Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Exosomes are nanoscale extracellular vesicles with various biological activities that can accelerate wound healing by regulating inflammatory responses, promoting cell proliferation and angiogenesis, and other mechanisms. Among them, plant and animal exosomes have demonstrated unique advantages due to their biological characteristics. Plant exosomes have gradually become a research hotspot due to their wide source, high biosafety, and low production cost, demonstrating significant pro-healing potential. In addition, animal exosomes, especially human-derived stem cell exosomes, have shown excellent results in promoting wound repair and have become the focus of clinical research. This review explores the mechanism of action of these exosomes and their application prospects in wound healing, providing theoretical support for future research and clinical applications.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878366772250116082511
2025-01-27
2025-10-30
Loading full text...

Full text loading...

References

  1. PeñaO.A. MartinP. Cellular and molecular mechanisms of skin wound healing.Nat. Rev. Mol. Cell Biol.202425859961610.1038/s41580‑024‑00715‑138528155
    [Google Scholar]
  2. ZhongY WeiE WuL Novel biomaterials for wound healing and tissue regeneration.ACS Omega 2024930acsomega.4c02775.10.1021/acsomega.4c0277539100297
    [Google Scholar]
  3. WangP.H. HuangB.S. HorngH.C. YehC.C. ChenY.J. Wound healing.J. Chin. Med. Assoc.20188129410110.1016/j.jcma.2017.11.00229169897
    [Google Scholar]
  4. NeupaneY.R. HandralH.K. AlkaffS.A. Cell-derived nanovesicles from mesenchymal stem cells as extracellular vesicle-mimetics in wound healing.Acta Pharm. Sin. B20231351887190210.1016/j.apsb.2022.10.02237250164
    [Google Scholar]
  5. KolimiP. NaralaS. NyavanandiD. YoussefA.A.A. DudhipalaN. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements.Cells20221115243910.3390/cells1115243935954282
    [Google Scholar]
  6. YuH. FengH. ZengH. Exosomes: The emerging mechanisms and potential clinical applications in dermatology.Int. J. Biol. Sci.20242051778179510.7150/ijbs.9289738481799
    [Google Scholar]
  7. ZhouC. ZhangB. YangY. Stem cell-derived exosomes: Emerging therapeutic opportunities for wound healing.Stem Cell Res. Ther.202314110710.1186/s13287‑023‑03345‑037101197
    [Google Scholar]
  8. PhinneyD.G. PittengerM.F. Concise review: Msc-derived exosomes for cell-free therapy.Stem Cells201735485185810.1002/stem.257528294454
    [Google Scholar]
  9. HuangR. JiaB. SuD. Plant exosomes fused with engineered mesenchymal stem cell‐derived nanovesicles for synergistic therapy of autoimmune skin disorders.J. Extracell. Vesicles20231210e1236110.1002/jev2.1236137859568
    [Google Scholar]
  10. AnY. LinS. TanX. Exosomes from adipose‐derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.1299333458899
    [Google Scholar]
  11. HadeM.D. SuireC.N. MossellJ. SuoZ. Extracellular vesicles: Emerging frontiers in wound healing.Med. Res. Rev.20224262102212510.1002/med.2191835757979
    [Google Scholar]
  12. LvH. LiuH. SunT. WangH. ZhangX. XuW. Exosome derived from stem cell: A promising therapeutics for wound healing.Front. Pharmacol.20221395777110.3389/fphar.2022.95777136003496
    [Google Scholar]
  13. NarauskaitėD. VydmantaitėG. RusteikaitėJ. Extracellular vesicles in skin wound healing.Pharmaceuticals202114881110.3390/ph1408081134451909
    [Google Scholar]
  14. TanF. LiX. WangZ. LiJ. ShahzadK. ZhengJ. Clinical applications of stem cell-derived exosomes.Signal Transduct. Target. Ther.2024911710.1038/s41392‑023‑01704‑038212307
    [Google Scholar]
  15. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  16. MondalJ. PillarisettiS. JunnuthulaV. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications.J. Control. Release20233531127114910.1016/j.jconrel.2022.12.02736528193
    [Google Scholar]
  17. IsaacR. ReisF.C.G. YingW. OlefskyJ.M. Exosomes as mediators of intercellular crosstalk in metabolism.Cell Metab.20213391744176210.1016/j.cmet.2021.08.00634496230
    [Google Scholar]
  18. ZhangL. YuD. Exosomes in cancer development, metastasis, and immunity.Biochim. Biophys. Acta Rev. Cancer20191871245546810.1016/j.bbcan.2019.04.00431047959
    [Google Scholar]
  19. KrylovaS.V. FengD. The machinery of exosomes: Biogenesis, release, and uptake.Int. J. Mol. Sci.2023242133710.3390/ijms2402133736674857
    [Google Scholar]
  20. KimJ. LiS. ZhangS. WangJ. Plant-derived exosome-like nanoparticles and their therapeutic activities.Asian J. of Pharma. Sci.2022171536910.1016/j.ajps.2021.05.00635261644
    [Google Scholar]
  21. SarasatiA. SyahruddinM.H. NuryantiA. Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy.Biomedicines2023114105310.3390/biomedicines1104105337189671
    [Google Scholar]
  22. ShkrylY. TsydeneshievaZ. DegtyarenkoA. Plant exosomal vesicles: Perspective information nanocarriers in biomedicine.Appl. Sci.20221216826210.3390/app12168262
    [Google Scholar]
  23. MathivananS. JiH. SimpsonR.J. Exosomes: Extracellular organelles important in intercellular communication.J. Proteomics201073101907192010.1016/j.jprot.2010.06.00620601276
    [Google Scholar]
  24. SuhartaS. BarlianA. HidajahA.C. Plant‐derived exosome‐like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient.J. Food Sci.20218672838285010.1111/1750‑3841.1578734151426
    [Google Scholar]
  25. EmingS.A. MartinP. CanicT.M. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.300933725473038
    [Google Scholar]
  26. LiA. LiD. GuY. Plant-derived nanovesicles: Further exploration of biomedical function and application potential.Acta Pharm. Sin. B20231383300332010.1016/j.apsb.2022.12.02237655320
    [Google Scholar]
  27. YouJ.Y. KangS.J. RheeW.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells.Bioact. Mater.20216124321433210.1016/j.bioactmat.2021.04.02333997509
    [Google Scholar]
  28. KimM. ParkJ.H. Isolation of Aloe saponaria-derived extracellular vesicles and investigation of their potential for chronic wound healing.Pharmaceutics2022149190510.3390/pharmaceutics1409190536145653
    [Google Scholar]
  29. TuJ. JiangF. FangJ. Anticipation and verification of dendrobium-derived nanovesicles for skin wound healing targets, predicated upon immune infiltration and senescence.Int. J. Nanomedicine2024191629164410.2147/IJN.S43839838406605
    [Google Scholar]
  30. ŞahinF. KoçakP. GüneşM.Y. Özkanİ. YıldırımE. KalaE.Y. In vitro wound healing activity of wheat-derived nanovesicles.Appl. Biochem. Biotechnol.2019188238139410.1007/s12010‑018‑2913‑130474796
    [Google Scholar]
  31. SavcıY. KırbaşO.K. BozkurtB.T. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing.Food Funct.202112115144515610.1039/D0FO02953J33977960
    [Google Scholar]
  32. DanielloV. LeoD.V. LasalviaM. Solanum lycopersicum (tomato)-derived nanovesicles accelerate wound healing by eliciting the migration of keratinocytes and fibroblasts.Int. J. Mol. Sci.2024255245210.3390/ijms2505245238473700
    [Google Scholar]
  33. RamírezO. PomaredaF. OlivaresB. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation.Phytomedicine202412215510810.1016/j.phymed.2023.15510837844380
    [Google Scholar]
  34. WangZ. XieX. WangM. Analysis of common and characteristic actions of Panax ginseng and Panax notoginseng in wound healing based on network pharmacology and meta-analysis.J. Ginseng Res.202347449350510.1016/j.jgr.2023.02.00537397412
    [Google Scholar]
  35. FriedensteinA.J. ChailakhjanR.K. LalykinaK.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Prolif.19703439340310.1111/j.1365‑2184.1970.tb00347.x5523063
    [Google Scholar]
  36. ZhaoG. LiuF. LiuZ. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing.Stem Cell Res. Ther.202011117410.1186/s13287‑020‑01616‑832393338
    [Google Scholar]
  37. WexlerS.A. DonaldsonC. KendallD.P. RiceC. BradleyB. HowsJ.M. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not.Br. J. Haematol.2003121236837410.1046/j.1365‑2141.2003.04284.x12694261
    [Google Scholar]
  38. ZukP.A. ZhuM. MizunoH. Multilineage cells from human adipose tissue: Implications for cell-based therapies.Tissue Eng.20017221122810.1089/10763270130006285911304456
    [Google Scholar]
  39. ChenP. YuanM. YaoL. Human umbilical cord-derived mesenchymal stem cells ameliorate liver fibrosis by improving mitochondrial function via Slc25a47-Sirt3 signaling pathway.Biomed. Pharmacother.202417111613310.1016/j.biopha.2024.11613338198960
    [Google Scholar]
  40. MadhounA.A. KotiL. CarrióN. AtariM. MullaA.F. Clinical application of umbilical cord mesenchymal stem cells preserves β-cells in type 1 diabetes.Stem Cells Transl. Med.202413210110610.1093/stcltm/szad07737950618
    [Google Scholar]
  41. HuangX. YangX. HuangJ. Human amnion mesenchymal stem cells promote endometrial repair via paracrine, preferentially than transdifferentiation.Cell Commun. Signal.202422130110.1186/s12964‑024‑01656‑038822356
    [Google Scholar]
  42. XiaoJ. ZhangQ. WuB. Effect of placental mesenchymal stem cells on promoting the healing of chronic burn wounds.Heliyon20241017e3658410.1016/j.heliyon.2024.e3658439281490
    [Google Scholar]
  43. DingJ.Y. ChenM.J. WuL.F. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: Roles, opportunities and challenges.Mil. Med. Res.20231013610.1186/s40779‑023‑00472‑w37587531
    [Google Scholar]
  44. LouG. ChenZ. ZhengM. LiuY. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases.Exp. Mol. Med.2017496e34610.1038/emm.2017.6328620221
    [Google Scholar]
  45. GarofaloM. VillaA. CrescentiD. Heterologous and cross-species tropism of cancer-derived extracellular vesicles.Theranostics20199195681569310.7150/thno.3482431534511
    [Google Scholar]
  46. MajiS. YanI.K. ParasramkaM. MohankumarS. MatsudaA. PatelT. In vitro toxicology studies of extracellular vesicles.J. Appl. Toxicol.201737331031810.1002/jat.336227435060
    [Google Scholar]
  47. ChuD.T. PhuongT.N.T. TienN.L.B. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells.Int. J. Mol. Sci.202021370810.3390/ijms2103070831973182
    [Google Scholar]
  48. LiuX. ZhangM. LiuH. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes.Exp. Neurol.202134111370010.1016/j.expneurol.2021.11370033741350
    [Google Scholar]
  49. TutuianuR. RoscaA.M. IacomiD.M. SimionescuM. TitorencuI. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis.Int. J. Mol. Sci.20212212623910.3390/ijms2212623934207905
    [Google Scholar]
  50. ZhuF. YeY. ShaoY. XueC. MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts.J. Gene Med.2024265e368810.1002/jgm.368838686583
    [Google Scholar]
  51. WuD. ChangX. TianJ. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: Release of exosomal miR-1260a improves osteogenesis and angiogenesis.J. Nanobiotechnology202119120910.1186/s12951‑021‑00958‑634256779
    [Google Scholar]
  52. WuD. KangL. TianJ. Exosomes derived from bone mesenchymal stem cells with the stimulation of fe3o4 nanoparticles and static magnetic field enhance wound healing through upregulated mir-21-5p.Int. J. Nanomedicine2020157979799310.2147/IJN.S27565033116513
    [Google Scholar]
  53. SongY. YouY. XuX. Adipose‐derived mesenchymal stem cell‐derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration.Adv. Sci.20231030230402310.1002/advs.20230402337712174
    [Google Scholar]
  54. HeoJ.S. KimS. YangC.E. ChoiY. SongS.Y. KimH.O. Human adipose mesenchymal stem cell-derived exosomes: A key player in wound healing.Tissue Eng. Regen. Med.202118453754810.1007/s13770‑020‑00316‑x33547566
    [Google Scholar]
  55. HeL. ZhuC. JiaJ. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway.Biosci. Rep.2020405BSR2019254910.1042/BSR2019254932342982
    [Google Scholar]
  56. LeeJ.H. WonY.J. KimH. Adipose tissue-derived mesenchymal stem cell-derived exosomes promote wound healing and tissue regeneration.Int. J. Mol. Sci.202324131043410.3390/ijms24131043437445612
    [Google Scholar]
  57. QianL. PiL. FangB.R. MengX.X. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis.Lab. Invest.202110191254126610.1038/s41374‑021‑00611‑834045678
    [Google Scholar]
  58. HeoJ.S. KimS. Human adipose mesenchymal stem cells modulate inflammation and angiogenesis through exosomes.Sci. Rep.2022121277610.1038/s41598‑022‑06824‑135177768
    [Google Scholar]
  59. SunY. JuY. FangB. Exosomes from human adipose-derived mesenchymal stromal/stem cells accelerate angiogenesis in wound healing: Implication of the EGR-1/lncRNA-SENCR/DKC1/ VEGF-A axis.Hum. Cell20223551375139010.1007/s13577‑022‑00732‑235751795
    [Google Scholar]
  60. YuanR. DaiX. LiY. LiC. LiuL. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling.Mol. Med. Rep.202124575810.3892/mmr.2021.1239834476508
    [Google Scholar]
  61. AnY. HuangF. TanX. Exosomes of adipose tissue-derived stem cells promote wound healing by sponging mir-17-5p and inducing autophagy protein ulk1.Plast. Reconstr. Surg.2023151510161028[PMID: 36729201
    [Google Scholar]
  62. ZhengT. ShaoW. TianJ. Exosomes derived from ADSCs containing miR‐378 promotes wound healing by targeting caspase‐3.J. Biochem. Mol. Toxicol.20213510e2288110.1002/jbt.2288134392575
    [Google Scholar]
  63. PorterA.G. JänickeR.U. Emerging roles of caspase-3 in apoptosis.Cell Death Differ.1999629910410.1038/sj.cdd.440047610200555
    [Google Scholar]
  64. DehghaniL. OwliaeeI. SadeghianF. ShojaeianA. The therapeutic potential of human umbilical cord mesenchymal stromal cells derived exosomes for wound healing: Harnessing exosomes as a cell-free therapy.J. Stem Cells Regen. Med.20242011423[PMID: 39044811
    [Google Scholar]
  65. HanC. LiuF. ZhangY. Human umbilical cord mesenchymal stem cell derived exosomes delivered using silk fibroin and sericin composite hydrogel promote wound healing.Front. Cardiovasc. Med.2021871302110.3389/fcvm.2021.71302134490375
    [Google Scholar]
  66. LiuJ. YanZ. YangF. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2.Stem Cell Rev. Rep.202117230531710.1007/s12015‑020‑09992‑732613452
    [Google Scholar]
  67. MarinoL. CastaldiM.A. RosamilioR. Mesenchymal stem cells from the wharton’s jelly of the human umbilical cord: Biological properties and therapeutic potential.Int. J. Stem Cells201912221822610.15283/ijsc1803431022994
    [Google Scholar]
  68. YuH.R. HuangH.C. ChenI.L. LiS.C. Exosomes secreted by wharton’s jelly-derived mesenchymal stem cells promote the ability of cell proliferation and migration for keratinocyte.Int. J. Mol. Sci.2024259475810.3390/ijms2509475838731977
    [Google Scholar]
  69. YiX. ChenF. LiuF. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions.Stem Cell Res. Ther.202011118310.1186/s13287‑020‑01690‑y32430063
    [Google Scholar]
  70. AbumareeM.H. AbomarayF.M. AlshabibiM.A. AlAskarA.S. KalionisB. Immunomodulatory properties of human placental mesenchymal stem/stromal cells.Placenta201759879510.1016/j.placenta.2017.04.00328411943
    [Google Scholar]
  71. ZhangY. ShiL. LiX. LiuY. ZhangG. WangY. Placental stem cells-derived exosomes stimulate cutaneous wound regeneration via engrailed-1 inhibition.Front. Bioeng. Biotechnol.202210104477310.3389/fbioe.2022.104477336568306
    [Google Scholar]
  72. HoangD.M. PhamP.T. BachT.Q. Stem cell-based therapy for human diseases.Signal Transduct. Target. Ther.20227127210.1038/s41392‑022‑01134‑435933430
    [Google Scholar]
  73. ZhangK. ChengK. Stem cell-derived exosome versus stem cell therapy.Nat. Rev. Bioeng.202312
    [Google Scholar]
  74. DuanM. ZhangY. ZhangH. MengY. QianM. ZhangG. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing.Stem Cell Res. Ther.202011145210.1186/s13287‑020‑01971‑633097078
    [Google Scholar]
  75. LiJ. GaoH. XiongY. Enhancing cutaneous wound healing based on human induced neural stem cell-derived exosomes.Int. J. Nanomedicine2022175991600610.2147/IJN.S37750236506346
    [Google Scholar]
  76. ZhouZ. ZhengJ. LinD. XuR. ChenY. HuX. Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway.Int. J. Mol. Med.202250614310.3892/ijmm.2022.519936321793
    [Google Scholar]
  77. LiuM. LiuZ. ChenY. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization.Stem Cell Res. Ther.202213112110.1186/s13287‑022‑02783‑635313958
    [Google Scholar]
  78. MiB. ChenL. XiongY. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6.J. Nanobiotechnology20201816810.1186/s12951‑020‑00624‑332375794
    [Google Scholar]
  79. ChenC. YangJ. ShangR. Orchestration of macrophage polarization dynamics by fibroblast-secreted exosomes during skin wound healing.J. Invest. Dermatol.20241451171184.e6
    [Google Scholar]
  80. LyuL. CaiY. ZhangG. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing.Front. Mol. Biosci.20229100880210.3389/fmolb.2022.100880236304927
    [Google Scholar]
  81. ZhangG. WangD. RenJ. Antler stem cell-derived exosomes promote regenerative wound healing via fibroblast-to-myofibroblast transition inhibition.J. Biol. Eng.20231716710.1186/s13036‑023‑00386‑037940994
    [Google Scholar]
  82. JafariN. AfsharA. ZareA. Proliferating and migrating effects of regenerating sea anemone Aulactinia stella cells-derived exosomes on human skin fibroblasts.Nat. Prod. Res.20241810.1080/14786419.2024.235214438824422
    [Google Scholar]
  83. JayathilakaE.H.T.T. EdirisingheS.L. OhC. NikapitiyaC. ZoysaD.M. Exosomes from bacteria (Streptococcus parauberis) challenged olive flounder (Paralichthys olivaceus): Isolation, molecular characterization, wound healing, and regeneration activities.Fish Shellfish Immunol.202313710877710.1016/j.fsi.2023.10877737105423
    [Google Scholar]
  84. LiuY. LiF. CaiZ. Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda.Tissue Cell20217110151810.1016/j.tice.2021.10151833676235
    [Google Scholar]
  85. HumenikF. MaloveskáM. HudákováN. Impact of canine amniotic mesenchymal stem cell conditioned media on the wound healing process: in vitro and in vivo study.Int. J. Mol. Sci.2023249821410.3390/ijms2409821437175924
    [Google Scholar]
  86. ZamanianM.H. NorooznezhadA.H. HosseinkhaniZ. Human placental mesenchymal stromal cell‐derived small extracellular vesicles as a treatment for severe COVID‐19: A double‐blind randomized controlled clinical trial.J. Extracell. Vesicles2024137e1249210.1002/jev2.1249239051747
    [Google Scholar]
  87. ZhuY.G. ShiM. MonselA. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: A pilot study.Stem Cell Res. Ther.202213122010.1186/s13287‑022‑02900‑535619189
    [Google Scholar]
  88. DaiS. WeiD. WuZ. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer.Mol. Ther.200816478279010.1038/mt.2008.118362931
    [Google Scholar]
  89. PanC. StevicI. MüllerV. Exosomal micro RNA s as tumor markers in epithelial ovarian cancer.Mol. Oncol.201812111935194810.1002/1878‑0261.1237130107086
    [Google Scholar]
  90. GuptaA. MaffulliN. RodriguezH.C. LeeC.E. LevyH.J. AminE.S.F.III Umbilical cord-derived Wharton’s jelly for treatment of knee osteoarthritis: Study protocol for a non-randomized, open-label, multi-center trial.J. Orthop. Surg. Res.202116114310.1186/s13018‑021‑02300‑033602286
    [Google Scholar]
  91. JohnsonJ. LawS.Q.K. ShojaeeM. First‐in‐human clinical trial of allogeneic, platelet‐derived extracellular vesicles as a potential therapeutic for delayed wound healing.J. Extracell. Vesicles20231271233210.1002/jev2.1233237353884
    [Google Scholar]
  92. KwonH. ParkH. ChoiS. Combined fractional treatment of acne scars involving non-ablative 1,550-nm erbium-glass laser and micro-needling radiofrequency: A 16-week prospective, randomized split-face study.Acta Derm. Venereol.201797894795110.2340/00015555‑270128512669
    [Google Scholar]
  93. KwonH. YangS. LeeJ. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized, split-face study.Acta Derm. Venereol.202010018adv0031010.2340/00015555‑366633073298
    [Google Scholar]
  94. ParkG.H. KwonH.H. SeokJ. Efficacy of combined treatment with human adipose tissue stem cell‐derived exosome‐containing solution and microneedling for facial skin aging: A 12‐week prospective, randomized, split‐face study.J. Cosmet. Dermatol.202322123418342610.1111/jocd.1587237377400
    [Google Scholar]
  95. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  96. PascucciL. CoccèV. BonomiA. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery.J. Control. Release201419226227010.1016/j.jconrel.2014.07.04225084218
    [Google Scholar]
  97. MaJ. ZhangY. TangK. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles.Cell Res.201626671372710.1038/cr.2016.5327167569
    [Google Scholar]
  98. PerocheauD. TouramanidouL. GurungS. GissenP. BaruteauJ. Clinical applications for exosomes: Are we there yet?Br. J. Pharmacol.2021178122375239210.1111/bph.1543233751579
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878366772250116082511
Loading
/content/journals/raddf/10.2174/0126673878366772250116082511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test