Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

The development of precise and reliable cancer treatments has been a long-standing goal in oncology. Conventional therapies often affect healthy tissues, leading to significant side effects. To overcome these challenges, researchers are exploring new methodologies that combine advanced drug delivery systems with state-of-the-art imaging technologies to target tumors more effectively. This study aims to investigate a novel approach that integrates smart drug delivery systems with real-time imaging modalities. The goal is to enhance the targeted delivery of therapeutic agents to cancer cells, minimizing damage to healthy tissues while improving the overall efficacy of cancer treatments. Smart drug delivery systems are designed to transport medications directly to tumor sites, enhancing treatment precision. When combined with real-time imaging tools such as MRI, CT, PET, and molecular imaging, these systems offer real-time data on the tumor’s location, size, and response to treatment. This allows for immediate adjustments in therapy, ensuring optimal drug delivery and reducing side effects. However, the implementation of this approach also faces challenges, including the need for stringent safety protocols and adherence to regulatory standards. The integration of advanced drug delivery systems with cutting-edge imaging technologies presents a promising approach to cancer therapy. By enabling more precise treatment targeting and reducing adverse effects, this strategy has the potential to significantly improve patient outcomes in the fight against cancer.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878332787241210102302
2024-12-30
2025-10-30
Loading full text...

Full text loading...

References

  1. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery — From magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  2. SajjaH. EastM. MaoH. WangY. NieS. YangL. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect.Curr. Drug Discov. Technol.200961435110.2174/15701630978758106619275541
    [Google Scholar]
  3. FarokhzadO.C. LangerR. Developing smarter therapeutic and diagnostic modalities.Adv. Drug Deliv. Rev.200658141456145910.1016/j.addr.2006.09.011
    [Google Scholar]
  4. FilipponiL. NicolauD.V. Cell Patterning Wiley Encyclopedia of Biomedical Engineering.John Wiley & Sons2006
    [Google Scholar]
  5. LombardoD. KiselevM.A. CaccamoM.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomater.2019201912610.1155/2019/3702518
    [Google Scholar]
  6. KatsukiS. MatobaT. KogaJ. NakanoK. EgashiraK. Anti-inflammatory nanomedicine for cardiovascular disease.Front. Cardiovasc. Med.20174878710.3389/fcvm.2017.0008729312961
    [Google Scholar]
  7. MorganM.T. CarnahanM.A. FinkelsteinS. Dendritic supramolecular assemblies for drug delivery.Chem. Commun. (Camb.)200597344309431110.1039/b502411k16113731
    [Google Scholar]
  8. TiriveedhiV. KitchensK.M. NevelsK.J. GhandehariH. ButkoP. Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes.Biochim. Biophys. Acta Biomembr.20111808120921810.1016/j.bbamem.2010.08.01720828535
    [Google Scholar]
  9. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules2209140128832535
    [Google Scholar]
  10. Kukowska-LatalloJ.F. BielinskaA.U. JohnsonJ. SpindlerR. TomaliaD.A. BakerJ.R.Jr Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers.Proc. Natl. Acad. Sci. USA199693104897490210.1073/pnas.93.10.48978643500
    [Google Scholar]
  11. SvensonS. TomaliaD. Dendrimers in biomedical applications—Reflections on the field.Adv. Drug Deliv. Rev.200557152106212910.1016/j.addr.2005.09.01816305813
    [Google Scholar]
  12. NuneS.K. GundaP. ThallapallyP.K. LinY.Y. Laird ForrestM. BerklandC.J. Nanoparticles for biomedical imaging.Expert Opin. Drug Deliv.20096111175119410.1517/1742524090322903119743894
    [Google Scholar]
  13. Shi KamN.W. JessopT.C. WenderP.A. DaiH. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells.J. Am. Chem. Soc.2004126226850685110.1021/ja048605915174838
    [Google Scholar]
  14. PantarottoD. BriandJ.P. PratoM. BiancoA. Translocation of bioactive peptides across cell membranes by carbon nanotubes.Chem. Commun. (Camb.)200471161710.1039/b311254c14737310
    [Google Scholar]
  15. DaiH. HafnerJ.H. RinzlerA.G. ColbertD.T. SmalleyR.E. Nanotubes as nanoprobes in scanning probe microscopy.Nature1996384660514715010.1038/384147a0
    [Google Scholar]
  16. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.00820965219
    [Google Scholar]
  17. MulderW.J.M. StrijkersG.J. van TilborgG.A.F. CormodeD.P. FayadZ.A. NicolayK. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.Acc. Chem. Res.200942790491410.1021/ar800223c19435319
    [Google Scholar]
  18. ProbstC.E. ZrazhevskiyP. BagalkotV. GaoX. Quantum dots as a platform for nanoparticle drug delivery vehicle design.Adv. Drug Deliv. Rev.201365570371810.1016/j.addr.2012.09.03623000745
    [Google Scholar]
  19. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  20. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  21. KleinstreuerC. ChildressE. KennedyA. Targeted drug delivery: Multifunctional nanoparticles and direct micro-drug delivery to tumors.In: Becker SM, Kuznetsov AV, Eds Transport in Biological Media.BostonElsevier201339141610.1016/B978‑0‑12‑415824‑5.00010‑2
    [Google Scholar]
  22. FassL. Imaging and cancer: A review.Mol. Oncol.20082211515210.1016/j.molonc.2008.04.00119383333
    [Google Scholar]
  23. KoJ.P. BrandmanS. StemberJ. NaidichD.P. Dual-energy computed tomography: Concepts, performance, and thoracic applications.J. Thorac. Imaging201227172210.1097/RTI.0b013e31823fe0e922189245
    [Google Scholar]
  24. RatnerB.D. BryantS.J. Biomaterials: Where we have been and where we are going.Annu. Rev. Biomed. Eng.200461417510.1146/annurev.bioeng.6.040803.14002715255762
    [Google Scholar]
  25. Sakiyama-ElbertS.E. HubbellJ.A. Functional biomaterials: Design of novel biomaterials.Annu. Rev. Mater. Res.200131118320110.1146/annurev.matsci.31.1.183
    [Google Scholar]
  26. WicklineS.A. LanzaG.M. Nanotechnology for molecular imaging and targeted therapy.Circulation200310781092109510.1161/01.CIR.0000059651.17045.7712615782
    [Google Scholar]
  27. LanoneS. BoczkowskiJ. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms.Curr. Mol. Med.20066665166310.2174/15665240677819502617022735
    [Google Scholar]
  28. LooC. LinA. HirschL. Nanoshell-enabled photonics-based imaging and therapy of cancer.Technol. Cancer Res. Treat.200431334010.1177/15330346040030010414750891
    [Google Scholar]
  29. ChoiM.R. Stanton-MaxeyK.J. StanleyJ.K. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors.Nano Lett.20077123759376510.1021/nl072209h17979310
    [Google Scholar]
  30. AbbasiA. ParkK. BoseA. BothunG.D. Near-infrared responsive Gold–Layersome nanoshells.Langmuir201733215321532710.1021/acs.langmuir.7b0127328486807
    [Google Scholar]
  31. HelmL. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications.Future Med. Chem.20102338539610.4155/fmc.09.17421426173
    [Google Scholar]
  32. Vo-DinhT. CullumB. Biosensors and biochips: Advances in biological and medical diagnostics.Fresenius J. Anal. Chem.20003666-754055110.1007/s00216005154911225766
    [Google Scholar]
  33. SilvaG.A. Neuroscience nanotechnology: Progress, opportunities and challenges.Nat. Rev. Neurosci.200671657410.1038/nrn182716371951
    [Google Scholar]
  34. YanZ. BinY. DengY.H. Take the initiative to drug-loaded liposomes prepared by vincristine sulfate and the determination of encapsulation efficiency.Chung Kuo Yao Hsueh Tsa Chih2005101559
    [Google Scholar]
  35. OchekpeN.A. OlorunfemiP.O. NgwulukaN.C. Nanotechnology and drug delivery part 1: Background and applications.Trop. J. Pharm. Res.20098326527410.4314/tjpr.v8i3.44546
    [Google Scholar]
  36. ZalipskyS. Polyethylene glycol-lipid conjugates.In: Stealth Liposomes.Boca RatonCRC Press199593102
    [Google Scholar]
  37. JainN. JainR. ThakurN. GuptaB.P. JainD.K. Nanotechnology: A safe and effective drug delivery system.Asian J. Pharm. Clin. Res.20103159165
    [Google Scholar]
  38. KakadeT. KadamV. DhanavadeK. SalunkheV. A review on pharmaceutical nanotechnology: Dendrimers.World J. Pharm. Pharm. Sci.2013248154830
    [Google Scholar]
  39. TibbalsH.F. Medical Nanotechnology and Nanomedicine.CRC Press2011
    [Google Scholar]
  40. LuoS. ZhangE. SuY. ChengT. ShiC. A review of NIR dyes in cancer targeting and imaging.Biomaterials201132297127713810.1016/j.biomaterials.2011.06.02421724249
    [Google Scholar]
  41. JiangS. GnanasammandhanM.K. ZhangY. Optical imaging-guided cancer therapy with fluorescent nanoparticles.J. R. Soc. Interface201074231810.1098/rsif.2009.024319759055
    [Google Scholar]
  42. NicholsJ.W. BaeY.H. Odyssey of a cancer nanoparticle: From injection site to site of action.Nano Today20127660661810.1016/j.nantod.2012.10.01023243460
    [Google Scholar]
  43. YaoY. ZhouY. LiuL. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  44. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  45. MaedaH. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting.Adv. Enzyme Regul.200141118920710.1016/S0065‑2571(00)00013‑311384745
    [Google Scholar]
  46. MaedaH. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects.Bioconjug. Chem.201021579780210.1021/bc100070g20397686
    [Google Scholar]
  47. ChoK. WangX. NieS. ChenZ.G. ShinD.M. Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res.20081451310131610.1158/1078‑0432.CCR‑07‑144118316549
    [Google Scholar]
  48. BlancoE. HsiaoA. MannA.P. LandryM.G. Meric-BernstamF. FerrariM. Nanomedicine in cancer therapy: Innovative trends and prospects.Cancer Sci.201110271247125210.1111/j.1349‑7006.2011.01941.x21447010
    [Google Scholar]
  49. NieS. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine (Lond.)20105452352810.2217/nnm.10.2320528447
    [Google Scholar]
  50. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  51. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  52. XiaoZ. Levy-NissenbaumE. AlexisF. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection.ACS Nano20126169670410.1021/nn204165v22214176
    [Google Scholar]
  53. AttieA.D. RainesR.T. Analysis of receptor-ligand interactions.J. Chem. Educ.199572211912410.1021/ed072p11928736457
    [Google Scholar]
  54. KatebB ChiuK BlackKL YamamotoV KhalsaB LjubimovaJY Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?Neuroimage 201154Suppl 1(Suppl 1):S1062410.1016/j.neuroimage.2010.01.105
    [Google Scholar]
  55. YooJ.W. DoshiN. MitragotriS. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery.Adv. Drug Deliv. Rev.20116314-151247125610.1016/j.addr.2011.05.00421605607
    [Google Scholar]
  56. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑65859039
    [Google Scholar]
  57. RaoZ. InoueM. MatsudaM. TaguchiT. Quick self-healing and thermo-reversible liposome gel.Colloids Surf. B Biointerfaces201182119620210.1016/j.colsurfb.2010.08.03820855187
    [Google Scholar]
  58. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.00419837467
    [Google Scholar]
  59. RawatM. SinghD. SarafS. SarafS. Nanocarriers: Promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.179016946487
    [Google Scholar]
  60. YangF. JinC. JiangY. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside.Cancer Treat. Rev.201137863364210.1016/j.ctrv.2011.01.00621330062
    [Google Scholar]
  61. GouwL.G. JonesK.B. SharmaS. RandallR.L. Sarcoma immunotherapy.Cancers (Basel)2011344139415010.3390/cancers304413924213130
    [Google Scholar]
  62. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.02619409468
    [Google Scholar]
  63. FinnO.J. Cancer immunology.N. Engl. J. Med.2008358252704271510.1056/NEJMra07273918565863
    [Google Scholar]
  64. MedeirosS.F. SantosA.M. FessiH. ElaissariA. Stimuli-responsive magnetic particles for biomedical applications.Int. J. Pharm.20114031-213916110.1016/j.ijpharm.2010.10.01120951779
    [Google Scholar]
  65. HoareT.R. KohaneD.S. Hydrogels in drug delivery: Progress and challenges.Polymer (Guildf.)20084981993200710.1016/j.polymer.2008.01.027
    [Google Scholar]
  66. PatilY.B. TotiU.S. KhdairA. MaL. PanyamJ. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery.Biomaterials200930585986610.1016/j.biomaterials.2008.09.05619019427
    [Google Scholar]
  67. BaoG. MitragotriS. TongS. Multifunctional nanoparticles for drug delivery and molecular imaging.Annu. Rev. Biomed. Eng.201315125328210.1146/annurev‑bioeng‑071812‑15240923642243
    [Google Scholar]
  68. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  69. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  70. SavlaR. TarantulaO. GarbuzenkoO. MinkoT. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer.J. Control. Release20111531162210.1016/j.jconrel.2011.02.015
    [Google Scholar]
  71. YangF. JinC. YangD. JiangY. LiJ. DiY. Magnetic functionalized carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment.Eur. J. Cancer2011471218731882
    [Google Scholar]
  72. PankhurstQ.A. ConnollyJ. JonesS.K. DobsonJ. Applications of magnetic nanoparticles in biomedicine.J. Phys. D Appl. Phys.20033613R167R18110.1088/0022‑3727/36/13/201
    [Google Scholar]
  73. FrangioniJ.V. New technologies for human cancer imaging.J. Clin. Oncol.200826244012402110.1200/JCO.2007.14.306518711192
    [Google Scholar]
  74. MikhailA.S. PartanenA. YarmolenkoP. VenkatesanA.M. WoodB.J. Magnetic resonance-guided drug delivery.Magn. Reson. Imaging Clin. N. Am.201523464365510.1016/j.mric.2015.05.01226499281
    [Google Scholar]
  75. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.96131537986
    [Google Scholar]
  76. CreggP.J. MurphyK. MardinogluA. Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting.Appl. Math. Model.201236113410.1016/j.apm.2011.05.036
    [Google Scholar]
  77. FadeelB. Garcia-BennettA.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications.Adv. Drug Deliv. Rev.201062336237410.1016/j.addr.2009.11.00819900497
    [Google Scholar]
  78. ChomouckaJ. DrbohlavovaJ. HuskaD. AdamV. KizekR. HubalekJ. Magnetic nanoparticles and targeted drug delivering.Pharmacol. Res.201062214414910.1016/j.phrs.2010.01.01420149874
    [Google Scholar]
  79. DilnawazF. SinghA. MohantyC. SahooS.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.Biomaterials201031133694370610.1016/j.biomaterials.2010.01.05720144478
    [Google Scholar]
  80. KennedyA. ColdwellD. SangroB. WasanH. SalemR. Radioembolization for the treatment of liver tumors general principles.Am. J. Clin. Oncol.2012351919910.1097/COC.0b013e3181f4758322363944
    [Google Scholar]
  81. KleinstreuerC. ShiH. ZhangZ. Computational analyses of a pressurized metered dose inhaler and a new drug-aerosol targeting methodology.J. Aerosol Med.200720329430910.1089/jam.2006.0617
    [Google Scholar]
  82. MurarM. AlbertazziL. PujalsS. Advanced optical imaging-guided nanotheranostics towards personalized cancer drug delivery.Nanomaterials (Basel)202212339910.3390/nano1203039935159744
    [Google Scholar]
  83. DennahyI.S. HanZ. MacCuaigW.M. Nanotheranostics for image-guided cancer treatment.Pharmaceutics202214591710.3390/pharmaceutics1405091735631503
    [Google Scholar]
  84. CuaronJ.J. HirschJ.A. MedichD.C. RosensteinB.S. MartelC.B. HirschA.E. A proposed methodology to select radioisotopes for use in radionuclide therapy.AJNR Am. J. Neuroradiol.200930101824182910.3174/ajnr.A177319661172
    [Google Scholar]
  85. RauscherA. FrindelM. RajerisonH. Improvement of the targeting of radiolabeled and functionalized liposomes with a two-step system using a bispecific monoclonal antibody (Anti-CEA × Anti-DTPA–In).Front. Med. (Lausanne)201528310.3389/fmed.2015.0008326636087
    [Google Scholar]
  86. PetersenA.L. BinderupT. RasmussenP. 64Cu loaded liposomes as positron emission tomography imaging agents.Biomaterials20113292334234110.1016/j.biomaterials.2010.11.05921216003
    [Google Scholar]
  87. EngudarG. Schaarup-JensenH. FliednerF.P. Remote loading of liposomes with a 124 I-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model.Theranostics20188215828584110.7150/thno.2670630613265
    [Google Scholar]
  88. LeeH. ShieldsA.F. SiegelB.A. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer.Clin. Cancer Res.201723154190420210.1158/1078‑0432.CCR‑16‑319328298546
    [Google Scholar]
  89. PrattE.C. ShafferT.M. GrimmJ. Nanoparticles and radiotracers: Advances toward radionanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168687289010.1002/wnan.140227006133
    [Google Scholar]
  90. WallM.A. ShafferT.M. HarmsenS. Chelator-free radiolabeling of SERRS nanoparticles for whole-body PET and intraoperative raman imaging.Theranostics20177123068307710.7150/thno.1801928839464
    [Google Scholar]
  91. ShiS. XuC. YangK. Chelator‐free radiolabeling of nanographene: Breaking the stereotype of chelation.Angew. Chem. Int. Ed.201756112889289210.1002/anie.20161064928170126
    [Google Scholar]
  92. LeeH. ZhengJ. GaddyD. A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography.Nanomedicine 201511115516510.1016/j.nano.2014.08.01125200610
    [Google Scholar]
  93. TangT. WeiY. YangQ. YangY. SailorM.J. PangH.B. Rapid chelator-free radiolabeling of quantum dots for in vivo imaging.Nanoscale20191146222482225410.1039/C9NR08508D31746913
    [Google Scholar]
  94. MillerK. CortesJ. HurvitzS.A. HERMIONE: A randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/ metastatic breast cancer.BMC Cancer201616135210.1186/s12885‑016‑2385‑z27259714
    [Google Scholar]
  95. TweedleM.F. WedekingP. KumarK. Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats.Invest. Radiol.199530637238010.1097/00004424‑199506000‑000087490190
    [Google Scholar]
  96. KhalighinejadP. ParrottD. SherryA.D. Imaging tissue physiology in vivo by use of metal ion-responsive MRI contrast agents.Pharmaceuticals (Basel)2020131026810.3390/ph1310026832987721
    [Google Scholar]
  97. VerryC. DufortS. VillaJ. Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial).Radiother. Oncol.202116015916510.1016/j.radonc.2021.04.02133961915
    [Google Scholar]
  98. LuxF. TranV.L. ThomasE. AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine.Br. J. Radiol.201992109320180365[PMID: 30226413
    [Google Scholar]
  99. SanceyL. LuxF. KotbS. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy.Br. J. Radiol.20148710412014013410.1259/bjr.2014013424990037
    [Google Scholar]
  100. ChenH. QiuY. DingD. LinH. SunW. WangG.D. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy.Adv. Mater.2018e180274810.1002/adma.201802748
    [Google Scholar]
  101. GuanM. ZhouY. LiuS. Photo-triggered gadofullerene: Enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses.Biomaterials201921311921810.1016/j.biomaterials.2019.05.02931136911
    [Google Scholar]
  102. LuZ. JiaW. DengR. Light-assisted gadofullerene nanoparticles disrupt tumor vasculatures for potent melanoma treatment.J. Mater. Chem. B Mater. Biol. Med.20208122508251810.1039/C9TB02752A32124888
    [Google Scholar]
  103. HanZ. WuX. RoelleS. ChenC. SchiemannW.P. LuZ.R. Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer.Nat. Commun.20178169210.1038/s41467‑017‑00741‑y28947734
    [Google Scholar]
  104. QinS. CaskeyC.F. FerraraK.W. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.Phys. Med. Biol.2009546R27R5710.1088/0031‑9155/54/6/R0119229096
    [Google Scholar]
  105. ZhouL.Q. LiP. CuiX.W. DietrichC.F. Ultrasound nanotheranostics in fighting cancer: Advances and prospects.Cancer Lett.202047020421910.1016/j.canlet.2019.11.03431790760
    [Google Scholar]
  106. YuanY. ZhangJ. QiX. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy.Nat. Mater.201918121376138310.1038/s41563‑019‑0503‑431636420
    [Google Scholar]
  107. BawiecC.R. RosnitskiyP.B. PeekA.T. Inertial cavitation behaviors induced by nonlinear focused ultrasound pulses.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20216892884289510.1109/TUFFC.2021.307334733861702
    [Google Scholar]
  108. ChowdhuryS.M. Abou-ElkacemL. LeeT. DahlJ. LutzA.M. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook.J. Control. Release20203267590
    [Google Scholar]
  109. HyvelinJ.M. GaudE. CostaM. HelbertA. BussatP. BettingerT. Characteristics and echogenicity of clinical ultrasound contrast agents: An in vitro and in vivo comparison study.J. Ultrasound Med.2017365941953
    [Google Scholar]
  110. LeeJ. MinH.S. YouD.G. KimK. KwonI.C. RhimT. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma.J. Control. Release201622319720610.1016/j.jconrel.2015.12.051
    [Google Scholar]
  111. ZhangX. Ong’achwa MachukiJ. PanW. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy.ACS Nano20201444045406010.1021/acsnano.9b0873732255341
    [Google Scholar]
  112. PanX. WangW. HuangZ. MOF‐derived double‐layer hollow nanoparticles with oxygen generation ability for multimodal imaging‐guided sonodynamic therapy.Angew. Chem. Int. Ed.20205932135571356110.1002/anie.20200489432374941
    [Google Scholar]
  113. GaoS. WangG. QinZ. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.Biomaterials201711232433510.1016/j.biomaterials.2016.10.03027776285
    [Google Scholar]
  114. WangP. TangQ. ZhangL. Ultrasmall barium titanate nanoparticles for highly efficient hypoxic tumor therapy via ultrasound triggered piezocatalysis and water splitting.ACS Nano2021157113261134010.1021/acsnano.1c0061634180675
    [Google Scholar]
  115. SamykuttyA. GrizzleW.E. FoutsB.L. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle.Biomaterials201818211412610.1016/j.biomaterials.2018.08.00130118979
    [Google Scholar]
  116. MacCuaigW.M. FoutsB.L. McNallyM.W. Active targeting significantly outperforms nanoparticle size in facilitating tumor-specific uptake in orthotopic pancreatic cancer.ACS Appl. Mater. Interfaces20211342496144963010.1021/acsami.1c0937934653338
    [Google Scholar]
  117. ThomasA ChibaA SamykuttyA McNallyMW McNallyLR Tumor-specific cargo release in ex vivo patient samples and murine models of triple-negative breast cancer by a pH-targeted nanoparticle.Cancer Res 202080064
    [Google Scholar]
  118. SerriC. QuagliarielloV. IaffaioliR.V. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study.J. Cell. Physiol.201923444959496910.1002/jcp.2729730334571
    [Google Scholar]
  119. HickeB.J. StephensA.W. GouldT. Tumor targeting by an aptamer.J. Nucl. Med.2006474668678[PMID: 16595502
    [Google Scholar]
  120. LundinK.E. GissbergO. SmithC.I.E. Oligonucleotide therapies: The past and the present.Hum. Gene Ther.201526847548510.1089/hum.2015.07026160334
    [Google Scholar]
  121. HermannT. PatelD.J. Adaptive recognition by nucleic acid aptamers.Science2000287545482082510.1126/science.287.5454.82010657289
    [Google Scholar]
  122. NimjeeS.M. RusconiC.P. SullengerB.A. Aptamers: An emerging class of therapeutics.Annu. Rev. Med.200556155558310.1146/annurev.med.56.062904.14491515660527
    [Google Scholar]
  123. SunH. ZuY. Aptamers and their applications in nanomedicine.Small201511202352236410.1002/smll.20140307325677591
    [Google Scholar]
  124. SunH. ZhuX. LuP.Y. RosatoR.R. TanW. ZuY. Oligonucleotide aptamers: New tools for targeted cancer therapy.Mol. Ther. Nucleic Acids201438e18210.1038/mtna.2014.3225093706
    [Google Scholar]
  125. MayerG. The chemical biology of aptamers.Angew. Chem. Int. Ed.200948152672268910.1002/anie.20080464319319884
    [Google Scholar]
  126. LadjuR.B. PascutD. MassiM.N. TiribelliC. SukowatiC.H.C. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma.Oncotarget2018922951296110.18632/oncotarget.2335929416827
    [Google Scholar]
  127. KeefeA.D. PaiS. EllingtonA. Aptamers as therapeutics.Nat. Rev. Drug Discov.20109753755010.1038/nrd314120592747
    [Google Scholar]
  128. BeckerK.C. BeckerR.C. Nucleic acid aptamers as adjuncts to vaccine development.Curr. Opin. Mol. Ther.200682122129[PMID: 16610764
    [Google Scholar]
  129. BerezhnoyA. CastroI. LevayA. MalekT.R. GilboaE. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity.J. Clin. Invest.2014124118819710.1172/JCI6985624292708
    [Google Scholar]
  130. FarrowM.A. SchimmelP. Editing by a tRNA synthetase: DNA aptamer-induced translocation and hydrolysis of a misactivated amino acid.Biochemistry200140144478448310.1021/bi002405211284704
    [Google Scholar]
  131. HaleS.P. SchimmelP. Protein synthesis editing by a DNA aptamer.Proc. Natl. Acad. Sci. USA19969372755275810.1073/pnas.93.7.27558610114
    [Google Scholar]
  132. a Romero-LópezC. Berzal-HerranzA. Aptamers: Biomedical interest and applications.Pharmaceuticals (Basel)20171013210.3390/ph1001003228300769
    [Google Scholar]
  133. b ShigdarS. MacdonaldJ. O’ConnorM. Aptamers as theranostic agents: Modifications, serum stability and functionalisation.Sensors (Basel)20131310136241363710.3390/s13101362424152925
    [Google Scholar]
  134. NgE.W.M. ShimaD.T. CaliasP. CunninghamE.T.Jr GuyerD.R. AdamisA.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease.Nat. Rev. Drug Discov.20065212313210.1038/nrd195516518379
    [Google Scholar]
  135. FribergT.R. TolentinoM. WeberP. PatelS. CampbellS. GoldbaumM. Pegaptanib sodium as maintenance therapy in neovascular age-related macular degeneration: The LEVEL study.Br. J. Ophthalmol.201094121611161710.1136/bjo.2009.17494620472746
    [Google Scholar]
  136. IresonC.R. KellandL.R. Discovery and development of anticancer aptamers.Mol. Cancer Ther.20065122957296210.1158/1535‑7163.MCT‑06‑017217172400
    [Google Scholar]
  137. ZhuJ. HuangH. DongS. GeL. ZhangY. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges.Theranostics20144993194410.7150/thno.966325057317
    [Google Scholar]
  138. CatuognoS. EspositoC.L. de FranciscisV. Developing aptamers by cell-based SELEX.Methods Mol. Biol.20161380334610.1007/978‑1‑4939‑3197‑2_326552814
    [Google Scholar]
  139. XiangD. ZhengC. ZhouS.F. Superior performance of aptamer in tumor penetration over antibody: Implication of aptamer-based theranostics in solid tumors.Theranostics20155101083109710.7150/thno.1171126199647
    [Google Scholar]
  140. SunH. TanW. ZuY. Aptamers: Versatile molecular recognition probes for cancer detection.Analyst (Lond.)2016141240341510.1039/C5AN01995H26618445
    [Google Scholar]
  141. GermerK. LeonardM. ZhangX. RNA aptamers and their therapeutic and diagnostic applications.Int. J. Biochem. Mol. Biol.2013412740[PMID: 23638319
    [Google Scholar]
  142. TuerkC. GoldL. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science1990249496850551010.1126/science.22001212200121
    [Google Scholar]
  143. EllingtonA.D. SzostakJ.W. In vitro selection of RNA molecules that bind specific ligands.Nature1990346628781882210.1038/346818a01697402
    [Google Scholar]
  144. StoltenburgR. ReinemannC. StrehlitzB. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands.Biomol. Eng.200724438140310.1016/j.bioeng.2007.06.00117627883
    [Google Scholar]
  145. OzerA. PaganoJ.M. LisJ.T. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization.Mol. Ther. Nucleic Acids201438e18310.1038/mtna.2014.3425093707
    [Google Scholar]
  146. FarokhzadO.C. KarpJ.M. LangerR. Nanoparticle–aptamer bioconjugates for cancer targeting.Expert Opin. Drug Deliv.20063331132410.1517/17425247.3.3.31116640493
    [Google Scholar]
  147. FarokhzadO.C. ChengJ. TeplyB.A. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo .Proc. Natl. Acad. Sci. USA2006103166315632010.1073/pnas.060175510316606824
    [Google Scholar]
  148. BhattacharyaS.D. MiZ. KimV.M. GuoH. TalbotL.J. KuoP.C. Osteopontin regulates epithelial mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model.Ann. Surg.2012255231932510.1097/SLA.0b013e31823e3a1c22241292
    [Google Scholar]
  149. MiZ. GuoH. RussellM.B. LiuY. SullengerB.A. KuoP.C. RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells.Mol. Ther.200917115316110.1038/mt.2008.23518985031
    [Google Scholar]
  150. TrinhT.L. ZhuG. XiaoX. A synthetic aptamer-drug adduct for targeted liver cancer therapy.PLoS One20151011e013667310.1371/journal.pone.013667326523833
    [Google Scholar]
  151. MengL YangL ZhaoX Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer.PloS One 2012703343410.1371/journal.pone.0033434
    [Google Scholar]
  152. ScaggianteB. FarraR. DapasB. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects.Int. J. Pharm.20165061-226827910.1016/j.ijpharm.2016.04.03127094354
    [Google Scholar]
  153. WeigumS. McIvorE. MunozC. Targeted therapy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles.J. Nanopart. Res.2016181134110.1007/s11051‑016‑3633‑5
    [Google Scholar]
  154. ChenK. LiuB. YuB. Advances in the development of aptamer drug conjugates for targeted drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201793e143810.1002/wnan.143827800663
    [Google Scholar]
  155. LiaoJ. LiuB. LiuJ. ZhangJ. ChenK. LiuH. Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery.Expert Opin. Drug Deliv.201512349350610.1517/17425247.2015.96668125430795
    [Google Scholar]
  156. CharoenpholP. BermudezH. Aptamer-targeted DNA nanostructures for therapeutic delivery.Mol. Pharm.20141151721172510.1021/mp500047b24739136
    [Google Scholar]
  157. SriramojuB. KanwarR. VeeduR. KanwarJ. Aptamer-targeted oligonucleotide theranostics: A smarter approach for brain delivery and the treatment of neurological diseases.Curr. Top. Med. Chem.201515121115112410.2174/156802661566615041315392825866271
    [Google Scholar]
  158. XiangD. ShigdarS. QiaoG. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine.Theranostics201551234210.7150/thno.1020225553096
    [Google Scholar]
  159. ZhaoF. ZhouJ. SuX. A Smart responsive dual aptamers-targeted bubble-generating nanosystem for cancer triplex therapy and ultrasound imaging.Small20171320160399010.1002/smll.20160399028371376
    [Google Scholar]
  160. AliakbarinodehiN. JollyP. BhallaN. Aptamer-based field-effect biosensor for tenofovir detection.Sci. Rep.2017714440910.1038/srep4440928294122
    [Google Scholar]
  161. HouY. LiuJ. HongM. A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique.Biosens. Bioelectron.20179225926510.1016/j.bios.2017.02.02428231553
    [Google Scholar]
  162. OzalpV. KavrukM. DilekO. BayracA. Aptamers: Molecular tools for medical diagnosis.Curr. Top. Med. Chem.201515121125113710.2174/156802661566615041315423325866272
    [Google Scholar]
  163. WangT. ChenL. ChikkannaA. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis.Theranostics202111115174519610.7150/thno.5647133859741
    [Google Scholar]
  164. ZhouB. WangB. Pegaptanib for the treatment of age-related macular degeneration.Exp. Eye Res.200683361561910.1016/j.exer.2006.02.01016678158
    [Google Scholar]
  165. LaoY.H. PhuaK.K.L. LeongK.W. Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation.ACS Nano2015932235225410.1021/nn507494p25731717
    [Google Scholar]
  166. RosenbergJ.E. BamburyR.M. Van AllenE.M. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma.Invest. New Drugs201432117818710.1007/s10637‑013‑0045‑624242861
    [Google Scholar]
  167. LuB. WangJ. ZhangJ. Screening and verification of ssDNA aptamers targeting human hepatocellular carcinoma.Acta Biochim. Biophys. Sin. (Shanghai)201446212813510.1093/abbs/gmt13024300391
    [Google Scholar]
  168. LeeK.A. AhnJ.Y. LeeS.H. Aptamer-based sandwich assay and its clinical outlooks for detecting lipocalin-2 in Hepatocellular Carcinoma (HCC).Sci. Rep.2015511089710.1038/srep1089726039737
    [Google Scholar]
  169. WangF.B. RongY. FangM. Recognition and capture of metastatic hepatocellular carcinoma cells using aptamer-conjugated quantum dots and magnetic particles.Biomaterials201334153816382710.1016/j.biomaterials.2013.02.01823465488
    [Google Scholar]
  170. WangS. ZhangC. WangG. Aptamer-mediated transparent-biocompatible nanostructured surfaces for hepotocellular circulating tumor cells enrichment.Theranostics20166111877188610.7150/thno.15284
    [Google Scholar]
  171. HoH. AruriJ. KapadiaR. MehrH. WhiteM.A. GanesanA.K. RhoJ regulates melanoma chemoresistance by suppressing pathways that sense DNA damage.Cancer Res.201272215516552810.1158/0008‑5472.CAN‑12‑077522971344
    [Google Scholar]
  172. KangM. RenM. LiY. FuY. DengM. LiC. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA.J. Exp. Clin. Cancer Res.201837117110.1186/s13046‑018‑0845‑930049286
    [Google Scholar]
  173. TagneJ.B. KakumanuS. NicolosiR.J. Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model.Mol. Pharm.2008561055106310.1021/mp800055619434855
    [Google Scholar]
  174. MirsalariH. MalekiA. RaissiH. SoltanabadiA. Investigation of the pristine and functionalized carbon nanotubes as a delivery system for the anticancer drug dacarbazine: Drug encapsulation.J. Pharm. Sci.202111052005201610.1016/j.xphs.2020.10.06233186581
    [Google Scholar]
  175. Iturrioz-RodríguezN. Correa-DuarteM.A. FanarragaM.L. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles.Int. J. Nanomedicine2019143389340110.2147/IJN.S19884831190798
    [Google Scholar]
  176. TangF. LiL. ChenD. Mesoporous silica nanoparticles: synthesis, biocompatibility, and drug delivery.Adv. Mater.201224121504153410.1002/adma.201104763
    [Google Scholar]
  177. XuJ. LiuN. WuD. GaoZ. SongY.Y. SchmukiP. Upconversion nanoparticle-assisted payload delivery from TiO (2) under near-infrared light irradiation for bacterial inactivation.ACS Nano202014133734610.1021/acsnano.9b0538631841305
    [Google Scholar]
  178. ChengL. WangC. FengL. YangK. LiuZ. Functional nanomaterials for phototherapies of cancer.Chem. Rev.201411421108691093910.1021/cr400532z25260098
    [Google Scholar]
  179. ChenB. LiC. ZhangJ. Sensing and imaging of mitochondrial viscosity in living cells using a red fluorescent probe with a long lifetime.Chem. Commun. (Camb.)201955517410741310.1039/C9CC03977E31180411
    [Google Scholar]
  180. ZhangC. XieH. ZhanT. A new mitochondrion targetable fluorescent probe for carbon monoxide-specific detection and live cell imaging.Chem. Commun. (Camb.)201955649444944710.1039/C9CC03909K31287465
    [Google Scholar]
  181. SzwargulskiP. WilmesM. JavidiE. Monitoring intracranial cerebral hemorrhage using multi-contrast real-time magnetic particle imaging.ACS Nano20201410139131392310.1021/acsnano.0c0632632941000
    [Google Scholar]
  182. WangJ. WangZ. ZhongY. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy.Biomaterials202022911957610.1016/j.biomaterials.2019.11957631704467
    [Google Scholar]
  183. WahsnerJ. GaleE.M. Rodríguez-RodríguezA. CaravanP. Chemistry of MRI contrast agents: Current challenges and new frontiers.Chem. Rev.20191192957105710.1021/acs.chemrev.8b0036330350585
    [Google Scholar]
  184. LayneK.A. WoodD.M. DarganP.I. Gadolinium-based contrast agents – What is the evidence for ‘gadolinium deposition disease’ and the use of chelation therapy?Clin. Toxicol. (Phila.)202058315116010.1080/15563650.2019.168144231663374
    [Google Scholar]
  185. ZhuW. LiuK. SunX. Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance.ACS Appl. Mater. Interfaces2015721115751158210.1021/acsami.5b0251025965554
    [Google Scholar]
  186. FangW. ZhuW. ChenH. MRI enhancement and tumor-targeted drug delivery using Zn2+-doped Fe3O4 core/mesoporous silica shell nanocomposites.ACS Appl. Bio Mater.2020331690169710.1021/acsabm.9b0124435021657
    [Google Scholar]
  187. YangW. XiangC. XuY. Albumin-constrained large-scale synthesis of renal clearable ferrous sulfide quantum dots for T1-Weighted MR imaging and phototheranostics of tumors.Biomaterials202025512018610.1016/j.biomaterials.2020.12018632585478
    [Google Scholar]
  188. ZhangD. ZhangW. WuX. Dual modal imaging-guided drug delivery system for combined chemo-photothermal melanoma therapy.Int. J. Nanomedicine2021163457347210.2147/IJN.S30626934045853
    [Google Scholar]
  189. WankhedeM. BourasA. KaluzovaM. HadjipanayisC.G. Magnetic nanoparticles: An emerging technology for malignant brain tumor imaging and therapy.Expert Rev. Clin. Pharmacol.20125217318610.1586/ecp.12.122390560
    [Google Scholar]
  190. SannaV. PalaN. SechiM. Targeted therapy using nanotechnology: Focus on cancer.Int. J. Nanomedicine20149467483[PMID: 24531078
    [Google Scholar]
  191. ProvenzaleJ.M. SilvaG.A. Uses of nanoparticles for central nervous system imaging and therapy.AJNR Am. J. Neuroradiol.20093071293130110.3174/ajnr.A159019617446
    [Google Scholar]
  192. PhillipsW.T. GoinsB.A. BaoA. Radioactive liposomes.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.200911698310.1002/wnan.320049780
    [Google Scholar]
  193. NduomE.K. BourasA. KaluzovaM. HadjipanayisC.G. Nanotechnology applications for glioblastoma.Neurosurg. Clin. N. Am.201223343944910.1016/j.nec.2012.04.00622748656
    [Google Scholar]
  194. MukerjeeA. RanjanA.P. VishwanathaJ.K. Combinatorial nanoparticles for cancer diagnosis and therapy.Curr. Med. Chem.201219223714372110.2174/09298671280166117622680922
    [Google Scholar]
  195. MenonJ.U. JadejaP. TambeP. VuK. YuanB. NguyenK.T. Nanomaterials for photo-based diagnostic and therapeutic applications.Theranostics20133315216610.7150/thno.532723471164
    [Google Scholar]
  196. LiuY. ZhangN. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging.Biomaterials201233215363537510.1016/j.biomaterials.2012.03.08422521487
    [Google Scholar]
  197. LiJ. GuptaS. LiC. Research perspectives: Gold nanoparticles in cancer theranostics.Quant. Imaging Med. Surg.201336284291[PMID: 24404441
    [Google Scholar]
  198. GongH. PengR. LiuZ. Carbon nanotubes for biomedical imaging: The recent advances.Adv. Drug Deliv. Rev.201365151951196310.1016/j.addr.2013.10.00224184130
    [Google Scholar]
  199. AkhterS. AhmadM.Z. AhmadF.J. StormG. KokR.J. Gold nanoparticles in theranostic oncology: Current state-of-the-art.Expert Opin. Drug Deliv.20129101225124310.1517/17425247.2012.71682422897613
    [Google Scholar]
  200. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  201. IyerA.K. KhaledG. FangJ. MaedaH. Exploiting the enhanced permeability and retention effect for tumor targeting.Drug Discov. Today20061117-1881281810.1016/j.drudis.2006.07.00516935749
    [Google Scholar]
  202. TorchilinV. Tumor delivery of macromolecular drugs based on the EPR effect.Adv. Drug Deliv. Rev.201163313113510.1016/j.addr.2010.03.01120304019
    [Google Scholar]
  203. GoldbergS.N. GirnanG.D. LukyanovA.N. Percutaneous tumor ablation: Increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model.Radiology2002222379780410.1148/radiol.222301086111867804
    [Google Scholar]
  204. AhmedM. GoldbergS.N. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation.Int. J. Hyperthermia200420778180210.1080/0265673041000171165515675672
    [Google Scholar]
  205. MonskyW.L. KruskalJ.B. LukyanovA.N. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model.Radiology2002224382382910.1148/radiol.224301142112202721
    [Google Scholar]
  206. SolazzoS.A. AhmedM. Schor-BardachR. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways.Radiology20102551627410.1148/radiol.0909119620160000
    [Google Scholar]
  207. AhmedM. LukyanovA.N. TorchilinV. TournierH. SchneiderA.N. GoldbergS.N. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: Effect of chemotherapeutic agent, nanoparticle size, and circulation time.J. Vasc. Interv. Radiol.200516101365137110.1097/01.RVI.0000175324.63304.2516221908
    [Google Scholar]
  208. AlexisF. PridgenE. MolnarL.K. FarokhzadO.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharm.20085450551510.1021/mp800051m18672949
    [Google Scholar]
  209. LiW. SzokaF.C.Jr Lipid-based nanoparticles for nucleic acid delivery.Pharm. Res.200724343844910.1007/s11095‑006‑9180‑517252188
    [Google Scholar]
  210. JudgeA.D. SoodV. ShawJ.R. FangD. McClintockK. MacLachlanI. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.Nat. Biotechnol.200523445746210.1038/nbt108115778705
    [Google Scholar]
  211. JacksonA.L. BurchardJ. SchelterJ. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity.RNA20061271179118710.1261/rna.2570616682560
    [Google Scholar]
  212. WangJ. MiP. LinG. WángY.X.J. LiuG. ChenX. Imaging-guided delivery of RNAi for anticancer treatment.Adv. Drug Deliv. Rev.2016104446010.1016/j.addr.2016.01.00826805788
    [Google Scholar]
  213. HongH. ZhangY. CaiW. In vivo imaging of RNA interference.J. Nucl. Med.201051216917210.2967/jnumed.109.06687820080892
    [Google Scholar]
  214. WillmannJ.K. van BruggenN. DinkelborgL.M. GambhirS.S. Molecular imaging in drug development.Nat. Rev. Drug Discov.20087759160710.1038/nrd229018591980
    [Google Scholar]
  215. WuS.Y. Lopez-BeresteinG. CalinG.A. SoodA.K. RNAi therapies: Drugging the undruggable.Sci. Transl. Med.20146240240ps710.1126/scitranslmed.300836224920658
    [Google Scholar]
  216. AhmadM.Z. PathakK. AhmadJ. Functionalized Targeted Theranostic Nanomedicines.In: Multifunctional And Targeted Theranostic Nanomedicines. Singapor:Springer2023126
    [Google Scholar]
  217. NhànN.T.T. YamadaT. YamadaK.H. Peptide-based agents for cancer treatment: current applications and future directions.Int. J. Mol. Sci.202324161293110.3390/ijms24161293137629112
    [Google Scholar]
  218. JiaF. ZhaoX. ZhaoY. Advancements in ToF-SIMS imaging for life sciences.Front Chem.202311123740810.3389/fchem.2023.123740837693171
    [Google Scholar]
  219. GraziottoM.E. KidmanC.J. AdairL.D. JamesS.A. HarrisH.H. NewE.J. Towards multimodal cellular imaging: Optical and X-ray fluorescence.Chem. Soc. Rev.202352238295831810.1039/D3CS00509G37910139
    [Google Scholar]
  220. LeblondF. DavisS.C. ValdésP.A. PogueB.W. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications.J. Photochem. Photobiol. B2010981779410.1016/j.jphotobiol.2009.11.00720031443
    [Google Scholar]
  221. BianY. WangY. ChenX. ZhangY. XiongS. SuD. Image‐guided diagnosis and treatment of glioblastoma.VIEW2023432022006910.1002/VIW.20220069
    [Google Scholar]
  222. XieW.J. LiuD. WangX. Enhancing luciferase activity and stability through generative modeling of natural enzyme sequences.bioRxiv202310.1101/2023.09.18.558367
    [Google Scholar]
  223. LiuC. ShiQ. HuangX. KooS. KongN. TaoW. mRNA-based cancer therapeutics.Nat. Rev. Cancer202323852654310.1038/s41568‑023‑00586‑237311817
    [Google Scholar]
  224. NayakT. KrastevaL. CaiW. Multimodality imaging of RNA interference.Curr. Med. Chem.201320293664367510.2174/092986731132029001223745567
    [Google Scholar]
  225. McCaffreyA.P. MeuseL. PhamT.T.T. ConklinD.S. HannonG.J. KayM.A. RNA interference in adult mice.Nature20024186893383910.1038/418038a12097900
    [Google Scholar]
  226. LewisD.L. HagstromJ.E. LoomisA.G. WolffJ.A. HerweijerH. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice.Nat. Genet.200232110710810.1038/ng94412145662
    [Google Scholar]
  227. TimbieK.F. MeadB.P. PriceR.J. Drug and gene delivery across the blood–brain barrier with focused ultrasound.J. Control. Release2015219617510.1016/j.jconrel.2015.08.05926362698
    [Google Scholar]
  228. ComanescuC. Recent Advances in Surface Functionalization of Magnetic Nanoparticles.Coatings20231310177210.3390/coatings13101772
    [Google Scholar]
  229. van MoolenbroekG.T. PatiñoT. LlopJ. SánchezS. Engineering intelligent nanosystems for enhanced medical imaging.Adv. Intell. Syst.2020210200008710.1002/aisy.202000087
    [Google Scholar]
  230. IsazadehH. OrujiF. ShabaniS. Advances in siRNA delivery approaches in cancer therapy: Challenges and opportunities.Mol. Biol. Rep.202350119529954310.1007/s11033‑023‑08749‑y37741808
    [Google Scholar]
  231. HeS. LeanseL.G. FengY. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.Adv. Drug Deliv. Rev.202117811392210.1016/j.addr.2021.11392234461198
    [Google Scholar]
  232. ShaikhS. ShaikhS. Eyes on ice & no blind mice: Visions of science from the science of vision.AuthorHouse2007
    [Google Scholar]
  233. SeehraM.S. SinghV. DuttaP. Size-dependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia.J. Phys. D Appl. Phys.2010431414500210.1088/0022‑3727/43/14/145002
    [Google Scholar]
  234. SkotlandT. SontumP.C. OulieI. In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan™), a contrast agent for magnetic resonance imaging.J. Pharm. Biomed. Anal.200228232332910.1016/S0731‑7085(01)00592‑1
    [Google Scholar]
  235. ArbabA.S. WilsonL.B. AshariP. JordanE.K. LewisB.K. FrankJ.A. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging.NMR Biomed.200518638338910.1002/nbm.97016013087
    [Google Scholar]
  236. DelalandeM. MarcouxP.R. ReissP. SamsonY. Core–shell structure of chemically synthesised FePt nanoparticles: A comparative study.J. Mater. Chem.200717161579158810.1039/B614209E
    [Google Scholar]
  237. ChouS.W. ShauY.H. WuP.C. YangY.S. ShiehD.B. ChenC.C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging.J. Am. Chem. Soc.201013238132701327810.1021/ja1035013
    [Google Scholar]
  238. BilensoyE. Cationic nanoparticles for cancer therapy.Expert Opin. Drug Deliv.20107779580910.1517/17425247.2010.48598320446858
    [Google Scholar]
  239. HanG. MokariT. Ajo-FranklinC. CohenB.E. Caged quantum dots.J. Am. Chem. Soc.200813047158111581310.1021/ja804948s18983148
    [Google Scholar]
  240. MeiB.C. SusumuK. MedintzI.L. MattoussiH. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media.Nat. Protoc.20094341242310.1038/nprot.2008.24319265800
    [Google Scholar]
  241. ArbabA.S. BashawL.A. MillerB.R. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging.Radiology2003229383884610.1148/radiol.229302121514657318
    [Google Scholar]
  242. ArbabA.S. YocumG.T. Bashaw WilsonL. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability.Mol. Imaging200431243210.1162/15353500477386169715142409
    [Google Scholar]
  243. DausendJ. MusyanovychA. DassM. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells.Macromol. Biosci.20088121135114310.1002/mabi.20080012318698581
    [Google Scholar]
  244. RaffaV. CiofaniG. VittorioO. RiggioC. CuschieriA. Physicochemical properties affecting cellular uptake of carbon nanotubes.Nanomedicine (Lond.)201051899710.2217/nnm.09.9520025467
    [Google Scholar]
  245. LeeD.C. MikulecF.V. PelaezJ.M. KooB. KorgelB.A. Synthesis and magnetic properties of silica-coated FePt nanocrystals.J. Phys. Chem. B200611023111601116610.1021/jp060974z16771378
    [Google Scholar]
  246. ThomsonT. TerrisB.D. ToneyM.F. Silicide formation and particle size growth in high-temperature-annealed, self-assembled FePt nanoparticles.J. Appl. Phys.200495116738674010.1063/1.1667802
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878332787241210102302
Loading
/content/journals/raddf/10.2174/0126673878332787241210102302
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test