Skip to content
2000
image of Gallic Acid: A Potent Antioxidant and Anti-inflammatory Agent in Modern Cosmeceuticals

Abstract

The cosmetics business is a valuable and stable multibillion-dollar business that keeps growing yearly with new, specialized goods. Natural goods contain a wealth of medicinally active chemicals used to treat a wide range of skin problems, including infections, inflammation, and damage caused by UV light and pollution. Cosmeceuticals are a mix of cosmetic and medical chemicals. Based on their main ingredients, they can be used for both beauty and health purposes. Many people think that natural goods are a great way to obtain cosmeceuticals. It has strong anti-inflammatory, antibacterial, anti-cancer, and protective properties. The benefit for the skin has been said to be the most interesting. GA and its products have been used a lot as an adjuvant in many therapeutic formulations, as an alternative to hydro-cortisone in children with atopic dermatitis and other skin diseases, and as an ingredient in cosmetics because they are good for humans. GA is GRAS (generally recognized as safe) by the US Food and Drug Administration. Oxidative stress, which happens when too many free radicals build up, is the main cause of many skin diseases that get worse over time, like aging. Polyphenols, including gallic acid, represent a significant category of naturally occurring antioxidants. They have emerged as potent antioxidants suitable for incorporation into active makeup products. Recent advancements include patent filings related to novel applications and formulations of Gallic acid in cosmetic science that highlight innovative delivery systems, such as nano-formulations enhancing stability and efficacy, as well as its synergistic combinations with other active ingredients to address targeted skin concerns like pigmentation, aging, and sensitivity which meets the demands of modern consumers.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878341990250516063126
2025-05-26
2025-09-28
Loading full text...

Full text loading...

References

  1. Bostock J. The Natural History. Pliny the Elder Red Lion Court, London Taylor and Francis 1855
    [Google Scholar]
  2. Fruen L. Iron gall ink. 2002 Available from: https://web.archive.org/web/20111002191808/http://www.realscience.breckschool.org/upper/fruen/files/Enrichmentarticles/files/IronGallInk/IronGallInk.html
  3. Reynolds L.D. Wilson N.G. Scribes and Scholars: A Guide to the Transmission of Greek and Latin Literature Oxford Oxford University Press 3rd ed 1991 193 194 10.1093/oso/9780198721451.001.0001
    [Google Scholar]
  4. Scheele C.W. On the essential salt of galls or gall-salt. Kongl. Vetenskaps Academiens handlingar 1786 30 34
    [Google Scholar]
  5. Henri B. Observations on the preparation and purification of gallic acid, and on the existence of a new acid in gall nuts. Ann. Chim. Phys. 1818 9 181 184
    [Google Scholar]
  6. Pelouze J. Thesis on tannin and gallic, pyrogallic, ellagic and metagallic acids. Ann. Chem. Phys. 1833 54 337 365
    [Google Scholar]
  7. Taylor R. Schaaf L.J. Impressed by Light: British Photographs from Paper Negatives, 1840-1860 New York Metropolitan Museum of Art 2007
    [Google Scholar]
  8. Schaechter M. Encyclopedia of Microbiology Academic Press 2009
    [Google Scholar]
  9. Phuyal N. Jha P.K. Raturi P.P. Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. ScientificWorldJournal 2020 2020 1 8780704 32256249
    [Google Scholar]
  10. Noreen H. Semmar N. Farman M. McCullagh J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017 10 8 792 801 10.1016/j.apjtm.2017.07.024 28942828
    [Google Scholar]
  11. Burlando B. Verotta L. Cornara L. Bottini-Massa E. Herbal Principles in Cosmetics: Properties and Mechanisms of Action Boca Raton CRC Press 2010
    [Google Scholar]
  12. Mohiuddin A.K. Skin lightening & management of hyperpigmentation. Pharm Sci Anal Res J. 2019 2 180020
    [Google Scholar]
  13. Arct J. Mieloch M. β-carotene in skin care. Pol J Cosmetol. 2016 19 3 206 221
    [Google Scholar]
  14. Ferrero-Miliani L. Nielsen O.H. Andersen P.S. Girardin S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol. 2007 147 2 227 235 10.1111/j.1365‑2249.2006.03261.x 17223962
    [Google Scholar]
  15. de Lima Cherubim D.J. Buzanello Martins C.V. Oliveira Fariña L. da Silva de Lucca R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020 19 1 33 37 10.1111/jocd.13093 31389656
    [Google Scholar]
  16. Dini I. Laneri S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021 26 13 3921 10.3390/molecules26133921 34206931
    [Google Scholar]
  17. He Z. Chen A. Rojanasakul Y. Rankin G.O. Chen Y.C. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol. Rep. 2016 35 1 291 297 10.3892/or.2015.4354 26530725
    [Google Scholar]
  18. Sanchez-Martin V. Plaza-Calonge M.C. Soriano-Lerma A. Ortiz-Gonzalez M. Linde-Rodriguez A. Perez-Carrasco V. Ramirez-Macias I. Cuadros M. Gutierrez-Fernandez J. Murciano-Calles J. Rodríguez-Manzaneque J.C. Soriano M. Garcia-Salcedo J.A. Gallic acid: A natural phenolic compound exerting antitumoral activities in colorectal cancer via interaction with g-quadruplexes. Cancers (Basel) 2022 14 11 2648 10.3390/cancers14112648 35681628
    [Google Scholar]
  19. Sarvamangala D. Babu C.R. Sowjanya N. Production of gallic acid - A short review. Int. J. Soc. Res. Methodol. 2015 4 125 132
    [Google Scholar]
  20. Erdemgil F. Şanli S. Şanli N. Özkan G. Barbosa J. Guiteras J. Beltrán J. Determination of pKa values of some hydroxylated benzoic acids in methanol–water binary mixtures by LC methodology and potentiometry. Talanta 2007 72 2 489 496 10.1016/j.talanta.2006.11.007 19071645
    [Google Scholar]
  21. End WL Safety data sheet according to regulation (EC) no 1907/2006. 2023 Available from: https://www.evergreenchemicals.cn/uploadfiles/128.1.164.122/webid2208/service/202311/6541e0d6058ae.pdf
  22. Surjushe A. Vasani R. Saple D.G. Aloe vera: A short review. Indian J. Dermatol. 2008 53 4 163 166 10.4103/0019‑5154.44785 19882025
    [Google Scholar]
  23. Kaliora A.C. Kanellos P.T. Kalogeropoulos N. Gallic acid bioavailability in humans. Handbook on Gallic Acid Nova Scince publishers, Inc 2013 301 312
    [Google Scholar]
  24. King A. Young G. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc. 1999 99 2 213 218 10.1016/S0002‑8223(99)00051‑6 9972191
    [Google Scholar]
  25. Shahrzad S. Bitsch I. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. J. Chromatogr. A 1996 741 2 223 231 10.1016/0021‑9673(96)00169‑0 8785003
    [Google Scholar]
  26. Clifford M.N. Anthocyanins - Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000 80 7 1063 1072 10.1002/(SICI)1097‑0010(20000515)80:7<1063::AID‑JSFA605>3.0.CO;2‑Q
    [Google Scholar]
  27. Karamac M. Kosiñska A. Pegg R.B. Content of gallic acid in selected plant extracts. Pol. J. Food Nutr. Sci. 2006 15 1 55
    [Google Scholar]
  28. Wang H. Provan G.J. Helliwell K. Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC. J. Pharm. Biomed. Anal. 2003 33 4 539 544 10.1016/S0731‑7085(03)00303‑0 14623578
    [Google Scholar]
  29. Hsieh C.L. Lin Y.C. Yen G.C. Chen H.Y. Preventive effects of guava (Psidium guajava L.) leaves and its active compounds against α-dicarbonyl compounds-induced blood coagulation. Food Chem. 2007 103 2 528 535 10.1016/j.foodchem.2006.08.022
    [Google Scholar]
  30. Gryszczyńska A. Opala B. Łowicki Z. Krajewska-Patan A. Buchwald W. Czerny B. Mielcarek S. Boroń D. Bogacz A. Mrozikiewicz P.M. Determination of chlorogenic and gallic acids by UPLC-MS/MS. Herba Pol. 2013 59 1 7 16 10.2478/hepo‑2013‑0001
    [Google Scholar]
  31. Roman L. Solomiia K. HPLC-UV determination of catechins and gallic acid in aerial parts of Astragalus glycyphyllos L. Dhaka Univ. J. Pharm. Sci. 2019 18 2 241 247 10.3329/dujps.v18i2.44464
    [Google Scholar]
  32. Phansawan B. Pongsabangpho S. Determination of gallic acid and rutin in extracts Cassia alata and Andrographis paniculata. Sci. Asia 2014 40 6 414 419 10.2306/scienceasia1513‑1874.2014.40.414
    [Google Scholar]
  33. Aguilar-Zárate P. Cruz M.A. Montañez J. Rodríguez-Herrera R. Wong-Paz J.E. Belmares R.E. Aguilar C.N. Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microb. Cell Fact. 2015 14 1 209 10.1186/s12934‑015‑0386‑2 26715179
    [Google Scholar]
  34. Bajpai B. Patil S. A new approach to microbial production of gallic acid. Braz. J. Microbiol. 2008 39 4 708 711 10.1590/S1517‑83822008000400021 24031294
    [Google Scholar]
  35. Tomás-Barberán F.A. Clifford M.N. Flavanones, chalcones and dihydrochalcones - Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000 80 1024 1032 10.1002/(SICI)1097‑0010(20000515)80:7<1073::AID‑JSFA568>3.0.CO;2‑B
    [Google Scholar]
  36. Ren Y. Zhang X. Li T. Zeng Y. Wang J. Huang Q. Galla Chinensis, a traditional chinese medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. J. Ethnopharmacol. 2021 278 114247 10.1016/j.jep.2021.114247 34052353
    [Google Scholar]
  37. Yang K. Zhang L. Liao P. Xiao Z. Zhang F. Sindaye D. Xin Z. Tan C. Deng J. Yin Y. Deng B. Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action. Front. Immunol. 2020 11 580208 10.3389/fimmu.2020.580208 33042163
    [Google Scholar]
  38. Gichner T. Pospíšil F. Velemínský J. Volkeová V. Volke J. Two types of antimutagenic effects of gallic and tannic acids towards N-nitroso-compounds-induced mutagenicity in the Ames Salmonella Assay. Folia Microbiol. (Praha) 1987 32 1 55 62 10.1007/BF02877259 3546027
    [Google Scholar]
  39. Elshiekh Y.H. J. Innov. Pharm. Sci. Res.
    [Google Scholar]
  40. Inoue M. Suzuki R. Sakaguchi N. Li Z. Takeda T. Ogihara Y. Jiang B.Y. Chen Y. Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 1995 18 11 1526 1530 10.1248/bpb.18.1526 8593472
    [Google Scholar]
  41. Kroes B. van den Berg A. Quarles van Ufford H. van Dijk H. Labadie R. Anti-inflammatory activity of gallic acid. Planta Med. 1992 58 6 499 504 10.1055/s‑2006‑961535 1336604
    [Google Scholar]
  42. Lindberg Madsen H. Bertelsen G. Spices as antioxidants. Trends Food Sci. Technol. 1995 6 8 271 277 10.1016/S0924‑2244(00)89112‑8
    [Google Scholar]
  43. Mirvish S.S. Cardesa A. Wallcave L. Shubik P. Induction of mouse lung adenomas by amines or ureas plus nitrite and by N-nitroso compounds: effect of ascorbate, gallic acid, thiocyanate, and caffeine. J. Natl. Cancer Inst. 1975 55 3 633 636 10.1093/jnci/55.3.633 1159840
    [Google Scholar]
  44. Li Z.J. Liu M. Dawuti G. Dou Q. Ma Y. Liu H.G. Aibai S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res. 2017 31 7 1039 1045 10.1002/ptr.5823 28524381
    [Google Scholar]
  45. Bai J. Zhang Y. Tang C. Hou Y. Ai X. Chen X. Zhang Y. Wang X. Meng X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021 133 110985 10.1016/j.biopha.2020.110985 33212373
    [Google Scholar]
  46. Badhani B. Sharma N. Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 2015 5 35 27540 27557 10.1039/C5RA01911G
    [Google Scholar]
  47. Dhiman S. Mukherjee G. Gallic Acid (GA): A multifaceted biomolecule transmuting the biotechnology era. Recent Developments in Microbial Technologies Singapore Springer Prasad R. Kumar V. Singh J. Upadhyaya C.P. 2021 163 202 10.1007/978‑981‑15‑4439‑2_8
    [Google Scholar]
  48. Verma S. Singh A. Mishra A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol. 2013 35 3 473 485 10.1016/j.etap.2013.02.011 23501608
    [Google Scholar]
  49. Joseph Bassey E. Cheng J.H. Sun D.W. Improving drying kinetics, physicochemical properties and bioactive compounds of red dragon fruit (Hylocereus species) by novel infrared drying. Food Chem. 2022 375 131886 10.1016/j.foodchem.2021.131886 34972021
    [Google Scholar]
  50. Jiang Y. Pei J. Zheng Y. Miao Y.J. Duan B.Z. Huang L.F. Gallic acid: A potential anti-cancer agent. Chin. J. Integr. Med. 2021 28 7 661 671 10.1007/s11655‑021‑3345‑2 34755289
    [Google Scholar]
  51. Kratz J.M. Andrighetti-Fröhner C.R. Kolling D.J. Leal P.C. Cirne-Santos C.C. Yunes R.A. Nunes R.J. Trybala E. Bergström T. Frugulhetti I.C.P.P. Barardi C.R.M. Simões C.M.O. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem. Inst. Oswaldo Cruz 2008 103 5 437 442 10.1590/S0074‑02762008000500005 18797755
    [Google Scholar]
  52. Akbari G. Dianat M. Badavi M. Effect of gallic acid on electrophysiological properties and ventricular arrhythmia following chemical-induced arrhythmia in rat. Iran. J. Basic Med. Sci. 2020 23 2 167 172 32405358
    [Google Scholar]
  53. Couto A.G. Kassuya C.A.L. Calixto J.B. Petrovick P.R. Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant. Rev. Bras. Farmacogn. 2013 23 1 124 131 10.1590/S0102‑695X2013000100017
    [Google Scholar]
  54. Sorrentino E. Succi M. Tipaldi L. Pannella G. Maiuro L. Sturchio M. Coppola R. Tremonte P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2018 266 183 189 10.1016/j.ijfoodmicro.2017.11.026 29227905
    [Google Scholar]
  55. Mittal V. Sharma A. Kriplani P. Exploring the efficacy and safety of herbal ingredients in cosmetics: A clinical research perspective. Pharm. Res. Bull. 2022 2022 23 32
    [Google Scholar]
  56. Pal S.M. Avneet G. Siddhraj S.S. Gallic acid: Pharmacogical promising lead molecule: A review. Int J Pharmacogn Phytochem Res. 2018 10 4 132 138
    [Google Scholar]
  57. Kahkeshani N. Farzaei F. Fotouhi M. Alavi S.S. Bahramsoltani R. Naseri R. Momtaz S. Abbasabadi Z. Rahimi R. Farzaei M.H. Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019 22 3 225 237 31156781
    [Google Scholar]
  58. Fernandes F.H.A. Salgado H.R.N. Gallic acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem. 2016 46 3 257 265 10.1080/10408347.2015.1095064 26440222
    [Google Scholar]
  59. Wianowska D. Olszowy-Tomczyk M. A concise profile of gallic acid - From its natural sources through biological properties and chemical methods of determination. Molecules 2023 28 3 1186 10.3390/molecules28031186 36770851
    [Google Scholar]
  60. Goyal R.K. Patel S.S. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res. 2011 3 4 239 245 10.4103/0974‑8490.89743 22224046
    [Google Scholar]
  61. Latief U. Husain H. Mukherjee D. Ahmad R. Hepatoprotective efficacy of gallic acid during Nitrosodiethylamine-induced liver inflammation in Wistar rats. J. Basic Appl. Zool. 2016 76 31 41 10.1016/j.jobaz.2016.07.002
    [Google Scholar]
  62. Husain I. Zameer S. Madaan T. Minhaj A. Ahmad W. Iqubaal A. Ali A. Najmi A.K. Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): A review. Metab. Brain Dis. 2019 34 4 957 965 10.1007/s11011‑019‑00400‑9 30848470
    [Google Scholar]
  63. Toh E.C. Liu K.L. Tsai S. Lin C. Cryopreservation and cryobanking of cells from 100 coral species. Cells 2022 11 17 2668 10.3390/cells11172668 36078076
    [Google Scholar]
  64. Reddy K.R. Pharmacognostical and phytochemical study of Musa paradisiaca Linn. (Stmn.). Int J Green Pharm 2017 11 02
    [Google Scholar]
  65. Salehi B. Mishra A.P. Nigam M. Sener B. Kilic M. Sharifi-Rad M. Fokou P.V.T. Martins N. Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
  66. Pientaweeratch S. Panapisal V. Tansirikongkol A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol. 2016 54 9 1865 1872 10.3109/13880209.2015.1133658 26912420
    [Google Scholar]
  67. Krishnamoorthy G. Selvakumar R. Sastry T.P. Sadulla S. Mandal A.B. Doble M. Experimental and theoretical studies on Gallic acid assisted EDC/NHS initiated crosslinked collagen scaffolds. Mater. Sci. Eng. C 2014 43 164 171 10.1016/j.msec.2014.07.003 25175201
    [Google Scholar]
  68. Hwang E. Park S.Y. Lee H.J. Lee T.Y. Sun Z. Yi T.H. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice. Phytother. Res. 2014 28 12 1778 1788 10.1002/ptr.5198 25131997
    [Google Scholar]
  69. Casanova F. Santos L. Encapsulation of cosmetic active ingredients for topical application – A review. J. Microencapsul. 2016 33 1 1 17 10.3109/02652048.2015.1115900 26612271
    [Google Scholar]
  70. Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int. J. Cosmet. Sci. 2013 35 2 113 124 10.1111/ics.12017 23075204
    [Google Scholar]
  71. Kim B. Cho H.E. Moon S.H. Ahn H.J. Bae S. Cho H.D. Transdermal delivery systems in cosmetics. Biomed. Dermatol. 2020 4 1 2 10.1186/s41702‑019‑0053‑z
    [Google Scholar]
  72. Halla N. Fernandes I.P. Heleno S.A. Costa P. Boucherit-Otmani Z. Boucherit K. Rodrigues A.E. Ferreira I.C.F.R. Barreiro M.F. Cosmetics preservation: A review on present strategies. Molecules 2018 23 7 1571 10.3390/molecules23071571 29958439
    [Google Scholar]
  73. Fytianos G. Rahdar A. Kyzas G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials 2020 10 5 979 10.3390/nano10050979 32443655
    [Google Scholar]
  74. Pierre M.B.R. Current applications and benefits of polymeric nanocarriers for the management of skin disorders. Curr. Med. Chem. 2022 29 38 5949 5964 10.2174/0929867329666220525141021 35619267
    [Google Scholar]
  75. Cardoza C. Nagtode V. Pratap A. Mali S.N. Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. Health Sci. Rep. 2022 4 100051 10.1016/j.hsr.2022.100051
    [Google Scholar]
  76. Han S.Y. Hong S.P. Kang E.K. Kim B.J. Lee H. Kim W.I. Choi I.S. Iron gall ink revisited: Natural formulation for black hair-dyeing. Cosmetics 2019 6 2 23 10.3390/cosmetics6020023
    [Google Scholar]
  77. Silva D. Ferreira M.S. Sousa-Lobo J.M. Cruz M.T. Almeida I.F. Anti-inflammatory activity of Calendula officinalis L. Flower extract. Cosmetics 2021 8 2 31 10.3390/cosmetics8020031
    [Google Scholar]
  78. Kim T.M. Won H.J. Yang J.H. Jo H. Kim A.H. Nam D. Kim S.G. Jin E.J. Bae H.J. Park S.Y. Multicolor hair dyeing with biocompatible dark polyphenol complex-integrated shampoo with reactive oxygen species scavenging activity. Biomimetics 2023 8 6 469 10.3390/biomimetics8060469 37887600
    [Google Scholar]
  79. Matei N. Magearu V. Determination of vitamin C from some natural products preserved under different storage conditions. An Univ Ti Idin Buc–Chim Anul. 2004 13 65 68
    [Google Scholar]
  80. Sultana Y. Kohli K. Athar M. Khar R.K. Aqil M. Effect of pre‐treatment of almond oil on ultraviolet B–induced cutaneous photoaging in mice. J. Cosmet. Dermatol. 2007 6 1 14 19 10.1111/j.1473‑2165.2007.00293.x 17348990
    [Google Scholar]
  81. Bhardwaj S.S. Brodell R.T. Taylor J.S. Red tattoo reactions. Contact Dermat. 2003 48 4 236 237 10.1034/j.1600‑0536.2003.00090.x 12786743
    [Google Scholar]
  82. Gao J. Hu J. Hu D. Yang X. A role of gallic acid in oxidative damage diseases: A comprehensive review. Nat. Prod. Commun. 2019 14 8 10.1177/1934578X19874174
    [Google Scholar]
  83. Kim S.H. Jun C.D. Suk K. Choi B.J. Lim H. Park S. Lee S.H. Shin H.Y. Kim D.K. Shin T.Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 2006 91 1 123 131 10.1093/toxsci/kfj063 16322071
    [Google Scholar]
  84. Tsiogkas S.G. Apostolopoulou K. Mavropoulos A. Grammatikopoulou M.G. Dardiotis E. Zafiriou E. Bogdanos D.P. Gallic acid diminishes pro-inflammatory interferon-γ- and interleukin-17-producing sub-populations in vitro in patients with psoriasis. Immunol. Res. 2023 71 3 475 487 10.1007/s12026‑023‑09361‑9 36754913
    [Google Scholar]
  85. Shiu P.H. Zheng C. Rangsinth P. Wang W. Li J. Li R. Anti-inflammatory effect of gallic acid on HaCaT keratinocytes through the inhibition of MAPK-, NF-kB-, and Akt-dependent signaling pathways. Bangladesh J. Pharmacol. 2023 18 1 24 32
    [Google Scholar]
  86. Rasheed A. Shama S.N. Mohanalakshmi S. Ravichandran V. Formulation, characterization and in vitro evaluation of herbal sunscreen lotion. Orient. Pharm. Exp. Med. 2012 12 4 241 246 10.1007/s13596‑012‑0069‑z
    [Google Scholar]
  87. Khan B.A. Mahmood T. Menaa F. Shahzad Y. Yousaf A.M. Hussain T. Ray S.D. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals. Curr. Pharm. Des. 2019 24 43 5181 5187 10.2174/1381612825666190118150614 30657034
    [Google Scholar]
  88. Goyal N. Jerold F. Biocosmetics: Technological advances and future outlook. Environ. Sci. Pollut. Res. Int. 2021 30 10 25148 25169 10.1007/s11356‑021‑17567‑3 34825334
    [Google Scholar]
  89. Daneshfar A. Ghaziaskar H.S. Homayoun N. Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J. Chem. Eng. Data 2008 53 3 776 778 10.1021/je700633w
    [Google Scholar]
  90. Aydogdu A. Yildiz E. Aydogdu Y. Sumnu G. Sahin S. Ayhan Z. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocoll. 2019 95 245 255 10.1016/j.foodhyd.2019.04.020
    [Google Scholar]
  91. Nájera-Martínez E.F. Flores-Contreras E.A. Araújo R.G. Iñiguez-Moreno M. Sosa-Hernández J.E. Iqbal H.M.N. Pastrana L.M. Melchor-Martínez E.M. Parra-Saldívar R. Microencapsulation of gallic acid based on a polymeric and pH-sensitive matrix of pectin/alginate. Polymers (Basel) 2023 15 14 3014 10.3390/polym15143014 37514404
    [Google Scholar]
  92. Sun Y. Chen Q. Dang R. Xie Y. Cheng X. Huang X. Zhou S. Wang C. Skin irritation assessment and potential mechanism of Capparis spinosa L. fruits. J. Ethnopharmacol. 2024 321 117510 10.1016/j.jep.2023.117510 38030023
    [Google Scholar]
  93. Li J. Yao Y. Wang J. Hua J. Wang J. Yang Y. Dong C. Zhou Q. Jiang Y. Deng Y. Yuan H. Rutin, γ-aminobutyric acid, gallic acid, and caffeine negatively affect the sweet-mellow taste of congou black tea infusions. Molecules 2019 24 23 4221 10.3390/molecules24234221 31757064
    [Google Scholar]
  94. Zhang K. Lin L. Xu H. Research on antioxidant performance of diglucosyl gallic acid and its application in emulsion cosmetics. Int. J. Cosmet. Sci. 2022 44 2 177 188 10.1111/ics.12766 35211990
    [Google Scholar]
  95. Yilmaz Y. Toledo R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004 52 2 255 260 10.1021/jf030117h 14733505
    [Google Scholar]
  96. Martínez V. Alonso C. de la Maza A. Parra J.L. Martí M. Coderch L. Skin delivery of gallic acid from biofunctional cotton fabric. International Conference on Engineering Covilhã, Portugal, 2011.
    [Google Scholar]
  97. Behl G. Sharma M. Sikka M. Dahiya S. Chhikara A. Chopra M. Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: Synthesis, characterization, and antioxidant activity. J. Biomater. Sci. Polym. Ed. 2013 24 7 865 881 10.1080/09205063.2012.723958 23594074
    [Google Scholar]
  98. Schlesier K. Harwat M. Böhm V. Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002 36 2 177 187 10.1080/10715760290006411 11999386
    [Google Scholar]
  99. Abdelwahed A. Bouhlel I. Skandrani I. Valenti K. Kadri M. Guiraud P. Steiman R. Mariotte A.M. Ghedira K. Laporte F. Dijoux-Franca M.G. Chekir-Ghedira L. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Chem. Biol. Interact. 2007 165 1 1 13 10.1016/j.cbi.2006.10.003 17129579
    [Google Scholar]
  100. Tsutaro K. Cosmetic compounding agent, cosmetic, and method for producing same. CN Patent 113423470B 2024
  101. Rabbani E. Li X. Liu D. Digallic acid for reduction of inflammatory cytokine activity. US Patent 20200360392A1 2020
  102. Ueda M. Water-absorbing agent composition, production method thereof, and storage and inventory method thereof. JP Patent 6568570B2 2019
  103. Rabbani E. Li X. Liu D. Method for promoting wound healing by administering a compound which binds ldl-receptor-related protein (lrp) ligand binding domain. US Patent 20190350936A1 2019
  104. Taniguchi K. Shampoo compositions. CN Patent 105050578B 2018
  105. Grape extract, its dietary supplement, and method. JP Patent 5424641B2 2014
  106. Rabbani E. Li X. Liu D. Compositions and methods affecting the signaling pathways of lrp receptors. CA Patent 2732013C 2009
  107. Lee W.M. Shang C.X. Otake A. Semiconductor process residue removal composition and process. US Patent 8003587B2 2004
  108. Kim Y.J. Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 2007 30 6 1052 1055 10.1248/bpb.30.1052 17541153
    [Google Scholar]
  109. Yen G.C. Duh P.D. Tsai H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002 79 3 307 313 10.1016/S0308‑8146(02)00145‑0
    [Google Scholar]
  110. Kalita D. Kar R. Handique J.G. A theoretical study on the antioxidant property of gallic acid and its derivatives. J. Theor. Comput. Chem. 2012 11 2 391 402 10.1142/S0219633612500277
    [Google Scholar]
  111. Golumbic C. Mattill H.A. The antioxidant properties of gallic acid and allied compounds. J. Am. Oil Chem. Soc. 1942 19 8 144 145 10.1007/BF02545531
    [Google Scholar]
  112. Choubey S. Goyal S. Varughese L.R. Kumar V. Sharma A.K. Beniwal V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem. 2018 18 15 1283 1293 10.2174/1389557518666180330114010 29600764
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878341990250516063126
Loading
/content/journals/raddf/10.2174/0126673878341990250516063126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test