Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Background

Rheumatoid Arthritis is one of the most common auto-immune diseases that cause inflammation. It is characterized by pain, stiffness, tenderness, and swelling in joints, which may even lead to heart, lungs, or brain-related problems where age is the major factor involved, as around 55% older adults have been affected by it. Treatments including non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs) ., that are modified and formulated as nanocarriers for enhanced bioavailability, majorly aim at enhancing the rate and extent of drug reaching the bloodstream such as solid-lipid nanoparticles, liposomes, polymeric-micelles, polymeric nanoparticles . are used in the management of rheumatoid arthritis.

Methods

The following tools (Pubmed, Scopus, Google search engine, Google Scholar, Medline Search Engine, Elsevier) were used in the literature search.

Results

Through the literature review, the development of nanocarrier shows a promising approach in the management of rheumatoid arthritis as compared to the conventional drug treatment such as biologic agents and non-steroidal anti-inflammatory drugs .

Conclusion

Rheumatoid Arthritis is a condition that occurs when the immune system, which normally helps to protect the body from infection and disease, attacks its own tissues. The disease causes pain, swelling as well as loss of function in joints. Therefore, life-long management is required by reducing the dose frequency and dosage regimen, which can be effectively approached by the development of a nano-carrier for significant drug uptake and low toxicity.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878324613240805065651
2024-08-08
2025-09-08
Loading full text...

Full text loading...

References

  1. BullockJ. RizviS.A.A. SalehA.M. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/000493390 30173215
    [Google Scholar]
  2. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  3. KvienT.K. UhligT. ØdegårdS. HeibergM.S. Epidemiological aspects of rheumatoid arthritis: The sex ratio.Ann. N. Y. Acad. Sci.20061069121222210.1196/annals.1351.019 16855148
    [Google Scholar]
  4. KourilovitchM. Galarza-MaldonadoC. Ortiz-PradoE. Diagnosis and classification of rheumatoid arthritis.J. Autoimmun.201448-4949263010.1016/j.jaut.2014.01.027 24568777
    [Google Scholar]
  5. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  6. WangQ. QinX. FangJ. SunX. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies.Acta Pharm. Sin. B20211151158117410.1016/j.apsb.2021.03.013 34094826
    [Google Scholar]
  7. MishraR.K. TiwariS.K. MohapatraS. ThomasS. A selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis.Clin. Ther.199921914971513
    [Google Scholar]
  8. GoldenbergM.M. Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis.Clin. Ther.19992191497151310.1016/S0149‑2918(00)80005‑3 10509845
    [Google Scholar]
  9. SilmanAJ PearsonJE Epidemiology and genetics of rheumatoid arthritis.Arthritis Res.20024(Suppl 3)(Suppl. 3S265S27210.1186/ar57812110146
    [Google Scholar]
  10. JohnstonS.A. BudsbergS.C. Nonsteroidal anti-inflammatory drugs and corticosteroids for the management of canine osteoarthritis.Vet. Clin. North Am. Small Anim. Pract.199727484186210.1016/S0195‑5616(97)50083‑0 9243784
    [Google Scholar]
  11. ParkC.W. MaK.W. JangS.W. SonM. KangM.J. Comparison of piroxicam pharmacokinetics and anti-inflammatory effect in rats after intra-articular and intramuscular administration.Biomol. Ther.201422326026610.4062/biomolther.2014.037 25009708
    [Google Scholar]
  12. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315S3Suppl. 3S210.1186/ar4174 24267197
    [Google Scholar]
  13. AltmanR.D. Review of ibuprofen for osteoarthritis.Am. J. Med.1984771101810.1016/S0002‑9343(84)80013‑3 6380278
    [Google Scholar]
  14. JudgeA. GarrigaC. ArdenN.K. Protective effect of antirheumatic drugs on dementia in rheumatoid arthritis patients.Alzheimers Dement.20173461262110.1016/j.trci.2017.10.002 29201995
    [Google Scholar]
  15. PisetskyD.S. McCleaneG. Pain in rheumatoid arthritis and osteoarthritis.Pain Manag Sec2009170183
    [Google Scholar]
  16. StecherV.J. CarlsonJ.A. Disease modifying anti-rheumatic drugs.Annu. Rep. Med. Chem.1983171179
    [Google Scholar]
  17. LawS.T. TaylorP.C. Role of biological agents in treatment of rheumatoid arthritis.Pharmacol. Res.201915010449710451210.1016/j.phrs.2019.104497 31629903
    [Google Scholar]
  18. TakeuchiT. Treatment of rheumatoid arthritis with biological agents — as a typical and common immune-mediated inflammatory disease.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793860060810.2183/pjab.93.038 29021510
    [Google Scholar]
  19. BaumJ. VaughanJ. Immunosuppressive drugs in rheumatoid arthritis.Ann. Intern. Med.196971120220410.7326/0003‑4819‑71‑1‑202 4892968
    [Google Scholar]
  20. HreskoA.M. GotC.J. GilJ.A. Perioperative management of immunosuppressive medications for rheumatoid arthritis.J. Hand Surg. Am.202247437037810.1016/j.jhsa.2021.09.038 35184919
    [Google Scholar]
  21. SharmaV. ShuklaS.S. VyasA. PandeyR.K. Inflammatory mediators and cytokines involved in rheumatoid arthritis.Nat Pro Manag Rheu Arth202217118134
    [Google Scholar]
  22. LewisM.J. BarnesM.R. BligheK. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes.Cell Rep.20192892455247010.1016/j.celrep.2019.07.091 31461658
    [Google Scholar]
  23. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine201611667369210.2217/nnm.16.5 27003448
    [Google Scholar]
  24. SharmaM. SharmaS. WadhwaJ. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder.Artif. Cells Nanomed. Biotechnol.2019471455510.1080/21691401.2018.1543191 30663410
    [Google Scholar]
  25. RaoN.N.M. SharmaS. PalodkarK.K. SadhuV. SharmaM. SainathA.V.S. Rationally designed curcumin laden glycopolymeric nanoparticles: Implications on cellular uptake and anticancer efficacy.J. Appl. Polym. Sci.202013732489544896510.1002/app.48954
    [Google Scholar]
  26. NazmaS.K. PrasanthY. Nanocarriers and their types for targeted drug delivery.Int. J. Pharm. Sci. Res.20227712128
    [Google Scholar]
  27. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine20171257291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  28. MajumderJ. TaratulaO. MinkoT. Nanocarrier-based systems for targeted and site specific therapeutic delivery.Adv. Drug Deliv. Rev.20191447577710.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  29. PalS.L. JanaU. MannaP.K. MohantaG.P. ManavalanR. Nanoparticle: An overview of preparation and characterization.J. Appl. Pharm. Sci.201116228234
    [Google Scholar]
  30. UpadhyayS. SoniG. Development and evaluation of solid-lipid nanoparticles of sulfasalazine for anti-rheumatic activity.Pharm. Nanotechnol.2024162149156
    [Google Scholar]
  31. KapoorB. SinghS.K. GulatiM. GuptaR. VaidyaY. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis.ScientificWorldJournal20142014411710.1155/2014/978351 24688450
    [Google Scholar]
  32. BoschX. Dendrimers to treat rheumatoid arthritis.ACS Nano2011596779678510.1021/nn203190x 21879710
    [Google Scholar]
  33. WangY. LiuZ. LiT. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and Nimesulide on rheumatoid arthritis.Theranostics20199370872010.7150/thno.30418 30809303
    [Google Scholar]
  34. Kofoed AndersenC. KhatriS. HansenJ. Carbon Nanotubes—Potent carriers for targeted drug delivery in rheumatoid arthritis.Pharmaceutics202113445346910.3390/pharmaceutics13040453 33801590
    [Google Scholar]
  35. SiddiqueR. MehmoodM.H. HarisM. SaleemA. ChaudhryZ. Promising role of polymeric nanoparticles in the treatment of rheumatoid arthritis.Inflammopharmacology20223041207121810.1007/s10787‑022‑00997‑x 35524837
    [Google Scholar]
  36. UstaA. ManK.P. StrongN. MisakH. WooleyP.H. AsmatuluR. Investigating MTX-Loaded magnetic nanocomposite particles for treatment of rheumatoid arthritis.J. Magn. Magn. Mater.202049916617116618010.1016/j.jmmm.2019.166171
    [Google Scholar]
  37. VisserK. van der HeijdeD. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: A systematic review of the literature.Ann. Rheum. Dis.20096871094109910.1136/ard.2008.092668 19033290
    [Google Scholar]
  38. Lopez-OlivoM.A. SiddhanamathaH.R. SheaB. TugwellP. WellsG.A. Suarez-AlmazorM.E. Methotrexate for treating rheumatoid arthritis.Cochrane Libr.201420146CD00095710.1002/14651858.CD000957.pub2 24916606
    [Google Scholar]
  39. Zakeri-MilaniP. Hallaj NezhadiS. Barzegar-JalaliM. MohammadiL. NokhodchiA. ValizadehH. Studies on dissolution enhancement of prednisolone, a poorly water-soluble drug by solid dispersion technique.Adv. Pharm. Bull.2011114853 24312756
    [Google Scholar]
  40. DisantoA.R. DesanteK.A. Bioavailability and pharmacokinetics of prednisone in humans.J. Pharm. Sci.197564110911210.1002/jps.2600640122 1133681
    [Google Scholar]
  41. HanftG. TürckD. ScheuererS. SigmundR. Meloxicam oral suspension: A treatment alternative to solid meloxicam formulations.Inflamm. Res.200150S1Suppl. 1353710.1007/PL00000219 11339520
    [Google Scholar]
  42. ChenW. LiZ. WangZ. GaoH. DingJ. HeZ. Intraarticular injection of infliximab-loaded thermosensitive hydrogel alleviates pain and protects cartilage in rheumatoid arthritis.J. Pain Res.20201373315332910.2147/JPR.S283518 33324092
    [Google Scholar]
  43. FramptonJ.E. KeatingG.M. Celecoxib.Drugs200767162433247210.2165/00003495‑200767160‑00008 17983259
    [Google Scholar]
  44. MogaC. HarstallC. Tang. Celecoxib for the treatment of pain in osteoarthritis and rheumatoid arthritis.AHFMR200524172
    [Google Scholar]
  45. PavelkaK.Jr SenK.P. PelískováZ. VáchaJ. TrnavskýK. Hydroxychloroquine sulphate in the treatment of rheumatoid arthritis: A double blind comparison of two dose regimens.Ann. Rheum. Dis.198948754254610.1136/ard.48.7.542 2673079
    [Google Scholar]
  46. TsakonasE. FitzgeraldA.A. FitzcharlesM.A. Consequences of delayed therapy with second-line agents in rheumatoid arthritis: A 3 year followup on the hydroxychloroquine in early rheumatoid arthritis (HERA) study.J. Rheumatol.2000273623629 10743799
    [Google Scholar]
  47. van HaselenR.A. FisherP.A.G. A randomized controlled trial comparing topical piroxicam gel with a homeopathic gel in osteoarthritis of the knee.Rheumatology200039771471910.1093/rheumatology/39.7.714 10908688
    [Google Scholar]
  48. DudalaT.B. KodavatikantiH. SundaresanC.R. In vitro and In vivo assessment of piroxicam incorporated Aloe vera transgel.Int. J. Pharm. Investig.20133421221610.4103/2230‑973X.121303 24350041
    [Google Scholar]
  49. BasiriZ. ZeraatiF. Esna-AshariF. Topical effects of artemisia absinthium ointment and liniment in comparison with piroxicam gel in patients with knee joint osteoarthritis: A randomized double-blind controlled trial.Iran. J. Med. Sci.2017426524531 29184260
    [Google Scholar]
  50. SzopaA. PajorJ. KlinP. Artemisia absinthium L.—importance in the history of medicine. The Latest Adv Phytochem Thera.Cosmetol Culinary Uses20209910631096
    [Google Scholar]
  51. Al-SalamaZ.T. ScottL.J. Baricitinib: A review in rheumatoid arthritis.Drugs201878776177210.1007/s40265‑018‑0908‑4 29687421
    [Google Scholar]
  52. DhillonS. Tofacitinib: A review in rheumatoid arthritis.Drugs201777181987200110.1007/s40265‑017‑0835‑9 29139090
    [Google Scholar]
  53. BerekmeriA. MahmoodF. WittmannM. HelliwellP. Tofacitinib for the treatment of psoriasis and psoriatic arthritis.Expert Rev. Clin. Immunol.201814971973010.1080/1744666X.2018.1512404 30118353
    [Google Scholar]
  54. ZhouM. HouJ. ZhongZ. HaoN. LinY. LiC. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy.Drug Deliv.201825171672210.1080/10717544.2018.1447050 29516758
    [Google Scholar]
  55. AnitaC. MuniraM. MuralQ. ShailyL. Topical nanocarriers for management of rheumatoid arthritis: A review.Biomed. Pharmacother.202114111188010.1016/j.biopha.2021.111880 34328101
    [Google Scholar]
  56. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials201881425810.3390/nano8010042 29342965
    [Google Scholar]
  57. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160160112057112058610.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  58. PanditaD. MadaanK. KumarS. PooniaN. LatherV. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues.J. Pharm. Bioallied Sci.20146313915010.4103/0975‑7406.130965 25035633
    [Google Scholar]
  59. CroyS. KwonG. Polymeric micelles for drug delivery.Curr. Pharm. Des.200612364669468410.2174/138161206779026245 17168771
    [Google Scholar]
  60. BaiK WangA. Polymeric micelles: Morphology, synthesis, and pharmaceutical application.E3S Web Conf.202129018
    [Google Scholar]
  61. ZareH. AhmadiS. GhasemiA. Carbon nanotubes: Smart drug/gene delivery carriers.Int. J. Nanomedicine202116161681170610.2147/IJN.S299448 33688185
    [Google Scholar]
  62. JhaR. SinghA. SharmaP.K. FuloriaN.K. Smart carbon nanotubes for drug delivery system: A comprehensive study.J. Drug Deliv. Sci. Technol.20205810181111083310.1016/j.jddst.2020.101811
    [Google Scholar]
  63. IijimaH. IchihashiT. Single-shell carbon nanotubes of 1-nm diameter.Nature199336317603605
    [Google Scholar]
  64. AqelA. El-NourK.M.M.A. AmmarR.A.A. Al-WarthanA. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation.Arab. J. Chem.20125112310.1016/j.arabjc.2010.08.022
    [Google Scholar]
  65. GhezziM. PescinaS. PadulaC. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  66. AmbadeA.V. SavariarE.N. ThayumanavanS. Dendrimeric micelles for controlled drug release and targeted delivery.Mol. Pharm.20052426427210.1021/mp050020d 16053329
    [Google Scholar]
  67. MikhailA.S. AllenC. Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels.J. Control. Release2009138321422310.1016/j.jconrel.2009.04.010 19376167
    [Google Scholar]
  68. XieY. TuguntaevR.G. MaoC. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy.Biophys. Rep.20206519321010.1007/s41048‑020‑00117‑8 37288306
    [Google Scholar]
  69. MateronE.M. MiyazakiC.M. OliviaC. Shimizu, Magnetic nanoparticles in biomedical applications: A review.Appl. Surf. Sci Adv202166326665239
    [Google Scholar]
  70. KatzE. Synthesis, properties and applications of magnetic nanoparticles and nanowires—A brief introduction.Magnetochemistry201954617610.3390/magnetochemistry5040061
    [Google Scholar]
  71. WuK. SuD. LiuJ. SahaR. WangJ.P. Magnetic nanoparticles in nanomedicine: A review of recent advances.Nanotechnology2019305050200350205110.1088/1361‑6528/ab4241 31491782
    [Google Scholar]
  72. LiuY. CaoF. SunB. BellantiJ.A. ZhengS.G. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis.J. Leukoc. Biol.2021109241542410.1002/JLB.5MR0420‑008RR 32967052
    [Google Scholar]
  73. PaulW. SharmaC.P. Inorganic nanoparticles for targeted drug delivery.Bioint Med Imp Mat20211092415424
    [Google Scholar]
  74. AhmadM.Z. Abdel-WahabB.A. AlamA. Toxicity of inorganic nanoparticles used in targeted drug delivery and other biomedical application: An updated account on concern of biomedical nanotoxicology.J. Nanosci. Nanotechnol.20161687873789710.1166/jnn.2016.13032
    [Google Scholar]
  75. BhattiR. ShakeelH. MalikK. Inorganic nanoparticles: Toxic effects, mechanisms of cytotoxicity and phytochemical interactions.Adv. Pharm. Bull.2022124757762 36415644
    [Google Scholar]
  76. AjnaiG. ChiuA. KanT. ChengC.C. TsaiT.H. ChangJ. Trends of gold nanoparticle-based drug delivery system in cancer therapy.J. Exp. Clin. Med.20146617217810.1016/j.jecm.2014.10.015
    [Google Scholar]
  77. Giner-CasaresJ.J. Henriksen-LaceyM. Coronado-PuchauM. Liz-MarzánL.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research.Mater. Today2016191192810.1016/j.mattod.2015.07.004
    [Google Scholar]
  78. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  79. MuniraA. MuhammadaF. ZaheerbY. IqbalbA.A.M. RehmanbM. MunirdM.U. AkhtaraB. WebstereT.J. ShariffA. IhsanA. Synthesis of naringenin loaded lipid based nanocarriers and their In-vivo therapeutic potential in a rheumatoid arthritis model. J of Drug Del.Sci. and Tech.66102854110
    [Google Scholar]
  80. El-RefaieW.M. GhazyM.S. AteyyaF.A. Rhein methotrexate-decorated solid lipid nanoparticles altering adjuvant arthritis progression through endoplasmic reticulum stress-mediated apoptosis.Inflammopharmacology20233163127314210.1007/s10787‑023‑01295‑w
    [Google Scholar]
  81. ZewailM. Folic acid decorated chitosan-coated solid lipid nanoparticles for the oral treatment of rheumatoid arthritis.Ther. Deliv.202112429731010.4155/tde‑2020‑0123 33726498
    [Google Scholar]
  82. GulatiP. DewanganH.K. Aceclofenac loaded solid lipid nanoparticles: Optimization, in vitro and ex-vivo evaluation.Int J Appl Pharm202315418419010.22159/ijap.2023v15i4.48047
    [Google Scholar]
  83. LiS. SuL. LvG. LuoW. KangY. Ultrasound guided intra-articular injection of triptolide-loaded solid lipid nanoparticle for treatment of antigen-induced arthritis in rabbits.Front. Pharmacol.20221382401582402510.3389/fphar.2022.824015 35250574
    [Google Scholar]
  84. AroraR. KuhadA. KaurI.P. ChopraK. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant‐induced arthritis in rats.Eur. J. Pain201519794095210.1002/ejp.620 25400173
    [Google Scholar]
  85. KrishnatreyyaH. DeyS. PalP. DasP.J. SharmaV.K. MazumderB. Piroxicam loaded solid lipid nanoparticles (SLNs): Potential for topical delivery.Indian J Pharm Educ Res2019532ss82s9210.5530/ijper.53.2s.52
    [Google Scholar]
  86. BhalekarM.R. MadgulkarA.R. DesaleP.S. MariumG. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.Drug Dev. Ind. Pharm.20174361003101010.1080/03639045.2017.1291666 28161984
    [Google Scholar]
  87. AndersonR. FranchA. CastellM. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis.Arthritis Res. Ther.2010124R14710.1186/ar3089 20642832
    [Google Scholar]
  88. HuaS. DiasT.H. PepperallD.G. YangY. Topical loperamide-encapsulated liposomal gel increases the severity of inflammation and accelerates disease progression in the adjuvant-induced model of experimental rheumatoid arthritis.Front. Pharmacol.20178850352210.3389/fphar.2017.00503 28824428
    [Google Scholar]
  89. RauchhausU. SchwaigerF. PanznerS. Separating therapeutic efficacy from glucocorticoid side-effects in rodent arthritis using novel, liposomal delivery of dexamethasone phosphate: Long-term suppression of arthritis facilitates interval treatment.Arthritis Res. Ther.2009116R19010.1186/ar2889 20003498
    [Google Scholar]
  90. Watson-ClarkR.A. BanquerigoM.L. ShellyK. HawthorneM.F. BrahnE. Model studies directed toward the application of boron neutron capture therapy to rheumatoid arthritis: Boron delivery by liposomes in rat collagen-induced arthritis.Proc. Natl. Acad. Sci. USA19989552531253410.1073/pnas.95.5.2531 9482920
    [Google Scholar]
  91. RichardsP.J. WilliamsA.S. GoodfellowR.M. WilliamsB.D. Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis.Rheumatology (Oxford)199938981882510.1093/rheumatology/38.9.818 10515641
    [Google Scholar]
  92. WilliamsB.D. O’SullivanM.M. SagguG.S. WilliamsK.E. WilliamsL.A. MorganJ.R. Synovial accumulation of technetium labelled liposomes in rheumatoid arthritis.Ann. Rheum. Dis.198746431431810.1136/ard.46.4.314 3592788
    [Google Scholar]
  93. PohS. ChelvamV. KelderhouseL.E. Folate-conjugated liposomes target and deliver therapeutics to immune cells in a rat model of rheumatoid arthritis.Nanomedicine (Lond.)201712202441245110.2217/nnm‑2017‑0166 28972462
    [Google Scholar]
  94. GorajiyaA. ShelatP. LalwaniA. Formulation and characterization of dexmedetomidine HCL liposomes in gel for intraarticular administration.Int. J. Health Sci.20226S164266442
    [Google Scholar]
  95. ShenQ. ShuH. XuX. ShuG. DuY. YingX. Tofacitinib citrate-based liposomes for effective treatment of rheumatoid arthritis.Pharmazie2020754131135
    [Google Scholar]
  96. OliveiraI.M. GonçalvesC. OliveiraP.E. Simón-VázquezR. MoraisS.A. González-FernándezA. ReisR.L. OliveiraI.M. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis.Mater. Sci. Eng. C2021121113
    [Google Scholar]
  97. HanH. XingJ. ChenW. JiaJ. LiQ. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats.Nat. Commun.2023201494496410.1038/s41467‑023‑36625‑7
    [Google Scholar]
  98. Rodríguez-PrietoT. Hernández-BreijoB. OrtegaM.A. GómezR. Sánchez-NievesJ. GuijarroL.G. Dendritic nanotheranostic for the delivery of infliximab: A potential carrier in rheumatoid arthritis therapy.Int. J. Mol. Sci.202021239101911810.3390/ijms21239101 33266032
    [Google Scholar]
  99. FanX. XuM. LeungE.L.H. JunC. YuanZ. LiuL. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria.Nano-Micro Lett.2020121769010.1007/s40820‑020‑0410‑x 34138288
    [Google Scholar]
  100. MoonS.J. YouD.G. LiY. pH-sensitive polymeric micelles as the methotrexate carrier for targeting rheumatoid arthritis.Macromol. Res.20202829910210.1007/s13233‑020‑8072‑6
    [Google Scholar]
  101. ChoiJ.S. LeeD.H. AhnJ.B. Therapeutic effects of celecoxib polymeric systems in rat models of inflammation and adjuvant-induced rheumatoid arthritis.Mater. Sci. Eng. C202011411104211105210.1016/j.msec.2020.111042 32993980
    [Google Scholar]
  102. HeL. QinX. FanD. FengC. WangQ. FangJ. Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis.ACS Appl. Mater. Interfaces20211318210762108610.1021/acsami.1c04953 33913684
    [Google Scholar]
  103. LeeY.K. ChoiJ.K. KangY.J. Triamcinolone–carbon nanotube conjugation inhibits inflammation of human arthritis synovial fibroblasts.J. Mater. Chem. B Mater. Biol. Med.2016491660167110.1039/C5TB01693B 32263018
    [Google Scholar]
  104. ManeS. ChatterjeeS. Trace level recognition of sulfasalazine electrooxidation exploiting the synergism of carbon nanotubes and iron oxide nanoparticles.ChemistrySelect20216328452846110.1002/slct.202101986
    [Google Scholar]
  105. SacchettiC. Liu-BryanR. MagriniA. RosatoN. BottiniN. BottiniM. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes.ACS Nano2014812122801229110.1021/nn504537b 25415768
    [Google Scholar]
  106. ZhaoJ. ZhangX. SunX. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis.Eur. J. Pharm. Biopharm.2018130394710.1016/j.ejpb.2018.06.020 29928978
    [Google Scholar]
  107. KimH.J. LeeS.M. ParkK.H. MunC.H. ParkY.B. YooK.H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis.Biomaterials2015619510210.1016/j.biomaterials.2015.05.018 26001074
    [Google Scholar]
  108. El-SharkawyR.G. TahaR.H. GhanemH.B. Immobilization of novel inorganic nano-complexes onto MWCNT nanomaterials as a novel adsorbent and anti-inflammatory therapy in an induced model of rheumatoid arthritis.Nanotechnology2020313030570630574410.1088/1361‑6528/ab851a 32235044
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878324613240805065651
Loading
/content/journals/raddf/10.2174/0126673878324613240805065651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test