Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction/Objective

Bacteria resist drugs by employing new resistance mechanisms, leading to prolonged infection and complexity in therapeutic prognosis that concordantly decreases drug efficacy. In recent years, nanotechnology has gained immense popularity for the development of drug delivery systems to combat the global pharmaceutical crisis of multi-drug resistance. The present work aimed to focus on the green chemistry-based synthesis of silver nanoparticles (AgNPs) using the phytocompound chlorophyllin to form chlorophyllin precipitated silver nanoparticles (NCHL) and elucidate their application against two pathologically significant bacterial species and .

Methods

After optimization of experimental parameters, the physico-chemical properties of the synthesized NCHL were determined using AFM, DLS, XRD, UV-Vis, SPR, and FTIR, respectively. The interaction of NCHL with ct-DNA was assessed using CD spectroscopy. The antimicrobial activity of the synthesized NCHL against and was examined by a disc diffusion susceptibility test.

Results

The NCHL was ascertained to be ~53.57 nm in size, having a spherical shape, smooth topology, negative zeta potential of -23.94 mV, and PDI value of 0.495. A sharp peak for silver as SPR and an XRD peak depicted the best fit metallic crystal synchronization. FTIR analysis revealed the presence of a similar functional group in NCHL and chlorophyllin (CHL). CD spectroscopy with ct-DNA in the presence of NCHL showed a change in spectral shift of the ct-DNA, indicating strong ct-DNA-NCHL interaction. NCHL successfully inhibited the growth of both bacterial strains, indicating broad spectrum activity of the synthesized nanoparticles.

Conclusion

The promising results indicated that NCHL could be utilized as a potential therapeutic molecule against and infections and help in combating bacterial drug resistance, which is of high medical priority.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878360429250207063902
2025-02-17
2025-11-01
Loading full text...

Full text loading...

References

  1. de Oliveira SantosJ.V. da Costa JúniorS.D. de Fátima Ramos dos Santos MedeirosS.M. Panorama of bacterial infections caused by epidemic resistant strains.Curr. Microbiol.202279617510.1007/s00284‑022‑02875‑935488983
    [Google Scholar]
  2. TianD. SunY. ZhouJ. YeQ. The global epidemic of SARS‐CoV‐2 variants and their mutational immune escape.J. Med. Virol.202294384785710.1002/jmv.2737634609003
    [Google Scholar]
  3. RadanlievP. De RoureD. WaltonR. COVID-19 what have we learned? The rise of social machines and connected devices in pandemic management following the concepts of predictive, preventive and personalized medicine.EPMA J.202011331133210.1007/s13167‑020‑00218‑x32839666
    [Google Scholar]
  4. LuY. ZhangZ. XieH. The rise in Norovirus-related acute gastroenteritis during the fight against the COVID-19 pandemic in Southern China.Front. Public Health2022978537310.3389/fpubh.2021.78537335087785
    [Google Scholar]
  5. O’BrienT.F. The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally.Clin. Infect. Dis.199724Suppl. 1S2S810.1093/clinids/24.Supplement_1.S28994775
    [Google Scholar]
  6. SteinigE.J. DucheneS. RobinsonD.A. Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent.MBio2019106e01105e0111910.1128/mBio.01105‑1931772058
    [Google Scholar]
  7. LiuS.Y. ChienT.W. YangT.Y. YehY.T. ChouW. ChowJ.C. A bibliometric analysis on dengue outbreaks in tropical and sub-tropical climates worldwide since 1950.Int. J. Environ. Res. Public Health2021186319710.3390/ijerph1806319733808795
    [Google Scholar]
  8. NikaidoH. Multidrug resistance in bacteria.Annu. Rev. Biochem.200978111914610.1146/annurev.biochem.78.082907.14592319231985
    [Google Scholar]
  9. CatalanoA. IacopettaD. CeramellaJ. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies.Molecules202227361610.3390/molecules2703061635163878
    [Google Scholar]
  10. GutmannL. Billot-KleinD. WilliamsonR. Mutation of Salmonella paratyphi A conferring cross-resistance to several groups of antibiotics by decreased permeability and loss of invasiveness.Antimicrob. Agents Chemother.198832219520110.1128/AAC.32.2.1953364943
    [Google Scholar]
  11. MohanasundariC. NatarajanD. SrinivasanK. UmamaheswariS. RamachandranA. Antibacterial properties of Passiflora foetida L.–a common exotic medicinal plant.Afr. J. Biotechnol.2007623
    [Google Scholar]
  12. DowningT. Tackling drug resistant infection outbreaks of global pandemic Escherichia coli ST131 using evolutionary and epidemiological genomics.Microorganisms20153223626710.3390/microorganisms302023627682088
    [Google Scholar]
  13. SalauA.O. A O, Odeleye, O M. Antimicrobial activity of Mucuna pruriens on selected bacteria.Afr. J. Biotechnol.20076182091209210.5897/AJB2007.000‑2324
    [Google Scholar]
  14. DeyS. NagpalI. SowP. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight.J. Biomol. Struct. Dyn.202318[PMID: 37587909
    [Google Scholar]
  15. SamadderA. DasS. DasJ. PaulA. BoujedainiN. Khuda-BukhshA.R. The potentized homeopathic drug, Lycopodium clavatum (5C and 15C) has anti-cancer effect on hela cells in vitro.J. Acupunct. Meridian Stud.20136418018710.1016/j.jams.2013.04.00423972240
    [Google Scholar]
  16. NandiS. DeyR. DeyS. SamadderA. SaxenaA.K. Naturally sourced CDK inhibitors and current trends in structure-based synthetic anticancer drug design by crystallography.Anticancer. Agents Med. Chem.202222348549810.2174/187152062166621090810175134503422
    [Google Scholar]
  17. BoccoliniP.M.M. de Lima Sírio BoclinK. de SousaI.M.C. BoccoliniC.S. Prevalence of complementary and alternative medicine use in Brazil: results of the National Health Survey, 2019.BMC Complement. Med. Ther.202222120510.1186/s12906‑022‑03687‑x35918725
    [Google Scholar]
  18. DasJ. SamadderA. MondalJ. AbrahamS.K. Khuda-BukhshA.R. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction.Environ. Toxicol. Pharmacol.20164614715710.1016/j.etap.2016.07.00627458703
    [Google Scholar]
  19. ChakrovortyA. BhattacharjeeB. DeyR. SamadderA. NandiS. Graphene: the magic carbon derived biological weapon for human welfare.International Academic Publishing House20212591710.52756/ijerr.2021.v25.002
    [Google Scholar]
  20. DeyR. DeyS. SowP. Novel PLGA-encapsulated-nanopiperine promotes synergistic interaction of p53/PARP-1/Hsp90 axis to combat ALX-induced-hyperglycemia.Sci. Rep.2024141948310.1038/s41598‑024‑60208‑138664520
    [Google Scholar]
  21. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.610040017957183
    [Google Scholar]
  22. YiY. YangZ. ZhouC. YangY. WuY. ZhangQ. Quercetin-encapsulated GelMa hydrogel microneedle reduces oxidative stress and facilitates wound healing.Nano TransMed2024310003010.1016/j.ntm.2024.100030
    [Google Scholar]
  23. DasS. DasJ. SamadderA. BhattacharyyaS.S. DasD. Khuda-BukhshA.R. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.Colloids Surf. B Biointerfaces201310132533610.1016/j.colsurfb.2012.07.00823010037
    [Google Scholar]
  24. Morones-RamirezJ.R. WinklerJ.A. SpinaC.S. CollinsJ.J. Silver enhances antibiotic activity against Gram-negative bacteria.Sci. Transl. Med.20135190190ra8110.1126/scitranslmed.300627623785037
    [Google Scholar]
  25. YaqoobS.B. AdnanR. Rameez KhanR.M. RashidM. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications.Front Chem.2020837610.3389/fchem.2020.0037632582621
    [Google Scholar]
  26. BhattacharyyaS.S. DasJ. DasS. Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture Phytolacca Decandra.J. Chin. Integr. Med.201210554655410.3736/jcim2012051022587977
    [Google Scholar]
  27. RaiM. IngleA. GuptaI. BirlaS. YadavA. Abd-ElsalamK. Potential role of biological systems in formation of nanoparticles: Mechanism of synthesis and biomedical applications.Curr. Nanosci.20139557658710.2174/15734137113099990092
    [Google Scholar]
  28. Marambio-JonesC. HoekE.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment.J. Nanopart. Res.20101251531155110.1007/s11051‑010‑9900‑y
    [Google Scholar]
  29. LvJ. QiuY. PanL. ZhangX. LiM. YinX. Photothermal/photodynamic antibacterial hydrogel embedded with copper carbon dots and Au nanoparticles.Nano TransMed2024310003410.1016/j.ntm.2024.100034
    [Google Scholar]
  30. MoronesJ.R. ElechiguerraJ.L. CamachoA. The bactericidal effect of silver nanoparticles.Nanotechnology200516102346235310.1088/0957‑4484/16/10/05920818017
    [Google Scholar]
  31. SamadderA. DeyS. SowP. Phyto-chlorophyllin prevents food additive induced genotoxicity and mitochondrial dysfunction via cytochrome c mediated pathway in mice model.Comb. Chem. High Throughput Screen.202124101618162710.2174/138620732366620123009351033380297
    [Google Scholar]
  32. ChaturvediD. SinghK. SinghV.K. Therapeutic and pharmacological aspects of photodynamic product chlorophyllin.Eur. J. Biol. Res.2019926476
    [Google Scholar]
  33. SureshH.D. NaganandaG.S. MinchithaK.U. SwethaS. SuryanS. Synthesis and bio-evaluation of soluble sodium copper chlorophyllin complexes from the leaves of Aloe vera.S. Afr. J. Bot.20221471086109510.1016/j.sajb.2021.11.055
    [Google Scholar]
  34. SmithL.W. LivingstonA.E. Wound healing.Am. J. Surg.1945671303910.1016/0002‑9610(45)90322‑9
    [Google Scholar]
  35. Malone-PovolnyM.J. MaloneyS.E. SchoenfischM.H. Nitric oxide therapy for diabetic wound healing.Adv. Healthc. Mater.2019812180121010.1002/adhm.20180121030645055
    [Google Scholar]
  36. YuS. LiG. LiuR. MaD. XueW. Dendritic Fe3O4@ poly (dopamine)@ PAMAM nanocomposite as controllable NO‐releasing material: a synergistic photothermal and NO antibacterial study.Adv. Funct. Mater.20182820170744010.1002/adfm.201707440
    [Google Scholar]
  37. da SilvaFS de Paula e SilvaACA BarbugliPA Anti-biofilm activity and in vitro biocompatibility of copper surface prepared by cold gas spray.Surf. Coat. Tech.202141112698110.1016/j.surfcoat.2021.126981
    [Google Scholar]
  38. SamadderA. BhattacharjeeB. DeyS. Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis.J. Pharmacopuncture202427111310.3831/KPI.2024.27.1.138560336
    [Google Scholar]
  39. BauerA.W. Antibiotic susceptibility testing by a standardized single disc method.Am. J. Clin. Pathol.199645149158
    [Google Scholar]
  40. WeinsteinM.P. LewisJ.S.II The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes.J. Clin. Microbiol.2020583e01864e1910.1128/JCM.01864‑1931915289
    [Google Scholar]
  41. EhsanR. AlamM. AkterT. Enterococcus faecalis involved in streptococcosis like infection in silver barb (Barbonymus gonionotus).Aquacult. Rep.20212110086810.1016/j.aqrep.2021.100868
    [Google Scholar]
  42. Breakpoint tables for interpretation of MICs and zone diameters 2019.Available from:https://www.eucast.org/
  43. BarazzoukS. KamatP.V. HotchandaniS. Photoinduced electron transfer between chlorophyll a and gold nanoparticles.J. Phys. Chem. B2005109271672310.1021/jp046474s16866432
    [Google Scholar]
  44. FatemehK.O.O.H.P.E.I.M.A. Mohammad JavadM.O.K.H.T.A.R.I. SamanehK.H.A.L.A.F.I. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols.J. Appl. Oral Sci.201725436737310.1590/1678‑7757‑2016‑039128877274
    [Google Scholar]
  45. LiJ. PengY. HanX. GuoS. LiangK. ZhangM. Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.J. Appl. Biomater. Funct. Mater.201715Suppl. 1192410.5301/jabfm.500035028525677
    [Google Scholar]
  46. ShahabadiN. ShiriF. HadidiS. FarshadfarK. DarbemamiehM. Mark RoeS. The role of both intercalation and groove binding at AT-rich DNA regions in the interaction process of a dinuclear Cu(I) complex probed by spectroscopic and simulation analysis.J. Mol. Liq.202133511629010.1016/j.molliq.2021.116290
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878360429250207063902
Loading
/content/journals/raddf/10.2174/0126673878360429250207063902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test