Skip to content
2000
Volume 19, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

New chemical entities with low aqueous solubility and permeability encounter significant challenges in formulation development. Low solubility is further accompanied by slow dissolution and poor bioavailability, which in turn leads to unpredictability in terms of both bioavailability and toxicity. Therefore, a significant amount of exertion is necessary to enhance solubility, dissolution, and eventually bioavailability. Additionally, to enhance the solubility properties and amorphous stability of BCS Class II medications and ultimately increase drug bioavailability, co-amorphization has emerged as a promising strategy. Co-amorphous solid dispersions (CASD) are multi-component single-phase amorphous solid dispersions comprising two or more small molecules (usually known as co-formers) that might be a combination of drug-drug or drug-excipients. The selection of appropriate co-formers is critical, and the surface properties of co-amorphous formulations must be carefully evaluated, as they influence physical and chemical stability in addition to dissolution performance. Scaling up and processing co-amorphous formulations into the final dosage forms presents challenges that need to be addressed. This review will largely concentrate on the challenges, improvements, and innovations in physicochemical properties, biological characterization, and advancements of co-amorphous systems. This review will also furnish a comprehensive explanation of both established and emerging approaches utilized in the estimation of physicochemical attributes and characterization of CASD ( and ). Regarding CASD’s potential to improve patient outcomes and therapeutic efficacy, it has emerged as a viable approach for drug candidates posing the problems of solubility and bioavailability. This approach has also increased the physical stability of drugs.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878351727250409094214
2025-12-01
2025-11-16
Loading full text...

Full text loading...

References

  1. LiuJ. GrohganzH. LöbmannK. RadesT. HempelN.J. Co-amorphous drug formulations in numbers: recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies.Pharmaceutics202113338910.3390/pharmaceutics13030389 33804159
    [Google Scholar]
  2. JermainS.V. BroughC. WilliamsR.O.III Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update.Int. J. Pharm.20185351-237939210.1016/j.ijpharm.2017.10.051 29128423
    [Google Scholar]
  3. BhujbalS.V. MitraB. JainU. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies.Acta Pharm. Sin. B20211182505253610.1016/j.apsb.2021.05.014 34522596
    [Google Scholar]
  4. RochaB. de MoraisL.A. VianaM.C. CarneiroG. Promising strategies for improving oral bioavailability of poor water-soluble drugs.Expert Opin. Drug Discov.202318661562710.1080/17460441.2023.2211801 37157841
    [Google Scholar]
  5. GeY. HuangB. LiL. Structural transformation of unconventional-phase materials.ACS Nano20231714129351295410.1021/acsnano.3c01922 37428980
    [Google Scholar]
  6. SinghR. JoshiV. MehetreN. SangamwarA.T. Insights into co-amorphous systems in therapeutic drug delivery.Ther. Deliv.202112324526510.4155/tde‑2020‑0109 33745286
    [Google Scholar]
  7. VullendulaS.K.A. NairA.R. YarlagaddaD.L. Navya SreeK.S. BhatK. DengaleS.J. Polymeric solid dispersion vs co-amorphous technology: A critical comparison.J. Drug Deliv. Sci. Technol.20227810398010.1016/j.jddst.2022.103980
    [Google Scholar]
  8. ShiQ. LiF. YehS. Recent advances in enhancement of dissolution and supersaturation of poorly water-soluble drug in amorphous pharmaceutical solids: A review.AAPS PharmSciTech20212311610.1208/s12249‑021‑02137‑0 34893936
    [Google Scholar]
  9. YarlagaddaD.L. Sai Krishna AnandV. NairA.R. Navya SreeK.S. DengaleS.J. BhatK. Considerations for the selection of co-formers in the preparation of co-amorphous formulations.Int. J. Pharm.202160212064910.1016/j.ijpharm.2021.120649 33915186
    [Google Scholar]
  10. ShiQ. MoinuddinS.M. CaiT. Advances in coamorphous drug delivery systems.Acta Pharm. Sin. B201991193510.1016/j.apsb.2018.08.002 30766775
    [Google Scholar]
  11. LiB. KoneckeS. WegielL.A. TaylorL.S. EdgarK.J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.Carbohydr. Polym.20139811108111610.1016/j.carbpol.2013.07.017 23987452
    [Google Scholar]
  12. WangR. HanJ. JiangA. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine.Int. J. Pharm.201956191810.1016/j.ijpharm.2019.02.027 30817985
    [Google Scholar]
  13. OkemA. HenstraC. LambertM. HayeshiR. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment.Med. Drug Discov.20231710014710.1016/j.medidd.2022.100147
    [Google Scholar]
  14. WangH. ZhaoP. MaR. JiaJ. FuQ. Drug–drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs.Drug Discov. Today202429210388310.1016/j.drudis.2024.103883 38219970
    [Google Scholar]
  15. BerrettaM. Dal LagoL. TinazziM. Evaluation of concomitant use of anticancer drugs and herbal products: From interactions to synergic activity.Cancers20221421520310.3390/cancers14215203 36358622
    [Google Scholar]
  16. KorhonenO. PajulaK. LaitinenR. Rational excipient selection for co-amorphous formulations.Expert Opin. Drug Deliv.201714455156910.1080/17425247.2016.1198770 27267873
    [Google Scholar]
  17. UedaH. MuranushiN. SakumaS. A strategy for co-former selection to design stable co-amorphous formations based on physicochemical properties of non-steroidal inflammatory drugs.Pharm. Res.20163341018102910.1007/s11095‑015‑1848‑2 26700604
    [Google Scholar]
  18. HansenC.M. Hansen Solubility Parameters.CRC Press200710.1201/9781420006834
    [Google Scholar]
  19. NistaneJ. ChenL. LeeY. LivelyR. RamprasadR. Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning.MRS Commun.20221261096110210.1557/s43579‑022‑00237‑x
    [Google Scholar]
  20. VenkatramS. KimC. ChandrasekaranA. RamprasadR. Critical assessment of the hildebrand and hansen solubility parameters for polymers.J. Chem. Inf. Model.201959104188419410.1021/acs.jcim.9b00656 31545900
    [Google Scholar]
  21. PadmarajanR. KalpathyS.K. Estimation of Flory–Huggins interaction parameters and miscibility gaps in poly(sodium 4-styrenesulfonate) - water - 1,4-butanediol mixtures via linearized cloud point curve correlations.Fluid Phase Equilib.202457611393510.1016/j.fluid.2023.113935
    [Google Scholar]
  22. AherA.A. ShaikhK.S. ChaudhariP.D. Stability of co-amorphous solid dispersions: Physical and chemical aspects.J. Struct. Chem.202364468673810.1134/S0022476623040157
    [Google Scholar]
  23. LiuJ. GrohganzH. RadesT. Influence of polymer addition on the amorphization, dissolution and physical stability of co-amorphous systems.Int. J. Pharm.202058811976810.1016/j.ijpharm.2020.119768 32798592
    [Google Scholar]
  24. SihorkarV. DürigT. The role of polymers and excipients in developing amorphous solid dispersions: An industrial perspective.Drug Delivery Aspects.Elsevier20207911310.1016/B978‑0‑12‑821222‑6.00005‑1
    [Google Scholar]
  25. BaghelS. CathcartH. O’ReillyN.J. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs.J. Pharm. Sci.201610592527254410.1016/j.xphs.2015.10.008 26886314
    [Google Scholar]
  26. TanakaH. UedaH. Co-Amorphous solid dispersion system for improvement in dissolution profile of N-(((1r,4r)-4-((6-fluorobenzo[d]oxazol-2-yl)amino)cyclohexyl)methyl)-2-methyl- propane-2-sulfonamide as a neuropeptide Y5 receptor antagonist.Pharmaceutics20241610129310.3390/pharmaceutics16101293 39458622
    [Google Scholar]
  27. AlonzoD.E. GaoY. ZhouD. MoH. ZhangG.G.Z. TaylorL.S. Dissolution and precipitation behavior of amorphous solid dispersions.J. Pharm. Sci.201110083316333110.1002/jps.22579 21607951
    [Google Scholar]
  28. JadhavS. BahlD. StevensL.L. Coformer-dependent physical stability in a series of naringenin-based coamorphous materials with caffeine, theophylline, and theobromine.Pharm. Res.202340122847285810.1007/s11095‑023‑03562‑5 37505378
    [Google Scholar]
  29. YuD. NieH. HoagS.W. Comprehensive evaluation of polymer types and ratios in spray-dried dispersions: Compaction, dissolution, and physical stability.Int. J. Pharm.202465012367410.1016/j.ijpharm.2023.123674 38061497
    [Google Scholar]
  30. TianB. TangX. TaylorL.S. Investigating the correlation between miscibility and physical stability of amorphous solid dispersions using fluorescence-based techniques.Mol. Pharm.201613113988400010.1021/acs.molpharmaceut.6b00803 27700109
    [Google Scholar]
  31. RumondorA.C.F. TaylorL.S. Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture.Mol. Pharm.20107247749010.1021/mp9002283 20039693
    [Google Scholar]
  32. ShiQ. WangY. MoinuddinS.M. FengX. AhsanF. Co-amorphous drug delivery systems: A review of physical stability, in vitro and in vivo performance.AAPS PharmSciTech202223725910.1208/s12249‑022‑02421‑7 36123515
    [Google Scholar]
  33. CaoJ. ZhangS. HaoY. Amorphous solid dispersion preparation via coprecipitation improves the dissolution, oral bioavailability, and intestinal health enhancement properties of magnolol.Poult. Sci.2023102610267610.1016/j.psj.2023.102676 37104903
    [Google Scholar]
  34. NielsenR.B. LarsenB.S. HolmR. Increased bioavailability of a P-gp substrate: Co-release of etoposide and zosuquidar from amorphous solid dispersions.Int. J. Pharm.202364212309410.1016/j.ijpharm.2023.123094 37263451
    [Google Scholar]
  35. LiJ. WangY. YuD. Effects of additives on the physical stability and dissolution of polymeric amorphous solid dispersions: A review.AAPS PharmSciTech202324717510.1208/s12249‑023‑02622‑8 37603110
    [Google Scholar]
  36. GuoW. DongX. LiY. Co-amorphous formulation of dipyridamole with p-hydroxybenzoic acid: Underlying molecular mechanisms, physical stability, dissolution behavior and pharmacokinetic study.Eur. J. Pharm. Biopharm.202318413914910.1016/j.ejpb.2023.01.018 36709922
    [Google Scholar]
  37. PisayM. PadyaS. MutalikS. KoteshwaraK.B. Stability challenges of amorphous solid dispersions of drugs: A critical review on mechanistic aspects.Crit. Rev. Ther. Drug Carrier Syst.2024413459410.1615/CritRevTherDrugCarrierSyst.2023039877 38037820
    [Google Scholar]
  38. FungM. Be̅rziņšK. SuryanarayananR. Physical stability and dissolution behavior of ketoconazole–organic acid coamorphous systems.Mol. Pharm.20181551862186910.1021/acs.molpharmaceut.8b00035 29528656
    [Google Scholar]
  39. HanJ. TangM. YangY. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion.Int. J. Pharm.202364612349010.1016/j.ijpharm.2023.123490 37805146
    [Google Scholar]
  40. TomarD. KumarS. Designing novel piperine-vanillin nano-crystals for bioavailability enhancement.Inorg Nano-Met Chem202555331932810.1080/24701556.2023.2267541
    [Google Scholar]
  41. KaragianniA. KachrimanisK. NikolakakisI. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery.Pharmaceutics20181039810.3390/pharmaceutics10030098 30029516
    [Google Scholar]
  42. JensenK. LöbmannK. RadesT. GrohganzH. Improving co-amorphous drug formulations by the addition of the highly water soluble amino Acid, proline.Pharmaceutics20146341643510.3390/pharmaceutics6030416 25025400
    [Google Scholar]
  43. PardhiE. TomarD.S. KhemchandaniR. SamanthulaG. SinghP.K. MehraN.K. Design, development and characterization of the Apremilast and Indomethacin coamorphous system.J. Mol. Struct.2024129913704510.1016/j.molstruc.2023.137045
    [Google Scholar]
  44. DengaleS.J. RanjanO.P. HussenS.S. Preparation and characterization of co-amorphous ritonavir–indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions.Eur. J. Pharm. Sci.201462576410.1016/j.ejps.2014.05.015 24878386
    [Google Scholar]
  45. ChaudhariK.R. SavjaniJ.K. SavjaniK.T. DahiyaS. BhangaleJ.O. Enhanced solubility and dissolution of drug-drug cocrystals of lopinavir-ritonavir.IJPER2023572ss292s30010.5530/ijper.57.2s.33
    [Google Scholar]
  46. ShelkeR. VelagacherlaV. NayakU.Y. Recent advances in dual-drug co-amorphous systems.Drug Discov. Today202429210386310.1016/j.drudis.2023.103863 38141778
    [Google Scholar]
  47. NgilirabangaJ.B. SamsodienH. Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy.Nano Select20212351252610.1002/nano.202000201
    [Google Scholar]
  48. DarA.A. LoneS.H. AhmadI. AhangarA.A. GanieA.A. FeminaC. Engineering the solid-state luminescence of organic crystals and cocrystals.Mater. Adv.2024531056106410.1039/D3MA00853C
    [Google Scholar]
  49. DhondaleM.R. ThakorP. NambiarA.G. Co-crystallization approach to enhance the stability of moisture-sensitive drugs.Pharmaceutics202315118910.3390/pharmaceutics15010189 36678819
    [Google Scholar]
  50. QueirozL.H.S. BarrosR.S. de SousaF.F. LageM.R. SarraguçaM.C. RibeiroP.R.S. Preparation and characterization of a rifampicin coamorphous material with tromethamine coformer: An experimental–theoretical study.Mol. Pharm.20242131272128410.1021/acs.molpharmaceut.3c00947 38361428
    [Google Scholar]
  51. PajulaK. HyyryläinenJ. KoistinenA. LeskinenJ.T.T. KorhonenO. Detection of amorphous-amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS.Eur. J. Pharm. Biopharm.2020150434910.1016/j.ejpb.2020.03.002 32151730
    [Google Scholar]
  52. GniadoK. MacFhionnghaileP. McArdleP. ErxlebenA. The natural bile acid surfactant sodium taurocholate (NaTC) as a coformer in coamorphous systems: Enhanced physical stability and dissolution behavior of coamorphous drug-NaTc systems.Int. J. Pharm.20185351-213213910.1016/j.ijpharm.2017.10.049 29107615
    [Google Scholar]
  53. Van DuongT. NiZ. TaylorL.S. Phase behavior and crystallization kinetics of a poorly water-soluble weakly basic drug as a function of supersaturation and media composition.Mol. Pharm.20221941146115910.1021/acs.molpharmaceut.1c00927 35319221
    [Google Scholar]
  54. JensenK.T. LarsenF.H. LöbmannK. RadesT. GrohganzH. Influence of variation in molar ratio on co-amorphous drug-amino acid systems.Eur. J. Pharm. Biopharm.2016107323910.1016/j.ejpb.2016.06.020 27368747
    [Google Scholar]
  55. DengaleS.J. HussenS.S. KrishnaB.S.M. MusmadeP.B. Gautham ShenoyG. BhatK. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin.Eur. J. Pharm. Biopharm.20158932933810.1016/j.ejpb.2014.12.025 25542681
    [Google Scholar]
  56. HanY. PanY. LvJ. GuoW. WangJ. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties.Powder Technol.201629111012010.1016/j.powtec.2015.11.068
    [Google Scholar]
  57. FuruishiT. Sato-HataN. FukuzawaK. YonemochiE. Characterization of co-amorphous carvedilol–maleic acid system prepared by solvent evaporation.Pharm. Dev. Technol.2023283-430931710.1080/10837450.2023.2194406 36946594
    [Google Scholar]
  58. BeyerA. GrohganzH. LöbmannK. RadesT. LeopoldC.S. Improvement of the physicochemical properties of co-amorphous naproxen-indomethacin by naproxen-sodium.Int. J. Pharm.20175261-2889410.1016/j.ijpharm.2017.04.011 28392278
    [Google Scholar]
  59. ZemánkováA. HassounaF. KlajmonM. FulemM. Solid–liquid equilibrium in co-amorphous systems: Experiment and prediction.Molecules2023286249210.3390/molecules28062492 36985463
    [Google Scholar]
  60. ChenH. PuiY. LiuC. Moisture-induced amorphous phase separation of amorphous solid dispersions: Molecular mechanism, microstructure, and its impact on dissolution performance.J. Pharm. Sci.2018107131732610.1016/j.xphs.2017.10.028 29107047
    [Google Scholar]
  61. PatelN.G. SerajuddinA.T.M. Moisture sorption by polymeric excipients commonly used in amorphous solid dispersion and its effect on glass transition temperature: I. Polyvinylpyrrolidone and related copolymers.Int. J. Pharm.202261612153210.1016/j.ijpharm.2022.121532 35121046
    [Google Scholar]
  62. NairA.R. LakshmanY.D. AnandV.S.K. SreeK.S.N. BhatK. DengaleS.J. Overview of extensively employed polymeric carriers in solid dispersion technology.AAPS PharmSciTech202021830910.1208/s12249‑020‑01849‑z 33161493
    [Google Scholar]
  63. PetryI. LöbmannK. GrohganzH. RadesT. LeopoldC.S. Undesired co-amorphisation of indomethacin and arginine during combined storage at high humidity conditions.Int. J. Pharm.2018544117218010.1016/j.ijpharm.2018.04.026 29669257
    [Google Scholar]
  64. FaelH. DemirelA.L. Tannic acid as a co-former in co-amorphous systems: Enhancing their physical stability, solubility and dissolution behavior.Int. J. Pharm.202058111928410.1016/j.ijpharm.2020.119284 32243965
    [Google Scholar]
  65. da CostaN.F. DanielsR. FernandesA.I. PintoJ.F. Amorphous and co-amorphous olanzapine stability in formulations intended for wet granulation and pelletization.Int. J. Mol. Sci.202223181023410.3390/ijms231810234 36142179
    [Google Scholar]
  66. GoodwinM.J. MusaO.M. BerryD.J. SteedJ.W. Small-molecule povidone analogues in coamorphous pharmaceutical phases.Cryst. Growth Des.201818270170910.1021/acs.cgd.7b01062
    [Google Scholar]
  67. ShiQ. ChenH. WangY. WangR. XuJ. ZhangC. Amorphous solid dispersions: Role of the polymer and its importance in physical stability and in vitro performance.Pharmaceutics2022148174710.3390/pharmaceutics14081747 36015373
    [Google Scholar]
  68. RawatN. SinghS.K. BaldiA. Development and characterization of enteric polymer-based solid dispersion for cholecalciferol delivery.Lett. Drug Des. Discov.202421591892710.2174/1570180820666230130093355
    [Google Scholar]
  69. GuptaA. PaudwalG. DolkarR. LewisS. GuptaP.N. Recent advances in the surfactant and controlled release polymer-based solid dispersion.Curr. Pharm. Des.202228201643165910.2174/1381612828666220223095417 35209818
    [Google Scholar]
  70. XuX. RadesT. GrohganzH. Thermal investigation on hydrated co-amorphous systems of nicotinamide and prilocaine.Eur. J. Pharm. Biopharm.20231861610.1016/j.ejpb.2023.02.015 36878408
    [Google Scholar]
  71. KapoorD.U. SinghS. SharmaP. PrajapatiB.G. Amorphization of low soluble drug with amino acids to improve its therapeutic efficacy: A state-of-art-review.AAPS PharmSciTech202324825310.1208/s12249‑023‑02709‑2 38062314
    [Google Scholar]
  72. HildebrandJ.H. SolubilityX.I.V. Experimental tests of a general equation for solubility.J. Am. Chem. Soc.193557586687110.1021/ja01308a022
    [Google Scholar]
  73. AdamskaK. VoelkelA. Inverse gas chromatographic determination of solubility parameters of excipients.Int. J. Pharm.20053041-2111710.1016/j.ijpharm.2005.03.040 16183222
    [Google Scholar]
  74. MarsacP.J. LiT. TaylorL.S. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters.Pharm. Res.200926113915110.1007/s11095‑008‑9721‑1 18779927
    [Google Scholar]
  75. ThakralS. ThakralN.K. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer.J. Pharm. Sci.201310272254226310.1002/jps.23583 23649486
    [Google Scholar]
  76. SunY. TaoJ. ZhangG.G.Z. YuL. Solubilities of crystalline drugs in polymers: An improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc.J. Pharm. Sci.20109994023403110.1002/jps.22251 20607809
    [Google Scholar]
  77. SaberiA. KouhjaniM. YariD. Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions.J. Drug Deliv. Sci. Technol.20238610474610.1016/j.jddst.2023.104746
    [Google Scholar]
  78. BairdJ.A. TaylorL.S. Evaluation of amorphous solid dispersion properties using thermal analysis techniques.Adv. Drug Deliv. Rev.201264539642110.1016/j.addr.2011.07.009 21843564
    [Google Scholar]
  79. WuW. LöbmannK. RadesT. GrohganzH. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems.Int. J. Pharm.20185351-2869410.1016/j.ijpharm.2017.10.057 29102703
    [Google Scholar]
  80. VallasterB. EngelsingF. GrohganzH. Influence of water and trehalose on α- and β-relaxation of freeze-dried lysozyme formulations.Eur. J. Pharm. Biopharm.20241941810.1016/j.ejpb.2023.11.019 38029940
    [Google Scholar]
  81. DhavalM. DudhatK. SoniwalaM. DudhrejiyaA. shah S, Prajapati B. A review on stabilization mechanism of amorphous form based drug delivery system.Mater. Today Commun.20233710741110.1016/j.mtcomm.2023.107411
    [Google Scholar]
  82. RiekesM.K. EngelenA. AppeltansB. RombautP. StulzerH.K. Van den MooterG. New perspectives for fixed dose combinations of poorly water-soluble compounds: A case study with ezetimibe and lovastatin.Pharm. Res.20163351259127510.1007/s11095‑016‑1870‑z 26857899
    [Google Scholar]
  83. PartheniadisI. NikolakakisI. Development and characterization of co-amorphous griseofulvin/L-leucin by modified solvent processing hot-melt extrusion.Int. J. Pharm.202465212382410.1016/j.ijpharm.2024.123824 38246478
    [Google Scholar]
  84. PacułtJ. Rams-BaronM. ChmielK. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions.Eur. J. Pharm. Sci.202115910569710.1016/j.ejps.2020.105697 33568330
    [Google Scholar]
  85. JanssensS. NagelsS. ArmasH.N. D’AutryW. Van SchepdaelA. Van den MooterG. Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study.Eur. J. Pharm. Biopharm.200869115816610.1016/j.ejpb.2007.11.004 18164929
    [Google Scholar]
  86. BudimanA. LailasariE. NuraniN.V. Ternary solid dispersions: A review of the preparation, characterization, mechanism of drug release, and physical stability.Pharmaceutics2023158211610.3390/pharmaceutics15082116 37631330
    [Google Scholar]
  87. SuM. XiaY. ShenY. A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide.RSC Advances202010156558310.1039/C9RA07149K
    [Google Scholar]
  88. Renuka, Singh SK, Gulati M, Narang R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization.Pharm. Dev. Technol.2017221132510.3109/10837450.2015.1125921 26708555
    [Google Scholar]
  89. LiuJ. HwuE. BannowJ. GrohganzH. RadesT. Impact of molecular surface diffusion on the physical stability of co-amorphous systems.Mol. Pharm.20221941183119010.1021/acs.molpharmaceut.1c00973 35230110
    [Google Scholar]
  90. HuY. JiangC. LiB. A novel lurasidone hydrochloride–shikimic acid co-amorphous system formed by hydrogen-bonding interaction with the retained pH-dependent solubility behavior.CrystEngComm202022355841585310.1039/D0CE00952K
    [Google Scholar]
  91. TurekM. Różycka-SokołowskaE. KoprowskiM. MarciniakB. BałczewskiP. Role of hydrogen bonds in formation of co-amorphous valsartan/nicotinamide compositions of high solubility and durability with anti-hypertension and anti-COVID-19 potential.Mol. Pharm.20211851970198410.1021/acs.molpharmaceut.0c01096 33792313
    [Google Scholar]
  92. DengY. DengW. HuangW. Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems.Chem. Eng. Sci.202225311754910.1016/j.ces.2022.117549
    [Google Scholar]
  93. HuD. ChenX. LiD. ZhangH. DuanY. HuangY. Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability.Int. J. Pharm.202363512270710.1016/j.ijpharm.2023.122707 36764418
    [Google Scholar]
  94. Suleiman AlsalhiM. RoyallP.G. Al-ObaidiH. AlsalhiA. CilibrizziA. ChanK.L.A. Non-salt based co-amorphous formulation produced by freeze-drying.Int. J. Pharm.202364512340410.1016/j.ijpharm.2023.123404 37714312
    [Google Scholar]
  95. FengY. LiB. YangL. LiuY. Co-amorphous delivery systems based on curcumin and hydroxycinnamic acids: Stabilization, solubilization, and controlled release.Lebensm. Wiss. Technol.202217011409110.1016/j.lwt.2022.114091
    [Google Scholar]
  96. DengY. LiuS. JiangY. MartinsI.C.B. RadesT. Recent advances in co-former screening and formation prediction of multicomponent solid forms of low molecular weight drugs.Pharmaceutics2023159217410.3390/pharmaceutics15092174 37765145
    [Google Scholar]
  97. ChambersL.I. GrohganzH. PalmelundH. Predictive identification of co-formers in co-amorphous systems.Eur. J. Pharm. Sci.202115710563610.1016/j.ejps.2020.105636 33160046
    [Google Scholar]
  98. HanJ. WeiY. LuY. Co-amorphous systems for the delivery of poorly water-soluble drugs: Recent advances and an update.Expert Opin. Drug Deliv.202017101411143510.1080/17425247.2020.1796631 32683996
    [Google Scholar]
  99. ShiX. ZhouX. ShenS. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction.Eur. J. Pharm. Sci.202116110577310.1016/j.ejps.2021.105773 33640500
    [Google Scholar]
  100. LiB. WangY. FengY. Design and molecular insights of drug-active metabolite based co-amorphous formulation: A case study of toltrazuril-ponazuril co-amorphous.Int. J. Pharm.202261512147510.1016/j.ijpharm.2022.121475 35041914
    [Google Scholar]
  101. LaitinenR. LöbmannK. GrohganzH. PriemelP. StrachanC.J. RadesT. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations.Int. J. Pharm.2017532111210.1016/j.ijpharm.2017.08.123 28870764
    [Google Scholar]
  102. LöbmannK. GrohganzH. LaitinenR. StrachanC. RadesT. Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement.Eur. J. Pharm. Biopharm.201385387388110.1016/j.ejpb.2013.03.014 23537574
    [Google Scholar]
  103. AllesøM. ChiengN. RehderS. RantanenJ. RadesT. AaltonenJ. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: Amorphous naproxen–cimetidine mixtures prepared by mechanical activation.J. Control. Release20091361455310.1016/j.jconrel.2009.01.027 19331842
    [Google Scholar]
  104. LöbmannK. LaitinenR. GrohganzH. GordonK.C. StrachanC. RadesT. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen.Mol. Pharm.2011851919192810.1021/mp2002973 21815614
    [Google Scholar]
  105. JensenK.T. BlaabjergL.I. LenzE. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts.J. Pharm. Pharmacol.201668561562410.1111/jphp.12458 26245703
    [Google Scholar]
  106. PaluchK.J. McCabeT. Müller-BunzH. CorriganO.I. HealyA.M. TajberL. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid.Mol. Pharm.201310103640365410.1021/mp400127r 23947816
    [Google Scholar]
  107. TrasiN.S. TaylorL.S. Thermodynamics of highly supersaturated aqueous solutions of poorly water-soluble drugs—Impact of a second drug on the solution phase behavior and implications for combination products.J. Pharm. Sci.201510482583259310.1002/jps.24528 26059413
    [Google Scholar]
  108. TrasiN.S. TaylorL.S. Dissolution performance of binary amorphous drug combinations—Impact of a second drug on the maximum achievable supersaturation.Int. J. Pharm.2015496228229010.1016/j.ijpharm.2015.10.026 26456250
    [Google Scholar]
  109. AlhalawehA. BergströmC.A.S. TaylorL.S. Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations.J. Control. Release201622917218210.1016/j.jconrel.2016.03.028 27006280
    [Google Scholar]
  110. ArcaH.Ç. Mosquera-GiraldoL.I. DahalD. TaylorL.S. EdgarK.J. Multidrug, anti-HIV amorphous solid dispersions: Nature and mechanisms of impacts of drugs on each other’s solution concentrations.Mol. Pharm.201714113617362710.1021/acs.molpharmaceut.7b00203 28872867
    [Google Scholar]
  111. OjarintaR. HeikkinenA.T. SievänenE. LaitinenR. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: The ability of amino acids to stabilize the supersaturated state of indomethacin.Eur. J. Pharm. Biopharm.2017112859510.1016/j.ejpb.2016.11.023 27888143
    [Google Scholar]
  112. MoinuddinS.M. RuanS. HuangY. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile.Int. J. Pharm.2017532139340010.1016/j.ijpharm.2017.09.020 28893583
    [Google Scholar]
  113. ZhangY. GaoY. DuX. GuanR. HeZ. LiuH. Combining Co-amorphous-based spray drying with inert carriers to achieve improved bioavailability and excellent downstream manufacturability.Pharmaceutics20201211106310.3390/pharmaceutics12111063 33171591
    [Google Scholar]
  114. LodagekarA. ChavanR.B. MannavaM.K.C. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation.Eur. J. Pharm. Sci.201913910504810.1016/j.ejps.2019.105048 31446077
    [Google Scholar]
  115. ZhangX. WuJ. WeiJ. High-performance biobased vinyl ester resin and its fiberglass-reinforced composite with high glass transition temperature (Tg), excellent flame retardancy and mechanical properties.Polym. Degrad. Stabil.202320711020910.1016/j.polymdegradstab.2022.110209
    [Google Scholar]
  116. RusdinA. Mohd GazzaliA. Ain ThomasN. Advancing drug delivery paradigms: Polyvinyl Pyrolidone (PVP)-based amorphous solid dispersion for enhanced physicochemical properties and therapeutic efficacy.Polymers202416228610.3390/polym16020286 38276694
    [Google Scholar]
  117. KurakulaM. RaoG.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition.J. Drug Deliv. Sci. Technol.20206010204610.1016/j.jddst.2020.102046 32905026
    [Google Scholar]
  118. FrancoP. ReverchonE. De MarcoI. PVP/ketoprofen coprecipitation using supercritical antisolvent process.Powder Technol.20183401710.1016/j.powtec.2018.09.007
    [Google Scholar]
  119. SamsoenS. DudognonÉ. Le FerG. FournierD. WoiselP. AffouardF. Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions.Int. J. Pharm.202465312389510.1016/j.ijpharm.2024.123895 38346598
    [Google Scholar]
  120. PyoY.C. NguyenT.N. LeeY.S. ChoiY.E. ParkJ.S. Design of esomeprazole solid dispersion for improved dissolution and bioavailability using the supercritical anti-solvent technique.J. Drug Deliv. Sci. Technol.20238810488910.1016/j.jddst.2023.104889
    [Google Scholar]
  121. SinghP. Preparation, characterization and dissolution study of spray dried solid dispersions of simvastatin with PVP K25 and AEROSIL 200.J Med Pharm Allied Sci20211063806381210.22270/jmpas.V10I6.1374
    [Google Scholar]
  122. ShiX. XuT. HuangW. FanB. ShengX. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: The synergistic effect of polymers and drug-polymer(s) interactions.AAPS PharmSciTech201920414310.1208/s12249‑019‑1358‑3 30887265
    [Google Scholar]
  123. GuoY. PatelH. SaraswatA. MatetiK.V. PatelK. SquillanteE. Screening and optimization of supercritical fluid process for the preparation of albendazole solid dispersion.J. Drug Deliv. Sci. Technol.20238810485210.1016/j.jddst.2023.104852
    [Google Scholar]
  124. AL-Japairai K Hamed AlmurisiS MahmoodS Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method.Int. J. Pharm.202364712353610.1016/j.ijpharm.2023.123536 37865133
    [Google Scholar]
  125. AldeebR.A.E. MahdyM.A.E.G. El-NahasH.M. MusallamA.A. Design of mirtazapine solid dispersion with different carriers’ systems: Optimization, in vitro evaluation, and bioavailability assessment.Drug Deliv. Transl. Res.20231392340235210.1007/s13346‑023‑01316‑9 36940079
    [Google Scholar]
  126. BejaouiM. KalfatR. GalaiH. The effect of adding PVP to the binary solid dispersion (Indomethacin: Kaolin) on the formation of physically stable amorphous drug.J. Pharm. Innov.202217373674610.1007/s12247‑021‑09553‑6
    [Google Scholar]
  127. LuW. RadesT. RantanenJ. YangM. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying.Int. J. Pharm.20195651810.1016/j.ijpharm.2019.04.036 30999050
    [Google Scholar]
  128. ZiP. ZhangC. JuC. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus.Eur. J. Pharm. Sci.201913423324510.1016/j.ejps.2019.04.022 31028820
    [Google Scholar]
  129. EspinarF.J.O. LavillaC.B. FernándezG.B. ToméV.D. OteroX.G. Formulation strategies to improve the bioavailability of poorly absorbed drugs.Dosage Forms, Formulation Developments and Regulations.Elsevier202422325510.1016/B978‑0‑323‑91817‑6.00008‑5
    [Google Scholar]
  130. BudimanA. RusdinA. AulifaD.L. Current techniques of water solubility improvement for antioxidant compounds and their correlation with its activity: Molecular pharmaceutics.Antioxidants202312237810.3390/antiox12020378 36829937
    [Google Scholar]
  131. PardhiV.P. PathakA. JainK. Solid dispersions of bedaquiline fumarate to improve its pharmaceutical attributes: A comparative study between PEG and PVP.J. Drug Deliv. Sci. Technol.20249410546110.1016/j.jddst.2024.105461
    [Google Scholar]
  132. ChenQ. JiY. Thermodynamic mechanism of physical stability of amorphous pharmaceutical formulations.Ind. Eng. Chem. Res.20236231596160510.1021/acs.iecr.2c02953
    [Google Scholar]
  133. KalantriS.S. YadavM.D. Advances in carbamazepine cocrystals: A review.Cryst. Res. Technol.2024594230029610.1002/crat.202300296
    [Google Scholar]
  134. AungW.T. KopongpanichP. BoonkanokwongV. Supersaturable solid self-microemulsifying delivery systems of Astaxanthin via spray drying: Effects of polymers and solid carriers.AAPS PharmSciTech202324821810.1208/s12249‑023‑02671‑z 37891405
    [Google Scholar]
  135. NaralaS. NyavanandiD. MandatiP. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting.Int. J. Pharm. X2023510015610.1016/j.ijpx.2022.100156 36636366
    [Google Scholar]
  136. LeeS.K. HaE.S. ParkH. Preparation of hot-melt-extruded solid dispersion based on pre-formulation strategies and its enhanced therapeutic efficacy.Pharmaceutics20231512270410.3390/pharmaceutics15122704 38140045
    [Google Scholar]
  137. TsiaxerliA. KaragianniA. OuranidisA. KachrimanisK. Polyelectrolyte matrices in the modulation of intermolecular electrostatic interactions for amorphous solid dispersions: A comprehensive review.Pharmaceutics2021139146710.3390/pharmaceutics13091467 34575543
    [Google Scholar]
  138. ChenZ. NieH. BenmoreC.J. Probing molecular packing of amorphous pharmaceutical solids using X-ray atomic pair distribution function and solid-state NMR.Mol. Pharm.202320115763577710.1021/acs.molpharmaceut.3c00628 37800667
    [Google Scholar]
  139. SahaS.K. JoshiA. SinghR. DubeyK. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations.Pharm. Dev. Technol.202328767869610.1080/10837450.2023.2233595 37427544
    [Google Scholar]
  140. JainS.K. JainA.K. RajpootK. Expedition of Eudragit® polymers in the development of novel drug delivery systems.Curr. Drug Deliv.202017644846910.2174/1567201817666200512093639 32394836
    [Google Scholar]
  141. LaVanD. YiF. AdamsT. Abstracts of the 2023 49th annual NATAS conference.Polymers20231515325010.3390/polym15153250 37571144
    [Google Scholar]
  142. AbdelquaderM.M. LiS. AndrewsG.P. JonesD.S. Therapeutic deep eutectic solvents: A comprehensive review of their thermodynamics, microstructure and drug delivery applications.Eur. J. Pharm. Biopharm.20231868510410.1016/j.ejpb.2023.03.002 36907368
    [Google Scholar]
  143. ZongS. LiuY. ParkH.J. YeM. LiJ. Curcumin solid dispersion based on three model acrylic polymers: formulation and release properties.Braz. J. Pharm. Sci.2022581-210.1590/s2175‑97902022e18946
    [Google Scholar]
  144. RosiakN. TykarskaE. Cielecka-PiontekJ. The study of amorphous Kaempferol dispersions involving FT-IR spectroscopy.Int. J. Mol. Sci.202324241715510.3390/ijms242417155 38138984
    [Google Scholar]
  145. TranP. PyoY.C. KimD.H. LeeS.E. KimJ.K. ParkJ.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs.Pharmaceutics201911313210.3390/pharmaceutics11030132 30893899
    [Google Scholar]
  146. RédaiE.M. SiposE. VladR.A. AntonoaeaP. TodoranN. CiurbaA. Development of co-amorphous loratadine–citric acid orodispersible drug formulations.Processes20221012272210.3390/pr10122722
    [Google Scholar]
  147. MaliA.J. PatilS. ChellampillaiB. Investigation of polyvinyl alcohol-polyethylene glycol graft copolymer as an advanced functional polymer in the development of perampanel orodispersible film.J. Polym. Res.202229413010.1007/s10965‑022‑02951‑5
    [Google Scholar]
  148. TanD.K. DavisD.A.Jr MillerD.A. WilliamsR.O.III NokhodchiA. Innovations in thermal processing: Hot-melt extrusion and KinetiSol® dispersing.AAPS PharmSciTech202021831210.1208/s12249‑020‑01854‑2 33161479
    [Google Scholar]
  149. ThompsonS.A. DavisD.A. DiNunzioJ.C. MartinC. WilliamsR.O. ZhangF. Melt Extrusion.Formulating Poorly Water Soluble Drugs.Springer202232737610.1007/978‑3‑030‑88719‑3_9
    [Google Scholar]
  150. PardhiV.P. JainK. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate.J. Drug Deliv. Sci. Technol.20216210234910.1016/j.jddst.2021.102349
    [Google Scholar]
  151. PriyadarsiniM. AvulaP.R. Amorphous solid dispersions of ritonavir by melt-quenching.Int. J. Health Sci.20226S84020403410.53730/ijhs.v6nS8.13041
    [Google Scholar]
  152. SuknunthaK. KhumpirapangN. TantishaiyakulV. OkonogiS. Solubility and physical stability enhancement of loratadine by preparation of co-amorphous solid dispersion with chlorpheniramine and polyvinylpyrrolidone.Pharmaceutics20231511255810.3390/pharmaceutics15112558 38004537
    [Google Scholar]
  153. HolzapfelK. RadesT. LeopoldC.S. Co-amorphous systems consisting of indomethacin and the chiral co-former tryptophan: Solid-state properties and molecular mobilities.Int. J. Pharm.202363612284010.1016/j.ijpharm.2023.122840 36921746
    [Google Scholar]
  154. HengW. SongY. LuoM. Mechanistic insights into the crystallization of coamorphous drug systems.J. Control. Release202335448950210.1016/j.jconrel.2023.01.019 36646287
    [Google Scholar]
  155. LalgeR. KumarN.S.K. SuryanarayananR. Implications of drug–polymer interactions on time–temperature–transformation: A tool to assess the crystallization propensity in amorphous solid dispersions.Mol. Pharm.20232031806181710.1021/acs.molpharmaceut.2c01004 36744878
    [Google Scholar]
  156. DengY. LuoW. ZhengZ. Prediction of co-amorphous formation using non-bonded interaction energy: Molecular dynamic simulation and experimental validation.Chem. Eng. Sci.202327211861810.1016/j.ces.2023.118618
    [Google Scholar]
  157. LiJ. WangX. YuD. ZhoujinY. WangK. Molecular complexes of drug combinations: A review of cocrystals, salts, coamorphous systems and amorphous solid dispersions.Int. J. Pharm.202364812355510.1016/j.ijpharm.2023.123555 37890646
    [Google Scholar]
  158. DiR. RadesT. GrohganzH. Destabilization of indomethacin-paracetamol co-amorphous systems by mechanical stress.Pharmaceutics20231616710.3390/pharmaceutics16010067 38258078
    [Google Scholar]
  159. SørensenC.M. RantanenJ. GrohganzH. Compaction behavior of co-amorphous systems.Pharmaceutics202315385810.3390/pharmaceutics15030858 36986718
    [Google Scholar]
  160. BejaouiM. DjemiR. KouassS. GalaiH. Co-amorphous system (Paracetamol:Indomethacin): Investigations on physical stability and intermolecular interactions.Pharm. Chem. J.20235781330133710.1007/s11094‑024‑03042‑z
    [Google Scholar]
  161. RuponenM. VistiM. OjarintaR. LaitinenR. Permeability of glibenclamide through a PAMPA membrane: The effect of co-amorphization.Eur. J. Pharm. Biopharm.201812924725610.1016/j.ejpb.2018.06.007 29894814
    [Google Scholar]
  162. IemtsevA. ZemánkováA. HassounaF. Ball milling and hot-melt extrusion of indomethacin–l-arginine–vinylpyrrolidone-vinyl acetate copolymer: Solid-state properties and dissolution performance.Int. J. Pharm.202261312142410.1016/j.ijpharm.2021.121424 34968683
    [Google Scholar]
  163. OjarintaR. LerminiauxL. LaitinenR. Spray drying of poorly soluble drugs from aqueous arginine solution.Int. J. Pharm.2017532128929810.1016/j.ijpharm.2017.09.015 28890173
    [Google Scholar]
  164. WuW. LöbmannK. SchnitzkewitzJ. Dipeptides as co-formers in co-amorphous systems.Eur. J. Pharm. Biopharm.2019134687610.1016/j.ejpb.2018.11.016 30468836
    [Google Scholar]
  165. KastenG. LoboL. DengaleS. GrohganzH. RadesT. LöbmannK. In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine.Eur. J. Pharm. Biopharm.201813219219910.1016/j.ejpb.2018.09.024 30266670
    [Google Scholar]
  166. ZhuS. GaoH. BabuS. GaradS. Co-amorphous formation of high-dose zwitterionic compounds with amino acids to improve solubility and enable parenteral delivery.Mol. Pharm.20181519710710.1021/acs.molpharmaceut.7b00738 29164901
    [Google Scholar]
  167. HuangY. ZhangQ. WangJ.R. LinK.L. MeiX. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan.Pharm. Dev. Technol.2017221697610.3109/10837450.2016.1163390 27050301
    [Google Scholar]
  168. PanY. PangW. LvJ. WangJ. YangC. GuoW. Solid state characterization of azelnidipine–oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs.J. Pharm. Biomed. Anal.201713830231510.1016/j.jpba.2017.02.005 28237872
    [Google Scholar]
  169. AliA.M.A. AliA.A. MaghrabiI.A. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation.Acta Pharm.201565213314610.1515/acph‑2015‑0014 26011930
    [Google Scholar]
  170. AinurofiqA. MauludinR. MudhakirD. SoewandhiS.N. A novel desloratadine-benzoic acid co-amorphous solid: Preparation, characterization, and stability evaluation.Pharmaceutics20181038510.3390/pharmaceutics10030085 29986403
    [Google Scholar]
  171. YamamotoK. KojimaT. KarashimaM. IkedaY. Physicochemical evaluation and developability assessment of co-amorphouses of low soluble drugs and comparison to the co-crystals.Chem. Pharm. Bull. (Tokyo)201664121739174610.1248/cpb.c16‑00604 27733735
    [Google Scholar]
  172. WangJ. ChangR. ZhaoY. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability.AAPS PharmSciTech20171872541255010.1208/s12249‑017‑0734‑0 28224393
    [Google Scholar]
  173. MaherE.M. AliA.M.A. SalemH.F. AbdelrahmanA.A. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids.Drug Deliv.20162383088310010.3109/10717544.2016.1153746 26960680
    [Google Scholar]
  174. KultheV. ChaudhariP. Aboul-EneinH. Freeze-dried amorphous dispersions for solubility enhancement of thermosensitive API having low molecular lipophilicity.Drug Res. (Stuttg.)201464949349810.1055/s‑0033‑1363249 24443307
    [Google Scholar]
  175. Al-HamidiH. EdwardsA.A. MohammadM.A. NokhodchiA. To enhance dissolution rate of poorly water-soluble drugs: Glucosamine hydrochloride as a potential carrier in solid dispersion formulations.Colloids Surf. B Biointerfaces201076117017810.1016/j.colsurfb.2009.10.030 19945828
    [Google Scholar]
  176. MadgulkarA. BandivadekarM. ShidT. RaoS. Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: clotrimazole.Drug Dev. Ind. Pharm.2016421283810.3109/03639045.2015.1024683 25874729
    [Google Scholar]
  177. KaminskaE. AdrjanowiczK. TarnackaM. Impact of inter- and intramolecular interactions on the physical stability of indomethacin dispersed in acetylated saccharides.Mol. Pharm.20141182935294710.1021/mp500286b 25011022
    [Google Scholar]
  178. KaminskaE. MadejczykO. TarnackaM. JurkiewiczK. KaminskiK. PaluchM. Studying of crystal growth and overall crystallization of naproxen from binary mixtures.Eur. J. Pharm. Biopharm.2017113758710.1016/j.ejpb.2016.12.014 28034808
    [Google Scholar]
  179. ZajcN. ObrezaA. BeleM. SrčičS. Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method.Int. J. Pharm.20052911-2515810.1016/j.ijpharm.2004.07.042 15707731
    [Google Scholar]
  180. HirakawaY. UedaH. MiyanoT. KamiyaN. GotoM. New insight into transdermal drug delivery with supersaturated formulation based on co-amorphous system.Int. J. Pharm.201956911858210.1016/j.ijpharm.2019.118582 31381987
    [Google Scholar]
  181. ShayanfarA. GhavimiH. HamishekarH. JouybanA. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties.J. Pharm. Pharm. Sci.201316457758710.18433/J3XS4S 24210065
    [Google Scholar]
  182. QianS. HengW. WeiY. ZhangJ. GaoY. Coamorphous lurasidone hydrochloride–saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior.Cryst. Growth Des.20151562920292810.1021/acs.cgd.5b00349
    [Google Scholar]
  183. WuW. LöbmannK. SchnitzkewitzJ. Aspartame as a co-former in co-amorphous systems.Int. J. Pharm.20185491-238038710.1016/j.ijpharm.2018.07.063 30075253
    [Google Scholar]
  184. BohrA. NascimentoT.L. HarmankayaN. Efflux inhibitor Bicalutamide increases oral bioavailability of the poorly soluble efflux substrate docetaxel in co-amorphous anti-cancer combination therapy.Molecules201924226610.3390/molecules24020266 30642009
    [Google Scholar]
  185. GaoY. LiaoJ. QiX. ZhangJ. Coamorphous repaglinide–saccharin with enhanced dissolution.Int. J. Pharm.20134501-229029510.1016/j.ijpharm.2013.04.032 23612357
    [Google Scholar]
  186. BeyerA. RadiL. GrohganzH. LöbmannK. RadesT. LeopoldC.S. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen–indomethacin.Eur. J. Pharm. Biopharm.2016104728110.1016/j.ejpb.2016.04.019 27130786
    [Google Scholar]
  187. HaneefJ. ChadhaR. Drug-drug multicomponent solid forms: Cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach.AAPS PharmSciTech20171862279229010.1208/s12249‑016‑0701‑1 28101724
    [Google Scholar]
  188. HirakawaY. UedaH. WakabayashiR. KamiyaN. GotoM. A novel binary supercooled liquid formulation for transdermal drug delivery.Biol. Pharm. Bull.202043339339810.1248/bpb.b19‑00642 31801924
    [Google Scholar]
  189. WairkarS. GaudR. Co-amorphous combination of nateglinide-metformin hydrochloride for dissolution enhancement.AAPS PharmSciTech201617367368110.1208/s12249‑015‑0371‑4 26314243
    [Google Scholar]
  190. LengD. KissiE.O. LöbmannK. Design of inhalable solid dosage forms of budesonide and theophylline for pulmonary combination therapy.AAPS PharmSciTech201920313710.1208/s12249‑019‑1344‑9 30847607
    [Google Scholar]
  191. PangW. LvJ. DuS. WangJ. WangJ. ZengY. Preparation of curcumin–piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin.Mol. Pharm.20171493013302410.1021/acs.molpharmaceut.7b00217 28703594
    [Google Scholar]
  192. SormunenH. RuponenM. LaitinenR. The effect of co-amorphization of glibenclamide on its dissolution properties and permeability through an MDCKII-MDR1 cell layer.Int. J. Pharm.201957011865310.1016/j.ijpharm.2019.118653 31472218
    [Google Scholar]
  193. BitayE. GergelyA.L. BalintI. Preparation and characterization of lapatinib-loaded PVP nanofiber amorphous solid dispersion by electrospinning.Express Polym. Lett.202115111041105010.3144/expresspolymlett.2021.84
    [Google Scholar]
  194. MallyaP. YarlagaddaD.L. LewisS. A novel stability-indicating RP-HPLC method for the simultaneous estimation and in vitro and in vivo evaluation: Curcumin and Naringin co-amorphous system.Food Anal. Methods202417575176510.1007/s12161‑024‑02606‑9
    [Google Scholar]
  195. ChishtiN.A.H. PathanI.B. DehghanM.H.G. BairagiS.M. Design and development of immediate release pellets formulation containing co amorphous mixture of Aceclofenac: In-vitro and in-vivo study.J. Pharm. Innov.20241921310.1007/s12247‑024‑09823‑z
    [Google Scholar]
  196. NairA.R. VullendulaS.K.A. YarlagaddaD.L. BheemisettyB. DengaleS.J. BhatK. Physicochemical interaction of rifampicin and ritonavir-lopinavir solid dispersion: an in-vitro and ex-vivo investigation.Drug Dev. Ind. Pharm.202450319220510.1080/03639045.2024.2309508 38305806
    [Google Scholar]
  197. YunT.S. JungM. BangK.H. An economically advantageous amorphous solid dispersion of the fixed combination of lopinavir and ritonavir.J. Pharm. Investig.202353454956110.1007/s40005‑023‑00623‑0
    [Google Scholar]
  198. YarlagaddaD.L. AnandV.S.K. NairA.R. A computational-based approach to fabricate ceritinib co-amorphous system using a novel co-former Rutin for bioavailability enhancement.Eur. J. Pharm. Biopharm.202319022023010.1016/j.ejpb.2023.07.019 37524214
    [Google Scholar]
  199. ChenJ. LiH. LiX. Co-amorphous systems using epigallocatechin-3-gallate as a co-former: Stability, in vitro dissolution, in vivo bioavailability and underlying molecular mechanisms.Eur. J. Pharm. Biopharm.2022178829310.1016/j.ejpb.2022.08.001 35932965
    [Google Scholar]
  200. ShiX. SongS. DingZ. FanB. HuangW. XuT. Improving the solubility, dissolution, and bioavailability of Ibrutinib by preparing it in a coamorphous state with saccharin.J. Pharm. Sci.201910893020302810.1016/j.xphs.2019.04.031 31067482
    [Google Scholar]
  201. LiY.W. ZhangH.M. CuiB.J. “Felodipine-indomethacin” co-amorphous supersaturating drug delivery systems: “Spring-parachute” process, stability, in vivo bioavailability, and underlying molecular mechanisms.Eur. J. Pharm. Biopharm.202116611112510.1016/j.ejpb.2021.05.030 34119671
    [Google Scholar]
  202. NairA. VarmaR. GourishettiK. BhatK. DengaleS. Influence of preparation methods on physicochemical and pharmacokinetic properties of co-amorphous formulations: The case of co-amorphous Atorvastatin: Naringin.J. Pharm. Innov.202015336537910.1007/s12247‑019‑09381‑9
    [Google Scholar]
  203. YuD. KanZ. ShanF. ZangJ. ZhouJ. Triple strategies to improve oral bioavailability by fabricating coamorphous forms of ursolic acid with piperine: Enhancing water-solubility, permeability, and inhibiting cytochrome P450 Isozymes.Mol. Pharm.202017124443446210.1021/acs.molpharmaceut.0c00443 32926628
    [Google Scholar]
  204. WeiY. ZhouS. HaoT. ZhangJ. GaoY. QianS. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin.Eur. J. Pharm. Sci.2019129213010.1016/j.ejps.2018.12.016 30590119
    [Google Scholar]
  205. BahetibiekeS. MoinuddinS.M. BaiyisaitiA. Co-amorphous formation of Simvastatin-Ezetimibe: Enhanced physical stability, bioavailability and cholesterol-lowering effects in LDLr−/−Mice.Pharmaceutics2022146125810.3390/pharmaceutics14061258 35745830
    [Google Scholar]
  206. QiuC. ZhangY. FanY. Solid dispersions of genistein via solvent rotary evaporation for improving solubility, bioavailability, and amelioration effect in HFD-induced obesity mice.Pharmaceutics202416330610.3390/pharmaceutics16030306 38543200
    [Google Scholar]
  207. WangX. CaoJ. LiZ. Co-amorphous mixture of erlotinib hydrochloride and gallic acid for enhanced antitumor effects.J. Drug Deliv. Sci. Technol.20249110520010.1016/j.jddst.2023.105200
    [Google Scholar]
  208. NascimentoA.L.C.S. MartinsI.C.B. SpósitoL. Indomethacin-omeprazole as therapeutic hybrids? Salt and co-amorphous systems enhancing physicochemical and pharmacological properties.Int. J. Pharm.202465312385710.1016/j.ijpharm.2024.123857 38281693
    [Google Scholar]
  209. MohamedE.M. DharaniS. NutanM.T.H. Application of sucrose acetate isobutyrate in development of co-amorphous formulations of tacrolimus for bioavailability enhancement.Pharmaceutics2023155144210.3390/pharmaceutics15051442 37242683
    [Google Scholar]
  210. LiB HuY WuT Apigenin-oxymatrine binary coamorphous mixture: Enhanced solubility, bioavailability, and antiinflammatory effect.Food Chem2022373Pt B13148510.1016/j.foodchem.2021.131485 34740050
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878351727250409094214
Loading
/content/journals/raddf/10.2174/0126673878351727250409094214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test