar]
  7. Verma R.K. Garg S. Drug delivery technologies and future directions. Pharm. Technol. 2001 25 2 1 14
    [Google Scholar]
  8. Rajgor N. Patel M. Bhaskar V. Implantable drug delivery systems: An overview. SRP 2011 2 2 91 10.4103/0975‑8453.86297
    [Google Scholar]
  9. Yang J. Cheng Y. Gong X. Yi S. Li C-W. Jiang L. Yi C. An integrative review on the applications of 3D printing in the field of in vitro diagnostics. Chin. Chem. Lett. 2022 33 5 2231 2242 10.1016/j.cclet.2021.08.105
    [Google Scholar]
  10. Hope A. Wade S.J. Aghmesheh M. Vine K.L. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J. Control. Release 2022 341 399 413 10.1016/j.jconrel.2021.11.043 34863842
    [Google Scholar]
  11. Fredenberg S. Wahlgren M. Reslow M. Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011 415 1-2 34 52 10.1016/j.ijpharm.2011.05.049 21640806
    [Google Scholar]
  12. Pons-Faudoa F.P. Ballerini A. Sakamoto J. Grattoni A. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases. Biomed. Microdevices 2019 21 2 47 10.1007/s10544‑019‑0389‑6 31104136
    [Google Scholar]
  13. Zhou H. Hernandez C. Goss M. Gawlik A. Exner A. Biomedical imaging in implantable drug delivery systems. Curr. Drug Targets 2015 16 6 672 682 10.2174/1389450115666141122211920 25418857
    [Google Scholar]
  14. Bala R. Madaan R. Chauhan S. Gupta M. Dubey A.K. Zahoor I. Brijesh H. Calina D. Sharifi-Rad J. Revitalizing allicin for cancer therapy: Advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 2 703 724 10.1007/s00210‑023‑02675‑3 37615709
    [Google Scholar]
  15. Garg N. Vincristine in cancer therapy: Mechanisms, efficacy, and future perspectives. Curr. Med. Chem. 2024 10.2174/0109298673319496240911060138 39318002
    [Google Scholar]
  16. Bakshi S. Annona Muricata: Unveiling its potential as a complementary and alternative cancer therapy. J. Pharm. Technol. Res. Manag. 2023 11 2 107 113 10.15415/jprtm.2023.112003
    [Google Scholar]
  17. Ahmed M.S. Khan I.J. Aman S. Chauhan S. Kaur N. Shriwastav S. Goel K. Saini M. Dhankar S. Singh T.G. Dev J. Mujwar S. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J. Exp. Biol. Agric. Sci. 2023 11 2 380 393 10.18006/2023.11(2).380.393
    [Google Scholar]
  18. Kciuk M. Garg N. Dhankhar S. Saini M. Mujwar S. Devi S. Chauhan S. Singh T.G. Singh R. Marciniak B. Gielecińska A. Kontek R. Exploring the comprehensive neuroprotective and anticancer potential of Afzelin. Pharmaceuticals 2024 17 6 701 10.3390/ph17060701 38931368
    [Google Scholar]
  19. Rydz J. Sikorska W. Kyulavska M. Christova D. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 2014 16 1 564 596 10.3390/ijms16010564 25551604
    [Google Scholar]
  20. Visan A.I. Popescu-Pelin G. Socol G. Degradation behavior of polymers used as coating materials for drug delivery—A basic review. Polymers 2021 13 8 1272 10.3390/polym13081272 33919820
    [Google Scholar]
  21. Martins C. Sousa F. Araújo F. Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv. Healthc. Mater. 2018 7 1 1701035 10.1002/adhm.201701035 29171928
    [Google Scholar]
  22. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  23. Bagherifard S. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies. Mater. Sci. Eng. C 2017 71 1241 1252 10.1016/j.msec.2016.11.011 27987680
    [Google Scholar]
  24. Meng E. Hoang T. Micro- and nano-fabricated Implantable drug-delivery Systems. Ther. Deliv. 2012 3 12 1457 1467 10.4155/tde.12.132 23323562
    [Google Scholar]
  25. Tan F. Zhu Y. Ma Z. Al-Rubeai M. Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomater. 2020 108 46 55 10.1016/j.actbio.2020.04.012 32289495
    [Google Scholar]
  26. Langer R.S. Wise D.L. Medical applications of controlled release. FL, USA CRC Press LLC Boca Raton 2019
    [Google Scholar]
  27. Almoshari Y. Osmotic pump drug delivery systems—A comprehensive review. Pharmaceuticals 2022 15 11 1430 10.3390/ph15111430 36422560
    [Google Scholar]
  28. Rimon M.T.I. Hasan M.W. Hassan M.F. Cesmeci S. Advancements in insulin pumps: A comprehensive exploration of insulin pump systems, technologies, and future directions. Pharmaceutics 2024 16 7 944 10.3390/pharmaceutics16070944 39065641
    [Google Scholar]
  29. Dash A. Cudworth G. II Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 1998 40 1 1 12 10.1016/S1056‑8719(98)00027‑6 9920528
    [Google Scholar]
  30. Dhankhar S. Chauhan S. Mehta D.K. Nitika Saini K. Saini M. Das R. Gupta S. Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023 15 1 17 10.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  31. Arora A. Behl T. Sehgal A. Singh S. Sharma N. Bhatia S. Sobarzo-Sanchez E. Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021 273 119311 10.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  32. Corb Aron R.A. Abid A. Vesa C.M. Nechifor A.C. Behl T. Ghitea T.C. Munteanu M.A. Fratila O. Andronie-Cioara F.L. Toma M.M. Bungau S. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium. Microorganisms 2021 9 3 618 10.3390/microorganisms9030618 33802777
    [Google Scholar]
  33. Balmayor E.R. Azevedo H.S. Reis R.L. Controlled delivery systems: From pharmaceuticals to cells and genes. Pharm. Res. 2011 28 6 1241 1258 10.1007/s11095‑011‑0392‑y 21424163
    [Google Scholar]
  34. Blackshear P.J. Implantable drug-delivery systems. Sci. Am. 1979 241 6 66 73 10.1038/scientificamerican1279‑66 504981
    [Google Scholar]
  35. Patil P. Uphade K. Saudagar R. A review: Osmotic drug delivery system. Pharma Sci. Monitor 2018 9 2
    [Google Scholar]
  36. Stevenson C.L. Theeuwes F. Wright J.C. Osmotic implantable delivery systems. Handbook of Pharmaceutical Controlled Release Technology CRC Press Boca Raton, FL 2000
    [Google Scholar]
  37. Chappel E. Implantable drug delivery devices. Drug Delivery Devices and Therapeutic Systems. Elsevier 2021 129 156 10.1016/B978‑0‑12‑819838‑4.00001‑8
    [Google Scholar]
  38. Cao L. Mantell S. Polla D. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens. Actuators A Phys. 2001 94 1-2 117 125 10.1016/S0924‑4247(01)00680‑X
    [Google Scholar]
  39. Speed J.S. Hyndman K.A. In vivo organ specific drug delivery with implantable peristaltic pumps. Sci. Rep. 2016 6 1 26251 10.1038/srep26251 27185292
    [Google Scholar]
  40. Danckwerts M. Fassihi A. Implantable controlled release drug delivery systems: A review. Drug Dev. Ind. Pharm. 1991 17 11 1465 1502 10.3109/03639049109026629
    [Google Scholar]
  41. Kumar S. Behl T. Sachdeva M. Sehgal A. Kumari S. Kumar A. Kaur G. Yadav H.N. Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021 264 118661 10.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  42. Fong J. Xiao Z. Takahata K. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery. Lab Chip 2015 15 4 1050 1058 10.1039/C4LC01290A 25473933
    [Google Scholar]
  43. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based drug delivery system in diabetes management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  44. Vincent C. Benolt R. Onori M. Implantable drug delivery systems-design process. Int. J. Precis. Eng. Manuf. 2006 7 4 40 46
    [Google Scholar]
  45. Magill E. Demartis S. Gavini E. Permana A.D. Thakur R.R.S. Adrianto M.F. Waite D. Glover K. Picco C.J. Korelidou A. Detamornrat U. Vora L.K. Li L. Anjani Q.K. Donnelly R.F. Domínguez-Robles J. Larrañeta E. Solid implantable devices for sustained drug delivery. Adv. Drug Deliv. Rev. 2023 199 114950 10.1016/j.addr.2023.114950 37295560
    [Google Scholar]
  46. Sharma P. Kaushik P. Kumar Sharma S. Dhankhar S. Garg N. Rani N. Exploring microsponges in dermatology: Opportunities and hurdles ahead. Micro Nanosyst. 2024 16 2 65 74 10.2174/0118764029295903240328054858
    [Google Scholar]
  47. Singh R. Bathaei M.J. Istif E. Beker L. A review of bioresorbable implantable medical devices: Materials, fabrication, and implementation. Adv. Healthc. Mater. 2020 9 18 2000790 10.1002/adhm.202000790 32790033
    [Google Scholar]
  48. Kravanja K.A. Finšgar M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Des. 2022 217 110653 10.1016/j.matdes.2022.110653
    [Google Scholar]
  49. Bhujbal S.V. Mitra B. Jain U. Gong Y. Agrawal A. Karki S. Taylor L.S. Kumar S. Tony Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021 11 8 2505 2536 10.1016/j.apsb.2021.05.014 34522596
    [Google Scholar]
  50. Siemann U. Solvent cast technology–a versatile tool for thin film production. Scattering methods and the properties of polymer materials. Springer 2005 1 14 10.1007/b107336
    [Google Scholar]
  51. Steward P.A. Hearn J. Wilkinson M.C. An overview of polymer latex film formation and properties. Adv. Colloid Interface Sci. 2000 86 3 195 267 10.1016/S0001‑8686(99)00037‑8 10997764
    [Google Scholar]
  52. Kudłak B. Owczarek K. Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—A review. Environ. Sci. Pollut. Res. Int. 2015 22 16 11975 11992 10.1007/s11356‑015‑4794‑y 26040266
    [Google Scholar]
  53. Halagali P. A review on employing twin screw hot melt extrusion technology for the enhancement of the solubility profile of poorly aqueous-soluble APIs. Neuroquantology 2022 20 14 2505
    [Google Scholar]
  54. Patil H. Tiwari R.V. Repka M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech 2016 17 1 20 42 10.1208/s12249‑015‑0360‑7 26159653
    [Google Scholar]
  55. Censi R. Gigliobianco M.R. Casadidio C. Di Martino P. Hot melt extrusion: Highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics 2018 10 3 89 10.3390/pharmaceutics10030089 29997332
    [Google Scholar]
  56. Utomo E. Classification, material types, and design approaches of long-acting and implantable drug delivery systems. Long-Acting Drug Delivery Systems. Elsevier 2022 17 59 10.1016/B978‑0‑12‑821749‑8.00012‑4
    [Google Scholar]
  57. Zema L. Loreti G. Melocchi A. Maroni A. Gazzaniga A. Injection Molding and its application to drug delivery. J. Control. Release 2012 159 3 324 331 10.1016/j.jconrel.2012.01.001 22245483
    [Google Scholar]
  58. Reynaerts D. Peirs J. Van Brussel H. An implantable drug-delivery system based on shape memory alloy micro-actuation. Sens. Actuators A Phys. 1997 61 1-3 455 462 10.1016/S0924‑4247(97)80305‑6
    [Google Scholar]
  59. Rothen-Weinhold A. Besseghir K. Vuaridel E. Sublet E. Oudry N. Kubel F. Gurny R. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur. J. Pharm. Biopharm. 1999 48 2 113 121 10.1016/S0939‑6411(99)00034‑X 10469929
    [Google Scholar]
  60. Dawood A. Marti B.M. Sauret-Jackson V. Darwood A. 3D printing in dentistry. Br. Dent. J. 2015 219 11 521 529 10.1038/sj.bdj.2015.914 26657435
    [Google Scholar]
  61. Wang J. Zhang Y. Aghda N.H. Pillai A.R. Thakkar R. Nokhodchi A. Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv. Drug Deliv. Rev. 2021 174 294 316 10.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  62. Parhi R. A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. J. Drug Deliv. Sci. Technol. 2021 64 102571 10.1016/j.jddst.2021.102571
    [Google Scholar]
  63. Park H. Park K. Biocompatibility issues of implantable drug delivery systems. Pharm. Res. 1996 13 12 1770 1776 10.1023/A:1016012520276 8987070
    [Google Scholar]
  64. Rajabian A. McCloskey A.P. Jamialahmadi T. Moallem S.A. Sahebkar A. A review on the efficacy and safety of lipid-lowering drugs in neurodegenerative disease. Rev. Neurosci. 2023 34 7 801 824 10.1515/revneuro‑2023‑0005 37036894
    [Google Scholar]
  65. Dhankhar S. Mujwar S. Garg N. Chauhan S. Saini M. Sharma P. Kumar S. Kumar Sharma S. Kamal M.A. Rani N. Artificial Intelligence in The management of neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2024 23 8 931 940 10.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  66. Dhankhar S. Cognitive rehabilitation for early-stage Dementia: A review. CPRR 2024 20 1 14 10.2174/0126660822275618231129073551
    [Google Scholar]
  67. Soni D. Khan H. Chauhan S. Kaur A. Dhankhar S. Garg N. Singh T.G. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int. Immunopharmacol. 2024 142 Pt B 113142 10.1016/j.intimp.2024.113142 39298812
    [Google Scholar]
  68. Lotan M. Icht M. Diagnosing pain in individuals with intellectual and developmental disabilities: Current state and novel technological solutions. Diagnostics 2023 13 3 401 10.3390/diagnostics13030401 36766505
    [Google Scholar]
  69. Mittal P. Dhankhar S. Chauhan S. Garg N. Bhattacharya T. Ali M. Chaudhary A.A. Rudayni H.A. Al-Zharani M. Ahmad W. Khan S.U.D. Singh T.G. Mujwar S. A review on natural antioxidants for their role in the treatment of Parkinson’s disease. Pharmaceuticals 2023 16 7 908 10.3390/ph16070908 37513820
    [Google Scholar]
  70. Narwal S. Current therapeutic strategies for chagas disease. Antiinfect. Agents 2023 21 1 11
    [Google Scholar]
  71. Anselmo A.C. Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 2014 190 15 28 10.1016/j.jconrel.2014.03.053 24747160
    [Google Scholar]
  72. Hernandez R. The use of systemic antibiotics in the treatment of chronic wounds. Dermatol. Ther. 2006 19 6 326 337 10.1111/j.1529‑8019.2006.00091.x 17199675
    [Google Scholar]
  73. Chauhan S. Current approaches in healing of wounds in diabetes and diabetic foot ulcers. Curr. Bioact. Compd. 2023 19 3 104 121 10.2174/1573407218666220823111344
    [Google Scholar]
  74. Dhankhar S. Garg N. Chauhan S. Saini M. Singh T.G. Singh R. Unravelling the microbiome’s role in healing diabetic wounds. Curr. Pharm. Biotechnol. 2024 25 1 13 10.2174/0113892010307032240530071003 38920078
    [Google Scholar]
  75. Dhankhar S. Garg N. Chauhan S. Saini M. Role of Artificial Intelligence in diabetic wound screening and early detection. Curr. Biotechnol. 2024 13 2 93 106 10.2174/0122115501303253240408072559
    [Google Scholar]
  76. Menchicchi B. Hensel A. Goycoolea F. Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection. Curr. Pharm. Des. 2015 21 33 4888 4906 10.2174/1381612821666150820104028 26290206
    [Google Scholar]
  77. Chauhan S. Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis gaertn.(sonn.). IJPPS 2014 6 7 116 119
    [Google Scholar]
  78. Aj M.Z. Implantable drug delivery system: A review. Int. J. Pharm. Tech. Res. 2012 4 1 280 292
    [Google Scholar]
  79. Vadlapatla R. Wong E.Y. Gayakwad S.G. Electronic drug delivery systems: An overview. J. Drug Deliv. Sci. Technol. 2017 41 359 366 10.1016/j.jddst.2017.08.008
    [Google Scholar]
  80. Freeman A.I. Mayhew E. Targeted drug delivery. Cancer 1986 58 S2 Suppl. 573 583 10.1002/1097‑0142(19860715)58:2+<573::aid‑cncr2820581328>3.0.co;2‑c 3521839
    [Google Scholar]
  81. Chaudhary R. Gupta S. Chauhan S. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder. Endocr. Metab. Immune Disord. Drug Targets 2023 23 4 494 502 10.2174/1871530322666220902143401 36056854
    [Google Scholar]
  82. Langer R. Implantable controlled release systems. Pharmacol. Ther. 1983 21 1 35 51 10.1016/0163‑7258(83)90066‑9 6353438
    [Google Scholar]
  83. Kutner N. Kunduru K.R. Rizik L. Farah S. Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems. Adv. Funct. Mater. 2021 31 44 2010929 10.1002/adfm.202010929
    [Google Scholar]
  84. Musmade N. An overview of in situ gel forming implants: Current approach towards alternative drug delivery system. J Biol Chem Chron 2019 5 14 21
    [Google Scholar]
  85. Khan W. Implantable medical devices. Focal Controlled Drug Delivery. Advances in Delivery Science and Technology Springer Boston, MA 2014 33 59 10.1007/978‑1‑4614‑9434‑8_2
    [Google Scholar]
  86. Santos A. Sinn Aw M. Bariana M. Kumeria T. Wang Y. Losic D. Drug-releasing implants: Current progress, challenges and perspectives. J. Mater. Chem. B Mater. Biol. Med. 2014 2 37 6157 6182 10.1039/C4TB00548A 32262134
    [Google Scholar]
  87. Hakim L.K. Yazdanian M. Alam M. Abbasi K. Tebyaniyan H. Tahmasebi E. Khayatan D. Seifalian A. Ranjbar R. Yazdanian A. Biocompatible and biomaterials application in drug delivery system in oral cavity. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 12 10.1155/2021/9011226 34812267
    [Google Scholar]
  88. Mohtashami Z. Esmaili Z. Vakilinezhad M.A. Seyedjafari E. Akbari Javar H. Pharmaceutical implants: Classification, limitations and therapeutic applications. Pharm. Dev. Technol. 2020 25 1 116 132 10.1080/10837450.2019.1682607 31642717
    [Google Scholar]
  89. El Kheir W. Marcos B. Virgilio N. Paquette B. Faucheux N. Lauzon M.A. Drug delivery systems in the development of novel strategies for glioblastoma treatment. Pharmaceutics 2022 14 6 1189 10.3390/pharmaceutics14061189 35745762
    [Google Scholar]
  90. Pankaj R.K. Formulation and evaluation of implantable drug delivery system of dacarbazine by using hydrophilic polymer. JPSR 2020 12 3 405 412
    [Google Scholar]
  91. Das T. Venkatesh M.P. Pramod Kumar T.M. Koland M. SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach. J. Drug Deliv. Sci. Technol. 2020 55 101415 10.1016/j.jddst.2019.101415
    [Google Scholar]
  92. Iqbal M.M. Design and evaluation of subcutaneous implantable drug delivery system of tramadol using natural biodegradable polymer. Ann. Phytomed. 2012 1 2 30 38
    [Google Scholar]
  93. Cui M. Hu N. Fang D. Sun H. Pan H. Pan W. Fabrication and evaluation of customized implantable drug delivery system for orthopedic therapy based on 3D printing technologies. Int. J. Pharm. 2022 618 121679 10.1016/j.ijpharm.2022.121679 35314275
    [Google Scholar]
  94. Beetha Rohini S. Formulation and Evaluation of Biodegradable Implantable Drug Delivery System of Clindamycin Hydrochloride. RVS College of Pharmaceutical Sciences Coimbatore 2012
    [Google Scholar]
  95. Sandip Fulzele Reenu Yadav Vinod Gauttam Jyotiram Sawale Sunil R. Bavaskar Bhushan P. Gayakwad Formulation and evaluation of implantable drug delivery of disulfiram. J. Pharm. Negat. Results 2022 1759 1772 10.47750/pnr.2022.13.S09.212
    [Google Scholar]
  96. Velivela S. B Pati N. Babu B.R. Formulation development of Temozolomide liposomal formulation in the treatment of Glioma. AJPT 2021 11 3 203 206 10.52711/2231‑5713.2021.00033
    [Google Scholar]
  97. Kumar S.C. Satish C. Shivakumar H. Formulation and evaluation of chitosan‐gellan based methotrexate implants. J. Macromol. Sci. A: Pure Appl. Chem. 2008 45 8 643 649
    [Google Scholar]
  98. Airemwen C.O. Formulation of subcutaneous implantable drug delivery system of ibuprofen using biodegradable polymers. Niger. J. Pharm. Appl. Sci. Res. 2021 10 4 14 21
    [Google Scholar]
  99. Stewart S. Domínguez-Robles J. McIlorum V. Mancuso E. Lamprou D. Donnelly R. Larrañeta E. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics 2020 12 2 105 10.3390/pharmaceutics12020105 32013052
    [Google Scholar]
  100. Augusthy A.R. Chandran S.C. Vipin K. Design and evaluation of an in situ forming implant system of an anti-inflammatory drug. Indo Am. J. Pharm. Sci. 2017 4 4 983 994
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878369501250404184028
Loading
/content/journals/raddf/10.2174/0126673878369501250404184028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test