Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Endophthalmitis, an inflammatory condition of the intraocular cavity, poses a significant challenge in ophthalmology due to its rapid progression and potential for vision loss. Conventional treatment modalities, such as systemic antibiotics or oral administration, often face limitations in achieving the required therapeutic levels at the target site. Hence, repeated intravitreal injections of antibiotics are currently the most preferred and recommended therapy for the management of endophthalmitis, which is an invasive technique and has certain shortcomings, elevated intraocular pressure, bleeding inside the eye, heightened likelihood of retinal detachment, retinal toxicity, and many more. Vancomycin is the first choice drug for the management of endophthalmitis and is given through intravitreal injection.

Aim

The work aims to design, develop, and evaluate Vancomycin-loaded NLCs incorporated into an gel offering a new non-invasive therapeutic option for the management of Endophthalmitis.

Methods

The Vancomycin-loaded NLCs were successfully produced through a double emulsion/solvent evaporation method employing a Box Behnken design. The optimized formulations were incorporated into an gel system by varying the concentration of Pluronic F127. The formulated gels were characterized for several parameters such as physical appearance, pH, viscosity, gelling strength, gelation temperature, release profile, and permeation study.

Results

The result revealed that the formulation had a smooth appearance with a pH range from 7 to 7.5, was near the physiological pH of the eye, had content in the range of 97.5 ± 1.0% to 99.2 ± 1.0% and gelation temperature near body temperature. The data of release study formulation (VISG2) revealed sustained drug release compared to the control gel. The data permeation study revealed that there was approximately a 3 folds increase in permeation of drug form (VISG2) compared to control gel (˂0.0001) and significant (2.02 folds) permeation compared to commercially available formulation (˂0.0001).

Conclusion

In conclusion, the Vancomycin-loaded NLCs incorporated gel may serve as a feasible alternative to invasive intravitreal injection for the management of endophthalmitis.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878339109250219072409
2025-02-21
2025-12-08
Loading full text...

Full text loading...

References

  1. DurandM.L. Endophthalmitis.Clin. Microbiol. Infect.201319322723410.1111/1469‑0691.1211823438028
    [Google Scholar]
  2. CalleganM. GilmoreM. GregoryM. Bacterial endophthalmitis: Therapeutic challenges and host–pathogen interactions.Prog. Retin. Eye Res.200726218920310.1016/j.preteyeres.2006.12.00117236804
    [Google Scholar]
  3. JounakiK. MakhmalzadehB.S. FeghhiM. HeidarianA. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management.Eur. J. Pharm. Sci.202116716710599110.1016/j.ejps.2021.10599134517103
    [Google Scholar]
  4. KodjikianL. RenaudF.N.R. RoquesC. In vitro influence of vancomycin on adhesion of a Staphylococcus epidermidis strain encoding intercellular adhesion locus ica to intraocular lenses.J. Cataract Refract. Surg.20053151050105810.1016/j.jcrs.2004.07.02615975477
    [Google Scholar]
  5. SouliM. KopsinisG. KavouklisE. GabrielL. GiamarellouH. Vancomycin levels in human aqueous humour after intravenous and subconjunctival administration.Int. J. Antimicrob. Agents200118323924310.1016/S0924‑8579(01)00375‑211673036
    [Google Scholar]
  6. RaoS. KupferY. PagalaM. ChapnickE. TesslerS. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection.Scand. J. Infect. Dis.201143538638810.3109/00365548.2010.54467121198337
    [Google Scholar]
  7. YousryC. ElkheshenS.A. El-laithyH.M. EssamT. FahmyR.H. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery.Eur. J. Pharm. Sci.201710010014215410.1016/j.ejps.2017.01.01328089661
    [Google Scholar]
  8. HachichaW. KodjikianL. FessiH. Preparation of Vancomycin microparticles: Importance of preparation parameters.Int. J. Pharm.2006324217618410.1016/j.ijpharm.2006.06.00516876347
    [Google Scholar]
  9. GaviniE. ChetoniP. CossuM. AlvarezM.G. SaettoneM.F. GiunchediP. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies.Eur. J. Pharm. Biopharm.200457220721210.1016/j.ejpb.2003.10.01815018976
    [Google Scholar]
  10. YousryC. FahmyR.H. EssamT. El-laithyH.M. ElkheshenS.A. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: A multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation.Drug Dev. Ind. Pharm.201642111752176210.3109/03639045.2016.117133527093938
    [Google Scholar]
  11. PlataniaC.B.M. Dei CasM. CiancioloS. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa.Drug Deliv.201926123724310.1080/10717544.2019.157493630883241
    [Google Scholar]
  12. BalguriS.P. AdelliG.R. MajumdarS. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues.Eur. J. Pharm. Biopharm.201610922423510.1016/j.ejpb.2016.10.01527793755
    [Google Scholar]
  13. AraújoJ. NikolicS. EgeaM.A. SoutoE.B. GarciaM.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye.Colloids Surf. B Biointerfaces201188115015710.1016/j.colsurfb.2011.06.02521764568
    [Google Scholar]
  14. EwiiU.E. OnugwuA.L. NwokporV.C. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems.Nano TransMed2024310004210.1016/j.ntm.2024.100042
    [Google Scholar]
  15. LakhaniP. PatilA. WuK.W. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery.Int. J. Pharm.201957211877110.1016/j.ijpharm.2019.11877131669555
    [Google Scholar]
  16. L Kiss E BerkóS GácsiA Design and optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use.Pharmaceutics2019111267910.3390/pharmaceutics1112067931847336
    [Google Scholar]
  17. SeyfoddinA. Al-KassasR. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir.Drug Dev. Ind. Pharm.201339450851910.3109/03639045.2012.66546022424312
    [Google Scholar]
  18. Varela-FernándezR. García-OteroX. Díaz-ToméV. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery.Eur. J. Pharm. Biopharm.202217214415610.1016/j.ejpb.2022.02.01035183717
    [Google Scholar]
  19. SwarnakarN.K. JainV. DubeyV. MishraD. JainN.K. Enhanced oromucosal delivery of progesterone via hexosomes.Pharm. Res.200724122223223010.1007/s11095‑007‑9409‑y17828445
    [Google Scholar]
  20. JithanA.V. MadhaviK. MadhaviM. PrabhakarK. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer.Int. J. Pharm. Investig.20111211912510.4103/2230‑973X.8243223071931
    [Google Scholar]
  21. ChaudharyS. GargT. RathG. MurthyR.R. GoyalA.K. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis.Artif. Cells Nanomed. Biotechnol.2016443937942[PMID: 25783855
    [Google Scholar]
  22. PermanaA.D. UtamiR.N. LayadiP. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis.Int. J. Pharm.202160212062310.1016/j.ijpharm.2021.12062333892058
    [Google Scholar]
  23. LiuR. SunL. FangS. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: Development, characterization, in vitro permeation and in vivo pharmacokinetic studies.Pharm. Dev. Technol.201621557658210.3109/10837450.2015.102660726024239
    [Google Scholar]
  24. GadadA.P. WadklarP.D. DandghiP. PatilA. Thermosensitive in situ gel for ocular delivery of lomefloxacin.Indian J Pharm Educ Res2016502S96S105
    [Google Scholar]
  25. HuZ. ShanJ. JinX. Nanoarchitectonics of in situ antibiotic-releasing acicular nanozymes for targeting and inducing cuproptosis-like death to eliminate drug-resistant bacteria.ACS Nano20241835243272434910.1021/acsnano.4c0656539169538
    [Google Scholar]
  26. SaxenaaP. KushwahaS.K.S. Temperature sensitive ophthalmic hydrogels of Levofloxacin hemihydrate with enhanced solubility and prolonged retention time.Int. J. Pharm. Pharm. Sci.20135Suppl. 3877883
    [Google Scholar]
  27. VarshosazJ. TabbakhianM. SalmaniZ. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin.Open Drug Deliv J200821617010.2174/1874126600802010061
    [Google Scholar]
  28. MakwanaS.B. PatelV.A. ParmarS.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.Results Pharma Sci.201661610.1016/j.rinphs.2015.06.00126949596
    [Google Scholar]
  29. TiwariA. GangwarN.K. PathakK. Fast-dissolving ocular films of riboflavin acetate conjugate for treatment of keratoconus in UVA-CXL procedure: Ex vivo permeation, hemolytic toxicity and apoptosis detection.Expert Opin. Drug Deliv.201411332534310.1517/17425247.2014.87302824386903
    [Google Scholar]
  30. El Sayeh F Abou El ElaA. Abbas IbrahimM. AlqahtaniY. AlmomenA. Sfouq AleanizyF. Fluconazole nanoparticles prepared by antisolvent precipitation technique: Physicochemical, in vitro, ex vivo and in vivo ocular evaluation.Saudi Pharm. J.202129657658510.1016/j.jsps.2021.04.01834194264
    [Google Scholar]
  31. AkbariJ.A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.202060102035
    [Google Scholar]
  32. MuraP. MaestrelliF. D’AmbrosioM. LuceriC. CirriM. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations.Pharmaceutics202113443710.3390/pharmaceutics1304043733804945
    [Google Scholar]
  33. AbdellatifM.M. AhmedS.M. El-NabarawiM.A. TeaimaM. Oral bioavailability enhancement of vancomycin hydrochloride with cationic nanocarrier (Leciplex): Optimization, in vitro , ex vivo, and in vivo studies.Sci. Pharm.202291111810.3390/scipharm91010001
    [Google Scholar]
  34. FerrariF. SorrentiM. RossiS. Vancomycin-triacetyl cyclodextrin interaction products for prolonged drug delivery.Pharm. Dev. Technol.2008131657310.1080/1083745070170301418300101
    [Google Scholar]
  35. MahboobianM.M. MohammadiM. MansouriZ. MohammadiM. MansouriZ. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir.J. Drug Deliv. Sci. Technol.20205510140010.1016/j.jddst.2019.101400
    [Google Scholar]
  36. AbelsonM.B. UdellI.J. WestonJ.H. Normal human tear pH by direct measurement.Arch. Ophthalmol.198199230110.1001/archopht.1981.039300103030177469869
    [Google Scholar]
  37. DaithankarA.V. ShiradkarM.R. Thermoreversibal anesthetic gel for periodontal intrapocket delivery of mepivacaine hydrochloride.Pharm. Lett.201243889896
    [Google Scholar]
  38. Üstündağ-OkurN. GökçeE.H. BozbıyıkD.İ. EğrilmezS. ÖzerÖ. ErtanG. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.Eur. J. Pharm. Sci.20146320421510.1016/j.ejps.2014.07.01325111119
    [Google Scholar]
  39. LupuA. RoscaI. GradinaruV.R. BerceaM. Temperature induced gelation and antimicrobial properties of pluronic F127 based systems.Polymers202315235510.3390/polym1502035536679236
    [Google Scholar]
  40. PradinesB. DjabourovM. VauthierC. LoiseauP.M. PonchelG. BouchemalK. Gelation and micellization behaviors of pluronic® F127 hydrogel containing poly(isobutylcyanoacrylate) nanoparticles specifically designed for mucosal application.Colloids Surf. B Biointerfaces201513566967610.1016/j.colsurfb.2015.08.02126340355
    [Google Scholar]
  41. BalanG.A. PrecupasA. MateiI. Gelation behaviour of pluronic f127/polysaccharide systems revealed via thioflavin T fluorescence.Gels202391293910.3390/gels912093938131925
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878339109250219072409
Loading
/content/journals/raddf/10.2174/0126673878339109250219072409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test