Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Agomelatine (AGT) is used for the treatment of major depressive disorder in adults. Agomelatine is highly susceptible to first-pass metabolism, and it has less than 5% oral bioavailability. Therapy for major depressive disorder extends for a long period and every time, additional caregivers are required to remind and manage the timely dosing of oral medicine to patients. In such cases, once a week, administration of agomelatine transdermal patch dosage form provides major patient benefits and lowers overall therapy costs.

Methods

An agomelatine transdermal patch was prepared using the solvent evaporation method using the LTE-S Werner Mathis AG coater and dryer. A patch was prepared using silicon adhesive after screening different pressure-sensitive adhesives like acrylate, polyisobutylene, and silicon. To make a crystal-free patch, the concentration of povidone k-29/32 was optimized in preliminary trials. To deliver the drug over a 7-day period, propylene glycol monolaurate (PGML) was identified from different penetration enhancers. Three factors optimization was carried out, like the concentration of povidone k-29/32, the concentration of PGML, and the mixing time of the blend using the Box Behnken design. 3D surface response curves and contour plots were derived using Design Expert and Minitab software. From overlay plots, design spaces were identified.

Results

The optimized AGT patch has good adhesion properties along with a desirable flux of 4.63 µg/cm2/h on human cadaver skin along with a lower residual drug. There was no impact of heat flux studies on normal conditions, hence justifying the in-use condition of the patient population during hot showers, baths, and saunas. AGT Patch was also non-irritating in skin irritation studies performed on Wistar albino rats.

Conclusion

It was concluded that agomelatine transdermal patches can be manufactured using silicon adhesive, povidone k-29/32, and propylene glycol monolaurate for the treatment of major depressive disorder and will be the most convenient and cost-effective therapy for the patient.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878339412250213043818
2025-02-17
2025-11-01
Loading full text...

Full text loading...

References

  1. NormanT.R. OlverJ.S. Agomelatine for depression: Expanding the horizons?Expert Opin. Pharmacother.201920664765610.1080/14656566.2019.157474730759026
    [Google Scholar]
  2. Guardiola-LemaitreB. De BodinatC. DelagrangeP. MillanM.J. MunozC. MocaërE. Agomelatine: Mechanism of action and pharmacological profile in relation to antidepressant properties.Br. J. Pharmacol.2014171153604361910.1111/bph.1272024724693
    [Google Scholar]
  3. HowlandR. Critical appraisal and update on the clinical utility of agomelatine, a melatonergic agonist, for the treatment of major depressive disease in adults.Neuropsychiatr. Dis. Treat.2009556357610.2147/NDT.S545319966905
    [Google Scholar]
  4. FathiA.M. EissaR.G. BalataG.F. GhazyF-E.S. EissaN.G. Intranasal thermosensitive hydrogel of agomelatine solid dispersion for better management of depression.J. Drug Deliv. Sci. Technol.20238810497410.1016/j.jddst.2023.104974
    [Google Scholar]
  5. SteinD.J. KhooJ.P. Picarel-BlanchotF. OlivierV. Van AmeringenM. Efficacy of agomelatine 25–50 mg for the treatment of anxious symptoms and functional impairment in generalized anxiety disorder: A meta-analysis of three placebo-controlled studies.Adv. Ther.20213831567158310.1007/s12325‑020‑01583‑933537871
    [Google Scholar]
  6. WendongY. XingxingY. XianzeX. Nanoformulation-assisted microneedle transdermal drug delivery system: An innovative platform enhancing rheumatoid arthritis treatment.Biomed. Pharmacother.202417811721910.1016/j.biopha.2024.11721939084080
    [Google Scholar]
  7. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑633474709
    [Google Scholar]
  8. GaoJ. The future of drug delivery.Chem. Mater.202335235936310.1021/acs.chemmater.2c03003
    [Google Scholar]
  9. NgL.C. GuptaM. Transdermal drug delivery systems in diabetes management: A review.Asian J. Pharm. Sci.2020151132510.1016/j.ajps.2019.04.00632175015
    [Google Scholar]
  10. PrausnitzM.R. MitragotriS. LangerR. Current status and future potential of transdermal drug delivery.Nat. Rev. Drug Discov.20043211512410.1038/nrd130415040576
    [Google Scholar]
  11. MaK. JiangW. WangY.X. Expert consensus of the Chinese Association for the Study of Pain on pain treatment with the transdermal patch.World J. Clin. Cases2021992110212210.12998/wjcc.v9.i9.211033850930
    [Google Scholar]
  12. GantiS.S. BhattaccharjeeS.A. MurnaneK.S. BloughB.E. BangaA.K. Formulation and evaluation of 4-benzylpiperidine drug-in-adhesive matrix type transdermal patch.Int. J. Pharm.20185501-2717810.1016/j.ijpharm.2018.08.03330125654
    [Google Scholar]
  13. PatilA.S. BirkodiS. MasareddyR.S. RajpurohitM. Fabrication, optimization, and evaluation of transdermal patch: As an alternative and effective transdermal delivery system for Nebivolol HCl.Pharm. Nanotechnol.2024121798910.2174/2211738511666230601103658
    [Google Scholar]
  14. ZhangS. LiuC. SongY. RuanJ. QuanP. FangL. High drug-loading and controlled-release hydroxyphenyl-polyacrylate adhesive for transdermal patch.J. Control. Release202335347548910.1016/j.jconrel.2022.11.05836473608
    [Google Scholar]
  15. AbdullahH.M. FarooqM. AdnanS. Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium.Polym. Bull.20238066793681810.1007/s00289‑022‑04390‑0
    [Google Scholar]
  16. HadgraftJ. LaneM.E. Drug crystallization – Implications for topical and transdermal delivery.Expert Opin. Drug Deliv.201613681783010.1517/17425247.2016.114014626766744
    [Google Scholar]
  17. Abu ErshaidJ.M. VoraL.K. Volpe-ZanuttoF. Microneedle array patches for sustained delivery of fluphenazine: A micron scale approach for the management of schizophrenia.Biomater. Adv.202315321352610.1016/j.bioadv.2023.21352637348183
    [Google Scholar]
  18. NazhaH.M. AmmarB. DarwichM.A. AssaadM. Response surface analysis of Zn–Ni coating parameters for corrosion resistance applications: A Plackett–Burman and Box–Behnken design of experiments approach.J. Mater. Sci.20235830124651248010.1007/s10853‑023‑08796‑7
    [Google Scholar]
  19. MbuyaB. Mulaba-BafubiandiA.F. Predicting optimized dissolution of selected african copperbelt copper-cobalt-bearing ores by means of neural network prediction and response surface methodology modeling.Process Integr Optim Sustain20237358359710.1007/s41660‑023‑00312‑3
    [Google Scholar]
  20. KimS. AbdellaS. AbidF. Development and optimization of imiquimod-loaded nanostructured lipid carriers using a hybrid design of experiments approach.Int. J. Nanomedicine2023181007102910.2147/IJN.S40061036855538
    [Google Scholar]
  21. AgrawalM. SarafS. PradhanM. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design.Biomed. Pharmacother.202114111191910.1016/j.biopha.2021.11191934328108
    [Google Scholar]
  22. KimE.J. ChoiD.H. Quality by design approach to the development of transdermal patch systems and regulatory perspective.J. Pharm. Investig.202151666969010.1007/s40005‑021‑00536‑w
    [Google Scholar]
  23. PrajwalaS. Quality by design (QbD) paradigm: An integrated multivariate approach to transdermal patch system development.J Rep Pharm Sci202312116
    [Google Scholar]
  24. LamchŁ. SzklarzP. Effect of temperature and composition on the loading of curcumin into PLGA/PLLA core–shell nanoparticles stabilized by hydrophobically functionalized polyelectrolytes.Ind. Eng. Chem. Res.20246323102791029010.1021/acs.iecr.4c01417
    [Google Scholar]
  25. ShajanD.K. PandeyN. GhoshA. ChanduluruH.K. SanphuiP. Investigating the effect of emtricitabine cocrystals with aromatic carboxylic acids on solubility and diffusion permeability.Cryst. Growth Des.20232375289530010.1021/acs.cgd.3c00485
    [Google Scholar]
  26. JaiswalR. WadetwarR. Nanostructured lipid carriers mediated transdermal delivery of trandolapril as an impeccable therapeutic approach against hypertension: Development, characterization and in vivo evaluation.OpenNano20231110014410.1016/j.onano.2023.100144
    [Google Scholar]
  27. PrajapatiS.T. MandliV.A. Formulation development of rotigotine transdermal system using dot-matrix technology.Int. J. Pharm. Sci. Drug Res.20201240441410.25004/IJPSDR.2020.120414
    [Google Scholar]
  28. ShettyS.R. RathoreS.S. Leno JenitaJ. Analytical methods for tetracyclic antidepressants: A comprehensive Review.Separ. Sci. Plus2024710e20240015710.1002/sscp.202400157
    [Google Scholar]
  29. PanchaxariD.M. PampanaS. PalT. DevabhaktuniB. AravapalliA.K. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination.Daru2013211610.1186/2008‑2231‑21‑623351568
    [Google Scholar]
  30. PandaA. SharmaP.K. Narasimha MurthyS. Effect of mild hyperthermia on transdermal absorption of nicotine from patches.AAPS PharmSciTech20192027710.1208/s12249‑019‑1299‑x30635802
    [Google Scholar]
  31. CilurzoF. GennariC.G.M. MinghettiP. Adhesive properties: A critical issue in transdermal patch development.Expert Opin. Drug Deliv.201291334510.1517/17425247.2012.63710722171789
    [Google Scholar]
  32. RaneyS.G. SenemarS. BurkeM. Advances in product quality and performance tests for topical and transdermal products: View of the USP expert panel.Dissolut. Technol.202431161210.14227/DT310124P6
    [Google Scholar]
  33. WokovichA.M. ShenM. DoubW.H. MachadoS.G. BuhseL.F. Release liner removal method for transdermal drug delivery systems (TDDS).J. Pharm. Sci.20109973177318710.1002/jps.2206720135693
    [Google Scholar]
  34. MohamedL.A. KamalN. ElfakhriK.H. Drug recrystallization in drug-in-adhesive transdermal delivery system: A case study of deteriorating the mechanical and rheological characteristics of testosterone TDS.Int. J. Pharm.202057811913210.1016/j.ijpharm.2020.11913232057892
    [Google Scholar]
  35. LiM. ZhangY. LiuY. A semi-interpenetrating network acrylic pressure-sensitive adhesive for efficient transdermal application with high cohesion and adhesion.Mater. Des.202424111297010.1016/j.matdes.2024.112970
    [Google Scholar]
  36. YasirM. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation.J. Drug Deliv. Sci. Technol.202161102164
    [Google Scholar]
  37. AliH.S.M. NamaziN. ElbadawyH.M. Repaglinide–solid lipid nanoparticles in chitosan patches for transdermal application: box–behnken design, characterization, and in vivo evaluation.Int. J. Nanomedicine20241920923010.2147/IJN.S43856438223883
    [Google Scholar]
  38. AnandN. Optimization of simvastatin transdermal patch for hyperlipidemia treatment in rat model.Future J. Pharm. Sci.202410112
    [Google Scholar]
  39. DahmashE.Z. AttianyL.M. AliD. AssafS.M. AlkradJ. AlyamiH. Development and characterization of transdermal patches using novel thymoquinone-l-arginine-based polyamide nanocapsules for potential use in the management of psoriasis.AAPS PharmSciTech2024254698010.1208/s12249‑024‑02781‑238538972
    [Google Scholar]
  40. PatelJ.S. Development and optimization of multivesicular gefitinib liposomal transdermal system employing lipoid S100 for breast cancer: Pharmacokinetics, bioavailability, and skin irritation studies in Wistar rats.Future J. Pharm. Sci.202410121
    [Google Scholar]
  41. ZhaoT. ZhouM. WuR. Dendrimer-conjugated isotretinoin for controlled transdermal drug delivery.J. Nanobiotechnology202321128510.1186/s12951‑023‑02052‑537605256
    [Google Scholar]
  42. The ARRIVE guidelines (Animal Research: Reporting of in vivo Experiments).2024Available from: https://arriveguidelines.org
  43. Transdermal and Topical Delivery Systems Product Development and Quality Considerations Guidance for Industry USFDA2019Available from: https://www.fda.gov/media/132674/download
  44. Guideline on quality of transdermal patches2014Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ guideline-quality-transdermal-patches_en.pdf
  45. AhmedS. GullA. AlamM. AqilM. SultanaY. Ultrasonically tailored, chemically engineered and “QbD” enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study.Ultrason. Sonochem.20184121322610.1016/j.ultsonch.2017.09.04229137746
    [Google Scholar]
  46. LiaoY. ZhangX. LiC. Inclusion complexes of HP-β-cyclodextrin with agomelatine: Preparation, characterization, mechanism study and in vivo evaluation.Carbohydr. Polym.201614741542510.1016/j.carbpol.2016.04.02227178948
    [Google Scholar]
  47. KarveT. DandekarA. AgrahariV. Melissa PeetM. BangaA.K. DoncelG.F. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches.Adv. Drug Deliv. Rev.202421011532610.1016/j.addr.2024.11532638692457
    [Google Scholar]
  48. KimJ.H. ChoiH.K. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix.Int. J. Pharm.20022361-2818510.1016/S0378‑5173(02)00017‑011891072
    [Google Scholar]
  49. JainP. BangaA.K. Induction and inhibition of crystallization in drug-in-adhesive-type transdermal patches.Pharm. Res.201330256257110.1007/s11095‑012‑0901‑723093376
    [Google Scholar]
  50. Van EerdenbrughB. TaylorL.S. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation.Mol. Pharm.2010741328133710.1021/mp100115320536263
    [Google Scholar]
  51. KotiyanP. VaviaP.R. Eudragits: Role as crystallization inhibitors in drug-in-adhesive transdermal systems of estradiol.Eur. J. Pharm. Biopharm.200152217318010.1016/S0939‑6411(01)00174‑611522483
    [Google Scholar]
  52. MaX. TawJ. ChiangC-M. Control of drug crystallization in transdermal matrix system.Int. J. Pharm.1996142111511910.1016/0378‑5173(96)04647‑9
    [Google Scholar]
  53. SuY. LuW. FuX. Formulation and pharmacokinetic evaluation of a drug-in-adhesive patch for transdermal delivery of koumine.AAPS PharmSciTech202021829710.1208/s12249‑020‑01793‑y33099696
    [Google Scholar]
  54. ChoC.W. ChoiJ.S. ShinS-C. ShinS.C. Enhanced transdermal controlled delivery of glimepiride from the ethylene-vinyl acetate matrix.Drug Deliv.200916632033010.1080/1071754090303108419606946
    [Google Scholar]
  55. WilliamsA.C. BarryB.W. Penetration enhancers.Adv. Drug Deliv. Rev.200456560361810.1016/j.addr.2003.10.02515019749
    [Google Scholar]
  56. BennettS.L. BarryB.W. Effectiveness of skin penetration enhancers propylene glycol, azone, decylmethylsulphoxide and oleic acid with model polar (mannitol) and nonpolar (hydrocortisone) penetrants.J. Pharm. Pharmacol.198537Suppl. 1284P10.1111/j.2042‑7158.1985.tb14156.x
    [Google Scholar]
  57. BabuR.J. Pyrrolidones as Penetration Enhancers.Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum. DragicevicN. MaibachH.I. Berlin, HeidelbergSpringer201529129910.1007/978‑3‑662‑47039‑8_17
    [Google Scholar]
  58. GwakH.S. OhI.S. ChunI.K. Transdermal delivery of ondansetron hydrochloride: Effects of vehicles and penetration enhancers.Drug Dev. Ind. Pharm.200430218719410.1081/DDC‑12002871415089053
    [Google Scholar]
  59. KimJ.H. ChoY.J. ChoiH.K. Effect of vehicles and pressure sensitive adhesives on the permeation of tacrine across hairless mouse skin.Int. J. Pharm.2000196110511310.1016/S0378‑5173(99)00449‑410675712
    [Google Scholar]
  60. JavadzadehY. Transcutol® (Diethylene Glycol Monoethyl Ether): A potential penetration enhancer. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum.Berlin HeidelbergSpringer 2015pp. 19520510.1007/978‑3‑662‑47039‑8_12
    [Google Scholar]
  61. OsborneD.W. MusakhanianJ. Skin penetration and permeation properties of transcutol®—Neat or diluted mixtures.AAPS PharmSciTech20181983512353310.1208/s12249‑018‑1196‑830421383
    [Google Scholar]
  62. UchinoT. FujimoriS. HattaI. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate.Int. J. Pharm.202159212000410.1016/j.ijpharm.2020.12000433127489
    [Google Scholar]
  63. BelhajN. ArnaudJ.P. LoingE. BézivinC. Development of a new resistant liposome coated with polysaccharide film for cosmetic application.J. Cosmet. Sci.2014654225238[PMID: 25423742
    [Google Scholar]
  64. GongK. SunP. CaiY. Water-compatible cross-linked pyrrolidone acrylate pressure-sensitive adhesives with persistent adhesion for transdermal delivery: Synergistic effect of hydrogen bonding and electrostatic force.Acta Biomater.202417913014810.1016/j.actbio.2024.02.04538460932
    [Google Scholar]
  65. AshfaqA. RiazT. WaqarM.A. ZamanM. MajeedI. A comprehensive review on transdermal patches as an efficient approach for the delivery of drug.Polym Plast Technol Mater20246381045106910.1080/25740881.2024.2317408
    [Google Scholar]
  66. PethaniD.K. PrajapatiS. Formulation designing factors for development of repaglinide transdermal therapeutic system.Int. J. Pharm. Sci. Drug Res.20201214815810.25004/IJPSDR.2020.120209
    [Google Scholar]
  67. DerkiM. TidjaniS. KhaledM.T.O. DerkiN-E.H. TedjaniM.L. MahboubM.S. Controlled biosynthesis of zinc oxide nanoparticles using plant extracts: A box-behnken design for size optimization.J. Inorg. Organomet. Polym. Mater.202412110.1007/s10904‑024‑03379‑8
    [Google Scholar]
  68. BuenañoL. AliE. JaferA. Optimization by Box–Behnken design for environmental contaminants removal using magnetic nanocomposite.Sci. Rep.20241416950695710.1038/s41598‑024‑57616‑838521870
    [Google Scholar]
  69. KashikarR. KothaA.K. ShresthaR. ChannappanavarR. ChouguleM.B. Design of experiments using box behnken design in the development, characterization, mathematical modeling, and evaluation of lung targeted nebulized antiviral camostat mesylate loaded pegylated nanosuspension product.J. Drug Deliv. Sci. Technol.20249810581010.1016/j.jddst.2024.105810
    [Google Scholar]
  70. HaqueS.K.M. Application of combined Box–Behnken design with response surface methodology and desirability function in optimizing pectin extraction from fruit peels.J. Sci. Food Agric.2024104114917310.1002/jsfa.1292537574926
    [Google Scholar]
  71. NarukullaS. BogadiS. TallapaneniV. Comparative study between the Full Factorial, Box–Behnken, and Central Composite Designs in the optimization of metronidazole immediate release tablet.Microchem. J.202420711187510.1016/j.microc.2024.111875
    [Google Scholar]
  72. AliH. HanafyA. BafailR. Locally acting budesonide-loaded solid self-microemulsifying drug delivery systems (SMEDDS) for distal ulcerative colitis.Int. J. Nanomedicine202419118191184610.2147/IJN.S48427739558914
    [Google Scholar]
  73. LeeD.H. LimS. KwakS.S. KimJ. Advancements in skin‐mediated drug delivery: Mechanisms, techniques, and applications.Adv. Healthc. Mater.2024137230237510.1002/adhm.20230237538009520
    [Google Scholar]
  74. AmmarH.O. GhorabM. El-NahhasS.A. KamelR. Polymeric matrix system for prolonged delivery of tramadol hydrochloride, part II: Biological evaluation.AAPS PharmSciTech20091031065107010.1208/s12249‑009‑9294‑219653102
    [Google Scholar]
  75. HermanskyS.J. LeungH.W. Cutaneous toxicity studies with methoxy polyethylene glycol-350 (MPEG-350) in rats and rabbits.Food Chem. Toxicol.19973510-111031103910.1016/S0278‑6915(97)87272‑99463538
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878339412250213043818
Loading
/content/journals/raddf/10.2174/0126673878339412250213043818
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test