Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Aquasomes are water-based nanocarriers widely used in pharmaceutical applications for the delivery of various molecules.

Aim

This research examines the preparation and characterization of vitamin C-loaded aquasomes.

Methods

The aquasomes were prepared by using colloidal precipitation and sonication methods. Various characterizations, including particle size, polydispersity index (PDI), and zeta potential, were performed on the core, lactose coating, and final formulation of vitamin C-loaded aquasomes. Further analysis was carried out using Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). Additionally, the release profile of vitamin C from the aquasomes was compared with that of a commercially available vitamin C formulation and a shelf-life analysis was conducted.

Results

The addition of lactose and vitamin C led to an increase in the particle size of the core, from 348 nm to 654 nm, while the zeta potential decreased from -31.9 mV to -12.8 mV. The percent payload was found to be 52.63%. TGA results indicated weight loss in HAP, suggesting thermal degradation, while DSC analysis revealed the melting points of lactose sugars and the thermal behavior of vitamin C. The dissolution results show that vitamin C-loaded aquasomes released 4-6% more of the vitamin in acidic (pH 1.2) and phosphate buffer (pH 6.8) environments over 90 minutes, compared to commercial vitamin C products. The aquasomes exhibited excellent stability, maintaining over 90% of their potency over 90 days.

Conclusion

Vitamin C-loaded aquasomes have been successfully prepared and demonstrated better performance compared to commercial products. This study suggests that aquasomes keep vitamin C stable and may improve its absorption in the body.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878352032250325002719
2025-04-08
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/raddf/19/3/RADDF-19-3-09.html?itemId=/content/journals/raddf/10.2174/0126673878352032250325002719&mimeType=html&fmt=ahah

References

  1. DuJ. CullenJ.J. BuettnerG.R. Ascorbic acid: Chemistry, biology and the treatment of cancer.Biochim. Biophys. Acta Rev. Cancer20121826244345710.1016/j.bbcan.2012.06.00322728050
    [Google Scholar]
  2. PehlivanF.E. VitaminC. An antioxidant agent.Vitamin C201722335
    [Google Scholar]
  3. PadayattyS.J. KatzA. WangY. Vitamin C as an antioxidant: Evaluation of its role in disease prevention.J. Am. Coll. Nutr.2003221183510.1080/07315724.2003.1071927212569111
    [Google Scholar]
  4. LégerD. Reemergence of nutritional deficiencies.Can. Fam. Physician2008541014031406
    [Google Scholar]
  5. PacierC. MartirosyanD.M. VitaminC. Optimal dosages, supplementation and use in disease prevention.Funct. Food Health Dis.2015538910710.31989/ffhd.v5i3.174
    [Google Scholar]
  6. PenningtonJ.A.T. FisherR.A. Food component profiles for fruit and vegetable subgroups.J. Food Compos. Anal.201023541141810.1016/j.jfca.2010.01.008
    [Google Scholar]
  7. RanaN. GhabruA. VaidyaD. Defensive function of fruits and vegetables.J. Pharmacogn. Phytochem.20198318721877
    [Google Scholar]
  8. BendichA. MachlinL.J. ScandurraO. BurtonG.W. WaynerD.D.M. The antioxidant role of vitamin C.Adv. Free Radic. Biol. Med.19862241944410.1016/S8755‑9668(86)80021‑7
    [Google Scholar]
  9. KatouzianI. JafariS.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins.Trends Food Sci. Technol.201653344810.1016/j.tifs.2016.05.002
    [Google Scholar]
  10. VociS. GagliardiA. FrestaM. CoscoD. Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation.Food Res. Int.202216111186910.1016/j.foodres.2022.11186936192989
    [Google Scholar]
  11. MohammadianM. WalyM.I. MoghadamM. Emam-DjomehZ. SalamiM. Moosavi-MovahediA.A. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds.Food Sci. Hum. Wellness20209319921310.1016/j.fshw.2020.04.009
    [Google Scholar]
  12. JainS.S. JagtapP.S. DandN.M. JadhavK.R. KadamV.J. Aquasomes: A novel drug carrier.J. Appl. Pharm. Sci.201221184192
    [Google Scholar]
  13. CegnarM. KristlJ. KosJ. Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours.Expert Opin. Biol. Ther.20055121557156910.1517/14712598.5.12.155716318420
    [Google Scholar]
  14. ChaudharyJ.S. Aquasomes: A new approach for delivering therapeutics: An overview.Asian J. Pharm.20181221910.22377/ajp.v12i02.2369
    [Google Scholar]
  15. ThakareP. ChellampillaiB. KuvarV. ShindeV. MaliA. Exploring the potential of three-layered self-assembled biomaterial-based dry powder inhaler for enhanced structural integrity and lung deposition of bioactive Lysozyme.Bio Nano Sci2024143341335410.21203/rs.3.rs‑3867336/v1
    [Google Scholar]
  16. AyomG.E. MalimaN.M. OwonubiS.J. RevaprasaduN. Aquasomes: A novel nanocarrier system for drug delivery.In: Hasnain MS, Nayak AK, Aminabhavi TM, Eds. Advanced Nanoformulations. United States: Academic Press 2023.
    [Google Scholar]
  17. BanerjeeS. SenK.K. Aquasomes: A novel nanoparticulate drug carrier.J. Drug Deliv. Sci. Technol.20184344645210.1016/j.jddst.2017.11.011
    [Google Scholar]
  18. BwalyaF. ErdemM. KaynakM.S. Formulation optimization, physicochemical characterization, and biocompatibility assessment of curcumin‐loaded aquasomes.Hoboken, New JerseyWilley Online Library202510.1002/nano.202400162
    [Google Scholar]
  19. KommineniS. AhmadS. VengalaP. SubramanyamC.V.S. Sugar coated ceramic nanocarriers for the oral delivery of hydrophobic drugs: Formulation, optimization and evaluation.Drug Dev. Ind. Pharm.201238557758610.3109/03639045.2011.61788421961937
    [Google Scholar]
  20. RujitanapanichS. KumpapanP. WanjanoiP. Synthesis of hydroxyapatite from oyster shell via precipitation.Energy Procedia20145611211710.1016/j.egypro.2014.07.138
    [Google Scholar]
  21. AlbaraqaaweeZ AbdulsadaSA Optimisation of surface characteristics of standard duplex stainless for bio-applications by using electrophoretic deposition: A brief review.Koroze a ochrana materialu 2022;6619610210.2478/kom‑2022‑0013
    [Google Scholar]
  22. GholapA.D. BorudeS.S. MahajanA.M. GholapM.A.D. Aquasomes: A potential drug delivery carrier.Pharmacol Online20113230237
    [Google Scholar]
  23. NanjwadeB.K. HiremathG.M. ManviF.V. SrichanaT. Formulation and evaluation of etoposide loaded aquasomes.J. Nanopharm. Drug Deliv.2013119210110.1166/jnd.2013.1016
    [Google Scholar]
  24. UmashankarM.S. SachdevaR.K. GulatiM. Aquasomes: A promising carrier for peptides and protein delivery.Nanomedicine20106341942610.1016/j.nano.2009.11.00219931422
    [Google Scholar]
  25. RawatM. SinghD. SarafS. SarafS. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme.Drug Dev. Ind. Pharm.200834218118810.1080/0363904070153947918302037
    [Google Scholar]
  26. GoyalA.K. RawatA. MahorS. GuptaP.N. KhatriK. VyasS.P. Nanodecoy system: A novel approach to design hepatitis B vaccine for immunopotentiation.Int. J. Pharm.20063091-222723310.1016/j.ijpharm.2005.11.03716406404
    [Google Scholar]
  27. KhopadeA.J. KhopadeS. JainN.K. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer.Int. J. Pharm.2002241114515410.1016/S0378‑5173(02)00235‑112086730
    [Google Scholar]
  28. VengalaD.P. Carbohydrate stabilized ceramic nanoparticles for the delivery of a poorly soluble drug, lornoxicam.Asian J. Pharm.20171131610.22377/ajp.v11i03.1450
    [Google Scholar]
  29. Bernache-AssollantD. AbabouA. ChampionE. HeughebaertM. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth.J. Eur. Ceram. Soc.200323222924110.1016/S0955‑2219(02)00186‑3
    [Google Scholar]
  30. SajahanN.A. Synthesis and Characterization of Hydroxyapatite from Waste Materials Kuala Lumpar.MalaysiaUniversity of Malaya2017
    [Google Scholar]
  31. ShanmugamB. SrinivasanU.M. Aquasomes nanoformulation for controlled release of drug and improved effectiveness against bacterial infections.Ther. Deliv.20241529510710.4155/tde‑2023‑009638174590
    [Google Scholar]
  32. GirotraL. BajajR. Emerging trends and recent advances in aquasomes: A review.Inventi Rapid Pharm Tech201216
    [Google Scholar]
  33. VladárA.E. HodoroabaV-D. Characterization of nanoparticles by scanning electron microscopy.Characterization of Nanoparticles.10.1016/B978‑0‑12‑814182‑3.00002‑X HodoroabaV-D. UngerW.E.S. ShardA.G. Amsterdam, NetherlandsElsevier2020727
    [Google Scholar]
  34. GoyalA.K. KhatriK. MishraN. Aquasomes--A nanoparticulate approach for the delivery of antigen.Drug Dev. Ind. Pharm.200834121297130510.1080/0363904080207166118850363
    [Google Scholar]
  35. GheisariH. KaramianE. AbdellahiM. A novel hydroxyapatite –Hardystonite nanocomposite ceramic.Ceram. Int.20154145967597510.1016/j.ceramint.2015.01.033
    [Google Scholar]
  36. JuniorE.D. AlmeidaD.J.M.F. SilvaI.N. SilvaM.S.B. FernandesN.S. Evaluation of the release of ascorbic acid in prolonged-release tablets by in vitro dissolution tests.Int. J. Pharm. Sci. Drug Res.201810429730510.25004/IJPSDR.2018.100415
    [Google Scholar]
  37. VengalaP. SubrahmanyamC. GangarajuM. In vitro and in vivo evaluation of piroxicam loaded ceramic nanoparticles.Int. J. Pharm. Sci. Res.201677303309
    [Google Scholar]
  38. Rojas-OviedoI. Salazar-LópezR.A. Reyes-GasgaJ. Quirino-BarredaC.T. Elaboration and structural analysis of aquasomes loaded with Indomethacin.Eur. J. Pharm. Sci.200732322323010.1016/j.ejps.2007.07.00817905573
    [Google Scholar]
  39. Lara-OchoaS. Ortega-LaraW. Guerrero-BeltránC.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications.Pharmaceutics20211310164210.3390/pharmaceutics1310164234683935
    [Google Scholar]
  40. DameraD.P. KajaS. JanardhanamL.S.L. AlimS. VenugantiV.V.K. NagA. Synthesis, detailed characterization, and dual drug delivery application of bsa loaded aquasomes.ACS Appl. Bio Mater.20192104471448410.1021/acsabm.9b0063535021407
    [Google Scholar]
  41. ScimecaM. BischettiS. LamsiraH.K. BonfiglioR. BonannoE. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis.Eur. J. Histochem.2018621284110.4081/ejh.2018.284129569878
    [Google Scholar]
  42. AvulaA. GalorA. BlackwelderP. Application of scanning electron microscopy with energy-dispersive x-ray spectroscopy for analyzing ocular surface particles on schirmer strips.Cornea201736675275610.1097/ICO.000000000000117328350624
    [Google Scholar]
  43. PochapskiD.J. Carvalho dos SantosC. LeiteG.W. PulcinelliS.H. SantilliC.V. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results.Langmuir20213745133791338910.1021/acs.langmuir.1c0205634637312
    [Google Scholar]
  44. IsraelachviliJ.N. Electrostatic Forces between Surfaces in Liquids.Intermolecular and Surface Forces.3rd ed IsraelachviliJ.N. United StatesAcademic Press2011291340
    [Google Scholar]
  45. MichelotA. SardaS. AudinC. Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: Nature of silane–surface interaction.J. Mater. Sci.201550175746575710.1007/s10853‑015‑9122‑x
    [Google Scholar]
  46. PoinernG.E. BrundavanamR.K. MondinosN. JiangZ.T. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method.Ultrason. Sonochem.200916446947410.1016/j.ultsonch.2009.01.00719232507
    [Google Scholar]
  47. WebsterF.X. KiemleD.J. Spectrometric identification of organic compounds.Hoboken, New JerseyJohn Wiley & Sons2005
    [Google Scholar]
  48. BalieiroA.L. SantosR.A. PereiraM.M. Adsorption process of molecularly imprinted silica for extraction of lactose from milk.Braz. J. Chem. Eng.201633236137210.1590/0104‑6632.20160332s20140089
    [Google Scholar]
  49. PanickerY.C. VargheseT.H. PhilipD.F.T-I.R. FT-raman and SERS spectra of vitamin C.Spectrochim. Acta A Mol. Biomol. Spectrosc.2006653-480280410.1016/j.saa.2005.12.04416530470
    [Google Scholar]
  50. TasA.C. X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers.Powder Diffr.200116210210610.1154/1.1330273
    [Google Scholar]
  51. ReleaseI.P.J.P. USA The International Centre for Diffraction Data.Newtown SquareICDD2022
    [Google Scholar]
  52. FawcettT.G. KabekkoduS.N. BlantonJ.R. BlantonT.N. Chemical analysis by diffraction: The Powder Diffraction File™.Powder Diffr.2017322637110.1017/S0885715617000288
    [Google Scholar]
  53. BiltonM.W. Nanoparticulate hydroxyapatite and calcium-based CO2 sorbents.UKUniversity of Leeds2012
    [Google Scholar]
  54. SofroniaA.M. BaiesR. AnghelE.M. MarinescuC.A. TanasescuS. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.Mater. Sci. Eng. C20144315316310.1016/j.msec.2014.07.02325175200
    [Google Scholar]
  55. Martínez-CastañónG. Loyola-RodríguezJ. Zavala-AlonsoN. Preparation and characterization of nanostructured powders of hydroxyapatite.Superf. Vacio2012252101105
    [Google Scholar]
  56. Drapier-BecheN. FanniJ. ParmentierM. Physical and chemical properties of molecular compounds of lactose.J. Dairy Sci.199982122558256310.3168/jds.S0022‑0302(99)75510‑410629801
    [Google Scholar]
  57. YinX. ChenK. ChengH. Chemical stability of ascorbic acid integrated into commercial products: A review on bioactivity and delivery technology.Antioxidants202211115310.3390/antiox1101015335052657
    [Google Scholar]
  58. GoyalV. KumarB. LalK.D. VarshneyP. RanaS.V. Synthesis and characterization of baicalein-loaded aquasomes: An in vitro and in silico perspective for diabetes mellitus.Curr. Drug Discov. Technol.2024215e25012422620910.2174/0115701638263815231226171108
    [Google Scholar]
  59. KaurK. KushP. PandeyR.S. MadanJ. JainU.K. KatareO.P. Stealth lipid coated aquasomes bearing recombinant human interferon-α-2b offered prolonged release and enhanced cytotoxicity in ovarian cancer cells.Biomed. Pharmacother.20156926727610.1016/j.biopha.2014.12.00725661369
    [Google Scholar]
  60. KossovskyN. GelmanA. HnatyszynH.J. Surface-modified diamond nanoparticles as antigen delivery vehicles.Bioconjug. Chem.19956550751110.1021/bc00035a0018974446
    [Google Scholar]
  61. KulkarniS. PrabhakarB. ShendeP. Aquasomes: Advanced vesicular-based nanocarrier systems.Curr. Pharm. Des.202228292404241410.2174/138161282866622072811274135909274
    [Google Scholar]
  62. AlishahiA. MirvaghefiA. TehraniM.R. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles.Food Chem.2011126393594010.1016/j.foodchem.2010.11.086
    [Google Scholar]
  63. CarrA. MagginiS. Vitamin C and immune function.Nutrients2017911121110.3390/nu911121129099763
    [Google Scholar]
  64. MishraD.K. PandeyV. MaheshwariR. GhodeP. TekadeR.K. Cutaneous and transdermal drug delivery: Techniques and delivery systems.Basic Fundamentals of Drug Delivery. TekadeR.K. United StatesAcademic Press201959565010.1016/B978‑0‑12‑817909‑3.00015‑7
    [Google Scholar]
  65. KulkarniS. PrabhakarB. ShendeP. Nanodiamond-based berberine aquasomes for enhancing penetration across epidermis to treat psoriasis.Int. J. Pharm.202465612405110.1016/j.ijpharm.2024.12405138574956
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878352032250325002719
Loading
/content/journals/raddf/10.2174/0126673878352032250325002719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test