Skip to content
2000
image of Formulation and Evaluation of Canagliflozin Hemihydrate-loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Physicochemical Characterization, Ex-vivo Analysis, and In-vivo Pharmacokinetics

Abstract

Introduction

Type 2 Diabetes Mellitus (T2DM) is a prevalent metabolic disease significantly impacting healthcare, characterized by increased blood glucose levels from the average level due to insulin resistance or a lack of insulin production. Canagliflozin Hemihydrate (CGN) is one of the drugs of choice in the treatment of the disease. However, CGN belongs to BCS class IV making it difficult to formulate into suitable dosage form. The purpose of the present study was to systematically optimize and explore the potential of Nanostructured Lipid Carriers (NLCs) to improve the solubility and bioavailability of CGN.

Methods

The emulsification and ultrasonication methods were used for the preparation of CGN-loaded NLCs (CGN-NLCs) by employing the Box-Behnken design. The solid lipid to liquid lipid ratio (X1), surfactant concentration (X2), and sonication time (X3) were independent variables, while particle size (Y1) and entrapment efficiency (EE) (Y2) were selected as dependent variables.

Results

The optimized batch showed particle size, zeta potential, Polydispersity Index (PDI), and EE of 221.2 ± 2.25 nm, -37 mV, 0.268 ± 0.024, and 98.2 ± 1.62%. The TEM revealed a homogeneous spherical shape of CGN-NLCs. Further, the DSC and XRD studies revealed reduced crystallinity with complete encapsulation of CGN in NLCs. The drug release study in simulated intestinal fluid (pH 6.8) showed significant CGN release from CGN-NLCs compared to CGN dispersion. Further, the intestinal permeability and pharmacokinetic study showed a 1.33-fold and 3.81-fold increase in permeability and bioavailability along with improvement in Cmax, Tmax, and [AUC]0–24 as compared to CGN dispersion.

Conclusion

Thus, the prepared CGN-NLCs could be a better viable option for T2DM with improved therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878343297250325060051
2025-04-11
2025-11-07
Loading full text...

Full text loading...

References

  1. Said S. Hernandez G. Sodium glucose co-transporter 2 (SGLT2) inhibition with canagliflozin in type 2 diabetes mellitus. Cardiovasc. Hematol. Agents Med. Chem. 2014 11 3 203 206 10.2174/187152571103140120103032 24025022
    [Google Scholar]
  2. Davidson J.A. Kuritzky L. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes. Postgrad. Med. 2014 126 6 33 48 10.3810/pgm.2014.10.2819 25414933
    [Google Scholar]
  3. Tahara A. Takasu T. Yokono M. Imamura M. Kurosaki E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci. 2016 130 3 159 169 10.1016/j.jphs.2016.02.003 26970780
    [Google Scholar]
  4. Dietrich E. Powell J. Taylor J. Canagliflozin: A novel treatment option for type 2 diabetes. Drug Des. Devel. Ther. 2013 7 1399 1408 10.2147/DDDT.S48937 24285921
    [Google Scholar]
  5. European Medicines Agency Assessment report Vokanamet. 2014 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/invokana
  6. Burjak M Rozman PT Petek B Pharmaceutical compositions comprising Canagliflozin WO Patent 2016030502A1 2017
    [Google Scholar]
  7. O’Driscoll C.M. Griffin B.T. Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact of lipid-based formulations. Adv. Drug Deliv. Rev. 2008 60 6 617 624 10.1016/j.addr.2007.10.012 18155800
    [Google Scholar]
  8. Aungst B.J. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J. Pharm. Sci. 1993 82 10 979 987 10.1002/jps.2600821008 8254497
    [Google Scholar]
  9. Shrestha H. Bala R. Arora S. Lipid-based drug delivery systems. J. Pharm. (Cairo) 2014 2014 1 10 10.1155/2014/801820 26556202
    [Google Scholar]
  10. Das S. Lipid-based nanoformulations for active delivery. Curr. Pharm. Biotechnol. 2015 16 4 289 290 10.2174/138920101604150218095039 25697367
    [Google Scholar]
  11. Attama A.A. SLN, NLC, LDC: State of the art in drug and active delivery. Recent Pat. Drug Deliv. Formul. 2011 5 3 178 187 10.2174/187221111797200524 21834777
    [Google Scholar]
  12. Buszello K. Harnisch S. Müller R.H. Müller B.W. The influence of alkali fatty acids on the properties and the stability of parenteral O/W emulsions modified with Solutol HS 15®. Eur. J. Pharm. Biopharm. 2000 49 2 143 149 10.1016/S0939‑6411(99)00081‑8 10704897
    [Google Scholar]
  13. Doktorovova S. Souto E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv. 2009 6 2 165 176 10.1517/17425240802712590 19239388
    [Google Scholar]
  14. Muchow M. Maincent P. Müller R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm. 2008 34 12 1394 1405 10.1080/03639040802130061 18665980
    [Google Scholar]
  15. Uner M. Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine 2007 2 3 289 300 18019829
    [Google Scholar]
  16. Iqbal M.A. Md S. Sahni J.K. Baboota S. Dang S. Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target. 2012 20 10 813 830 10.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  17. Park S.J. Garcia C.V. Shin G.H. Kim J.T. Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem. 2018 251 51 57 10.1016/j.foodchem.2018.01.071 29426423
    [Google Scholar]
  18. Irby D. Du C. Li F. Lipid–drug conjugate for enhancing drug delivery. Mol. Pharm. 2017 14 5 1325 1338 10.1021/acs.molpharmaceut.6b01027 28080053
    [Google Scholar]
  19. Beloqui A. Solinís M.Á. Rodríguez-Gascón A. Almeida A.J. Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016 12 1 143 161 10.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  20. Apte S. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: Conceptual development. J. Excip. Food Chem. 2010 1 51 59
    [Google Scholar]
  21. Varshosaz J. Eskandari S. Minaiyan M. Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: In vivo pharmacodynamic studies using rat electroshock model. Int. J. Nanomedicine 2011 6 363 371 10.2147/IJN.S15881 21499426
    [Google Scholar]
  22. Negi L.M. Jaggi M. Talegaonkar S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int. J. Pharm. 2014 461 1-2 403 410 10.1016/j.ijpharm.2013.12.006 24345574
    [Google Scholar]
  23. Jahan S. Aqil M. Ahad A. Imam S.S. Waheed A. Qadir A. Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design. Inorganic Nano-Metal Chem 2022 54A 1 14 10.1080/24701556.2021.2025097
    [Google Scholar]
  24. Liu C.H. Wu C.T. Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf. A Physicochem. Eng. Asp. 2010 353 2-3 149 156 10.1016/j.colsurfa.2009.11.006
    [Google Scholar]
  25. Devineni D. Curtin C.R. Polidori D. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol. 2013 53 6 601 610 10.1002/jcph.88 23670707
    [Google Scholar]
  26. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur. J. Pharm. Biopharm. 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  27. Kasongo W.A. Pardeike J. Müller R.H. Walker R.B. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J. Pharm. Sci. 2011 100 12 5185 5196 10.1002/jps.22711 22020815
    [Google Scholar]
  28. Tamjidi F. Shahedi M. Varshosaz J. Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov. Food Sci. Emerg. Technol. 2014 26 366 374 10.1016/j.ifset.2014.06.012
    [Google Scholar]
  29. Singh A. Neupane Y.R. Mangla B. Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: Formulation design, in vitro, ex vivo, and in vivo studies. J. Pharm. Sci. 2019 108 10 3382 3395 10.1016/j.xphs.2019.06.003 31201904
    [Google Scholar]
  30. Teng Z. Yu M. Ding Y. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int. J. Nanomedicine 2018 14 119 133 10.2147/IJN.S186899 30613141
    [Google Scholar]
  31. Ajiboye Adejumoke Lara Nandi U, Galli M, Trivedi V. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication. Sci. Pharm. 2021 89 2 25 10.3390/scipharm89020025
    [Google Scholar]
  32. Rizwanullah M. Amin S. Ahmad J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target. 2017 25 1 58 74 10.1080/1061186X.2016.1191080 27186665
    [Google Scholar]
  33. Patel P. Patel M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: In vitro, cell line and in vivo evaluation. Eur. J. Pharm. Sci. 2021 159 105715 10.1016/j.ejps.2021.105715 33453388
    [Google Scholar]
  34. Zhang T. Chen J. Zhang Y. Shen Q. Pan W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci. 2011 43 3 174 179 10.1016/j.ejps.2011.04.005 21530654
    [Google Scholar]
  35. Chellampillai B. Kashid S. Pawar A. Mali A. Investigation of dimyristoyl phosphatidyl glycerol and cholesterol based nanocochleates as a potential oral delivery carrier for methotrexate. J. Liposome Res. 2022 32 4 308 316 10.1080/08982104.2021.2018603 34957892
    [Google Scholar]
  36. Thapa C. Ahad A. Aqil M. Imam S.S. Sultana Y. Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of telmisartan using Box–Behnken design. J. Drug Deliv. Sci. Technol. 2018 44 431 439 10.1016/j.jddst.2018.02.003
    [Google Scholar]
  37. Yostawonkul J. Surassmo S. Iempridee T. Surface modification of nanostructure lipid carrier (NLC) by oleoyl-quaternized-chitosan as a mucoadhesive nanocarrier. Colloids Surf. B Biointerfaces 2017 149 301 311 10.1016/j.colsurfb.2016.09.049 27780087
    [Google Scholar]
  38. Chanburee S. Tiyaboonchai W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin. Drug Dev. Ind. Pharm. 2017 43 3 432 440 10.1080/03639045.2016.1257020 27808665
    [Google Scholar]
  39. Wankhede H. Artesunate loaded bilosomes with enhanced oral bioavailability: In silico and in vitro study against Leishmania donovani promastigotes for the treatment of visceral leishmaniasis. SSRN 4963099 (DONE) 10.2139/ssrn.4963099
    [Google Scholar]
  40. Hassan T.H.H.A. Formulation and evaluation of self-nanoemulsifying tablets for the delivery of poorly water-soluble drugs. University and State Library of Saxony-Anhalt 2015
    [Google Scholar]
  41. Kumar P. Khatak S. Formulation development and characterization of Nadifloxacin loaded solid lipid nanoparticle-based hydrogel. Int Res J Pharm 2021 12 4 23 33 10.7897/2230‑8407.1204130
    [Google Scholar]
  42. Mali A.J. Pawar A.P. Bothiraja C. Improved lung delivery of budesonide from biopolymer based dry powder inhaler through natural inhalation of rat. Mater. Technol. 2014 29 6 350 357 10.1179/1753555714Y.0000000163
    [Google Scholar]
  43. Deshpande A.A. Characterization and evaluation of paclitaxel loaded solid lipid nanoparticles prepared by temperature modulated solidification technique. MS thesis University of Toledo 2015
    [Google Scholar]
  44. Kaithwas V. Dora C.P. Kushwah V. Jain S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf. B Biointerfaces 2017 154 10 20 10.1016/j.colsurfb.2017.03.006 28284054
    [Google Scholar]
  45. Ravindra N. Development and characterization of linezolid loaded biocompatible solid lipid based nanocarrier for enhanced lung deposition and anti-tubercular activity: Next generation tailor made carrier for dry powder inhaler. Curr Ind Sci 2023 1 1 11 10.2174/2210299X01666230508103042
    [Google Scholar]
  46. Neupane Yub Raj Srivastava M. Ahmad N. Development of nabumetone loaded lipid nano-scaffold for the effective oral delivery; optimization, characterization, drug release and pharmacodynamic study. J. Mol. Liq. 2017 231 514 522 10.1016/j.molliq.2017.01.107
    [Google Scholar]
  47. Mali A.J. Rokade A. Kamble R. Pawar A. Bothiraja C. Resveratrol-loaded microsponge as a novel biodegradable carrier for dry powder inhaler: A new strategy in lung delivery. Bionanoscience 2021 11 1 32 43 10.1007/s12668‑020‑00800‑7
    [Google Scholar]
  48. Cirri Marzia Mennini M. Maestrelli F. Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. Int. J. Pharm. 2017 521 73 83 10.1016/j.ijpharm.2017.02.022
    [Google Scholar]
  49. Raj N.Y. M S. N A. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int. J. Pharm. 2014 477 601 10.1016/j.ijpharm.2014.11.001
    [Google Scholar]
  50. Ahmad Javed Mir SR. Kohli K. Solid‐nanoemulsion preconcentrate for oral delivery of paclitaxel: Formulation design, biodistribution, and γ scintigraphy imaging. BioMed Res. Int. 2014 2014 984756 10.1155/2014/984756
    [Google Scholar]
  51. Zhang H. Chen W. Zhao Z. Lyophilized nanosuspensions for oral bioavailability improvement of insoluble drugs: Preparation, characterization, and pharmacokinetic studies. J. Pharm. Innov. 2017 12 3 271 280 10.1007/s12247‑017‑9287‑8
    [Google Scholar]
  52. Mehnert W. Mäder K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev. 2001 47 2-3 165 196 10.1016/S0169‑409X(01)00105‑3 11311991
    [Google Scholar]
  53. Neves A.R. Queiroz J.F. Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J. Nanobiotechnology 2016 14 1 27 10.1186/s12951‑016‑0177‑x 27061902
    [Google Scholar]
  54. Mali A.J. Joshi P.A. Bothiraja C. Pawar A.P. Fabrication and application of dimyristoyl phosphatidylcholine biomaterial-based nanocochleates dry powder inhaler for controlled release resveratrol delivery. Future J Pharm Sci 2021 7 1 47 10.1186/s43094‑021‑00189‑4
    [Google Scholar]
  55. Pawar J. Tayade A. Gangurde A.B. Moravkar K.K. Amin P.D. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach. Eur. J. Pharm. Sci. 2016 88 37 89 10.1016/j.ejps.2016.04.001
    [Google Scholar]
  56. Jaywant N. Desai P.R. Moravkar K.K. Khanna D.K. Amin P.D. Exploring the potential of porous silicas as a carrier system for dissolution rate enhancement of artemether. Asian J Pharm Sci 2016 11 6 760 10.1016/j.ajps.2016.06.002
    [Google Scholar]
  57. Kumar Panda B. Chellampillai B. Ghodke S. Mali A. Kamble R. Investigation of magnesium aluminometasilicate (Neusilin US2) based surface solid dispersion of sorafenib tosylate using QbD approach: In vitro and in vivo pharmacokinetic study. ADMET DMPK 2024 12 4 687 702 10.5599/admet.2338 39473622
    [Google Scholar]
  58. Zafar A. Alruwaili N.K. Imam S.S. Formulation of chitosan-coated piperine NLCs: Optimization, in vitro characterization, and in vivo preclinical assessment. AAPS PharmSciTech 2021 22 7 231 10.1208/s12249‑021‑02098‑4 34477999
    [Google Scholar]
  59. Mangla B. Neupane Y.R. Singh A. Kumar P. Shafi S. Kohli K. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane: Ex vivo, in vivo and toxicity studies. Nanomedicine (Lond.) 2020 15 26 2563 2583 10.2217/nnm‑2020‑0277 33079004
    [Google Scholar]
  60. Reddy Gouru Santhosh Patel Sonam Krishna Veni Nagappan development and validation of reverse phase high performance liquid chromatography method for the estimation of canagliflozin in bulk and its pharmaceutical formulation. J Young Pharmacists 2020 12 4 321 326 10.5530/jyp.2020.12.85
    [Google Scholar]
  61. Patil S. Bahadure S. Patil S. Formulation of canagliflozin hemihydrate-loaded bilosomes for the treatment of Type-2 diabetes mellitus: In vitro, in vivo and in silico molecular docking studies. J Drug Deliv Technol 2023 86 104630 10.1016/j.jddst.2023.104630
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878343297250325060051
Loading
/content/journals/raddf/10.2174/0126673878343297250325060051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test