Skip to content
2000
image of Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management

Abstract

Introduction

Transdermal delivery systems and wound dressings are essential components of modern healthcare, with ongoing efforts focused on enhancing their efficacy, biocompatibility, and cost-effectiveness. Among emerging innovations, natural compounds, particularly those derived from plants, have shown great promise. Isoquinoline Quaternary Alkaloids (IQAs) are one such class of compounds with notable therapeutic properties, warranting exploration for advanced wound care applications.

Materials and Methods

This review investigates the design, fabrication techniques, and therapeutic potential of IQA-based nano dressings. It also provides a comparative analysis of these novel systems against conventional wound care methods to assess their advantages and clinical relevance.

Results

Dissolving IQA nano dressings exhibit transformative potential in chronic wound management. Their intrinsic properties, such as antimicrobial and anti-inflammatory activity, biocompatibility, and sustained drug release, support enhanced wound healing and reduced treatment burden.

Discussion

Compared to traditional approaches, IQA nano dressings offer improved outcomes and patient compliance, positioning them as a potential paradigm shift in wound care. By integrating nanotechnology with the unique pharmacological attributes of IQAs, these nano dressings demonstrate significant promise in promoting tissue regeneration while minimizing dressing frequency. This innovation holds the potential to revolutionize chronic wound treatment through safer, more effective, and patient-friendly therapeutic strategies.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878330005250326060103
2025-04-11
2025-09-29
Loading full text...

Full text loading...

References

  1. Mulder G. Jones R. Cederholm‐Williams S. Cherry G. Ryan T. Fibrin cuff lysis in chronic venous ulcers treated with a hydrocolloid dressing. Int. J. Dermatol. 1993 32 4 304 306 10.1111/j.1365‑4362.1993.tb04275.x 8486467
    [Google Scholar]
  2. Han G. Ceilley R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017 34 3 599 610 10.1007/s12325‑017‑0478‑y 28108895
    [Google Scholar]
  3. Snyder R.J. Kirsner R.S. Warriner R.A. Lavery L.A. Hanft J.R. Sheehan P. Consensus recommendations on advancing the standard of care for treating neuropathic foot ucers in patients with diabetes. Osto. Wound Manag. 2010 56 4 Suppl S1 24 20424290
    [Google Scholar]
  4. Vijayakumar V. Samal S.K. Mohanty S. Nayak S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 2019 122 137 148 10.1016/j.ijbiomac.2018.10.120 30342131
    [Google Scholar]
  5. Moholkar D.N. Sadalage P.S. Peixoto D. Paiva-Santos A.C. Pawar K.D. Recent advances in biopolymer-based formulations for wound healing applications. Eur. Polym. J. 2021 160 110784 10.1016/j.eurpolymj.2021.110784
    [Google Scholar]
  6. Boateng J.S. Matthews K.H. Stevens H.N.E. Eccleston G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008 97 8 2892 2923 10.1002/jps.21210 17963217
    [Google Scholar]
  7. Dhivya S. Padma V.V. Santhini E. Wound dressings - A review. BioMedicine. 2015 5 4 22 10.7603/s40681‑015‑0022‑9 26615539
    [Google Scholar]
  8. Degreef H.J. How to heal a wound fast. Dermatol. Clin. 1998 16 2 365 375 10.1016/S0733‑8635(05)70019‑X 9589210
    [Google Scholar]
  9. Sarker S.D. Nahar L. Chapter 4 - Organic, and Natural Product Chemistry. Chemistry for Pharmacy Students: General. Hoboken, New Jersey John Wiley & Sons, Ltd. Organic, and Natural Product Chemistry 2013 1 29 10.1002/9781118687529
    [Google Scholar]
  10. Wang X. Feng S. Ding N. He Y. Li C. Li M. Anti-inflammatory effects of berberine hydrochloride in an lps-induced murine model of mastitis. Evid. Bas. Compl. Alternat. Med. 2018 2018 5164314 10.1155/2018/5164314 29849710
    [Google Scholar]
  11. Čerňáková M. Košťálová D. Antimicrobial activity of berberine—a constituent ofMahonia aquifolium. Folia Microbiol. (Praha) 2002 47 4 375 378 10.1007/BF02818693 12422513
    [Google Scholar]
  12. Hostalkova A. Marikova J. Opletal L. Korabecny J. Hulcova D. Kunes J. Novakova L. Perez D.I. Jun D. Kucera T. Andrisano V. Siatka T. Cahlikova L. Isoquinoline alkaloids from berberis vulgaris as potential lead compounds for the treatment of alzheimer’s disease. J. Nat. Prod. 2019 82 2 239 248 10.1021/acs.jnatprod.8b00592 30701972
    [Google Scholar]
  13. Jian-Ling J. Guo-Qiang H. Zhen M. Gao P-J. Antibacterial mechanisms of berberine and reasons for little resistance of bacteria. Chin. Herb. Med. 2010 4 27 35
    [Google Scholar]
  14. Qiu S. Sun H. Zhang A.H. Xu H.Y. Yan G.L. Han Y. Wang X.J. Natural alkaloids: Basic aspects, biological roles, and future perspectives. Chin. J. Nat. Med. 2014 12 6 401 406 10.1016/S1875‑5364(14)60063‑7 24969519
    [Google Scholar]
  15. Bai R. Yao C. Zhong Z. Ge J. Bai Z. Ye X. Xie T. Xie Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem. 2021 213 113165 10.1016/j.ejmech.2021.113165 33454546
    [Google Scholar]
  16. Elsaid M.B. Elnaggar D.M. Owis A.I. AbouZid S.F. Eldahmy S. Production of isoquinoline alkaloids from the in vitro conserved Fumaria parviflora and their in vitro wound healing activity. Nat. Prod. Res. 2022 36 10 2575 2579 10.1080/14786419.2021.1904401 33823691
    [Google Scholar]
  17. Mensah A.Y. Houghton P.J. Dickson R.A. Fleischer T.C. Heinrich M. Bremner P. In vitro evaluation of effects of two ghanaian plants relevant to wound healing. Phyther. Res 2006 20 11 941 944 10.1002/ptr.1978
    [Google Scholar]
  18. Tocco I. Zavan B. Bassetto F. Vindigni V. Nanotechnology-based therapies for skin wound regeneration. J. Nanomater. 2012 2012 1 714134 10.1155/2012/714134
    [Google Scholar]
  19. Mayet N. Choonara Y.E. Kumar P. Tomar L.K. Tyagi C. Du Toit L.C. Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci. 2014 103 8 2211 2230 10.1002/jps.24068 24985412
    [Google Scholar]
  20. Thomas V. Yallapu M.M. Sreedhar B. Bajpai S.K. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J. Biomater. Sci. Polym. Ed. 2009 20 14 2129 2144 10.1163/156856209X410102 19874682
    [Google Scholar]
  21. Bird D. Ravindra N.M. Transdermal drug delivery and patches: An overview. Med. Devi. Sens. 2020 3 6 e10069 10.1002/mds3.10069
    [Google Scholar]
  22. Hosseinpor H. Khaledi A. Esmaeili D. The properties of nanofiber scaffolds of polyurethane-Cinnamomum zeylanicum against pathogens of Pseudomonas aeruginosa and Staphylococcus aureus. Polym. Bull. 2021 78 1 223 245 10.1007/s00289‑019‑03095‑1
    [Google Scholar]
  23. Archana D. Dutta J. Dutta P.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013 57 193 203 10.1016/j.ijbiomac.2013.03.002 23518244
    [Google Scholar]
  24. Ahani E. Montazer M. Toliyat T. Mahmoudi Rad M. Harifi T. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J. Microencapsul. 2017 34 2 121 131 10.1080/02652048.2017.1296500 28609225
    [Google Scholar]
  25. Li T. Sun M. Wu S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials (Basel) 2022 12 5 784 10.3390/nano12050784 35269272
    [Google Scholar]
  26. Zhao X. Wu H. Guo B. Dong R. Qiu Y. Ma P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017 122 34 47 10.1016/j.biomaterials.2017.01.011 28107663
    [Google Scholar]
  27. Kamoun E.A. Kenawy E.R.S. Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017 8 3 217 233 10.1016/j.jare.2017.01.005 28239493
    [Google Scholar]
  28. Plazas E. Avila M M.C. Muñoz D.R. Cuca S L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res. 2022 177 106126 10.1016/j.phrs.2022.106126 35151857
    [Google Scholar]
  29. Li N. Tan S. Cui J. Guo N. Wang W. Zu Y. Jin S. Xu X. Liu Q. Fu Y. PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J. Antibiot. (Tokyo) 2014 67 10 689 696 10.1038/ja.2014.49 24894184
    [Google Scholar]
  30. Liu D. Meng X. Wu D. Qiu Z. Luo H. A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Front. Pharmacol. 2019 10 9 10.3389/fphar.2019.00009 30837865
    [Google Scholar]
  31. Warren D. Wound healing and skin integrity wound healing and skin integrity. Int. J. Heal. Sci. 2013 6 S4 5521 5532 10.7748/phc2013.09.23.7.13.s13
    [Google Scholar]
  32. Herman A. Herman A.P. Herbal products and their active constituents for diabetic wound healing—preclinical and clinical studies: A systematic review. Pharmaceutics 2023 15 1 281 10.3390/pharmaceutics15010281 36678910
    [Google Scholar]
  33. Haque S.T. Saha S.K. Haque M.E. Biswas N. Nanotechnology-based therapeutic applications: In vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 2021 9 23 7705 7747 10.1039/D1BM01211H 34709244
    [Google Scholar]
  34. Liu E. Gao H. Zhao Y. Pang Y. Yao Y. Yang Z. Zhang X. Wang Y. Yang S. Ma X. Zeng J. Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front. Pharmacol. 2022 13 900439 10.3389/fphar.2022.900439 35935866
    [Google Scholar]
  35. Wang W. Lu K. Yu C. Huang Q. Du Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology 2019 17 1 82 10.1186/s12951‑019‑0514‑y 31291960
    [Google Scholar]
  36. Abazari M. Ghaffari A. Rashidzadeh H. Momeni badeleh S. Maleki Y. Current status and future outlook of nano‐based systems for burn wound management. J. Biomed. Mater. Res. B Appl. Biomater. 2020 108 5 1934 1952 10.1002/jbm.b.34535 31886606
    [Google Scholar]
  37. Yandell P. Korzendorfer H. Hettrick H. Vaughn M. Gokoo C. The use of collagen dressings in long-term care: A retrospective case series. Wounds 2011 23 8 243 251 25879235
    [Google Scholar]
  38. Rezvani Ghomi E. Khalili S. Nouri Khorasani S. Esmaeely Neisiany R. Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019 136 27 47738 10.1002/app.47738
    [Google Scholar]
  39. Kajzar F. Pearce E. M. Turovskij N. A. Mukbaniani O. V. Interdisciplinary concepts and research. Key Engineering Materials. 1st Ed. New Jersey Apple Academic Press 2014 2 430
    [Google Scholar]
  40. Li J.Y. Wang X.B. Luo J.G. Kong L.Y. Seasonal variation of alkaloid contents and anti-inflammatory activity of rhizoma coptidis based on fingerprints combined with chemometrics methods. J. Chromatogr. Sci. 2015 53 7 1131 1139 10.1093/chromsci/bmu175 25540292
    [Google Scholar]
  41. Khalaf Y.H. Dawood Y. Khashan A.A. Green biosynthesis of berberine-mediated silver nanorods: Their protective and antidiabetic effects in streptozotocin-induced diabetic rats. Res. Chem. 2023 5 100722 10.1016/j.rechem.2022.100722
    [Google Scholar]
  42. Pei H. Zeng J. He Z. Zong Y. Zhao Y. Li J. Chen W. Du R. Palmatine ameliorates LPS‐induced HT‐22 cells and mouse models of depression by regulating apoptosis and oxidative stress. J. Biochem. Mol. Toxicol. 2023 37 1 e23225 10.1002/jbt.23225 36169195
    [Google Scholar]
  43. Fu G. Chen Z. Qi Y. Li H. Response surface methodology optimization and antimicrobial activity of berberine modified trimethoprim carboxymethyl cellulose. Nord. Pul. Pap. Res. J. 2023 2 271 284 10.1515/npprj‑2022‑0057
    [Google Scholar]
  44. Zhang R. Tian S. Zhang T. Zhang W. Lu Q. Hu Q. Shao H. Guo Y. Luo Q. Antibacterial activity mechanism of coptisine against Pasteurella multocida. Front. Cell. Infect. Microbiol. 2023 13 1207855 10.3389/fcimb.2023.1207855 37502603
    [Google Scholar]
  45. Dhungel J. Marasini B. P. Manandhar E. Rathnayaka R. K. Samarakoon S. R. Shyaula S. L. Cytotoxic activity of alkaloids isolated from Stephania glandulifera miers. J. Biologi. Act. Prod. Nat. 2023 13 2 118 128 10.1080/22311866.2023.2224283
    [Google Scholar]
  46. Liang J. Li X. Bi C. Yu Y. Liu W. Zhang X. Cao W. Sanguinarine, similar to the MICs of spectinomycin, exhibits good anti-Neisseria gonorrhoeae activity in vitro. J. Infect. Chemother. 2023 29 9 927 929 10.1016/j.jiac.2023.05.022 37295648
    [Google Scholar]
  47. Malla R.R. Bhamidipati P. Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem. Pharmacol. 2023 212 115565 10.1016/j.bcp.2023.115565 37086811
    [Google Scholar]
  48. Gu Y. Dong J. Li J. Luo Q. Dong X. Tang G. Zhang J. Du X. Pu Q. He L. Zhao K. Han D. Xin J. Antibacterial activity and mechanism of sanguinarine against Staphylococcus aureus by interfering with the permeability of the cell wall and membrane and inducing bacterial ROS production. Front. Vet. Sci. 2023 10 1121082 10.3389/fvets.2023.1121082 37065245
    [Google Scholar]
  49. Sirin S. Dolanbay N.S. Aslim B. Role of plant derived alkaloids as antioxidant agents for neurodegenerative diseases Heal. Sci. Rev. 2023 6 100071 10.1016/j.hsr.2022.100071
    [Google Scholar]
  50. Rahman A.F.M.M. Alam M.S. Kwon Y. Editorial: Small organic molecules with anticancer activity. Front Chem. 2023 11 1254312 10.3389/fchem.2023.1254312 37681208
    [Google Scholar]
  51. Calvillo-Páez V.I. Plascencia-Jatomea M. Ochoa-Terán A. Del-Toro-Sánchez C.L. González-Vega R.I. González-Martínez S.M. Ochoa Lara K. Tetrandrine derivatives as promising antibacterial agents. ACS Omega 2023 8 31 28156 28164 10.1021/acsomega.3c01368 37576675
    [Google Scholar]
  52. Platella C. Ghirga F. Musumeci D. Quaglio D. Zizza P. Iachettini S. D’Angelo C. Biroccio A. Botta B. Mori M. Montesarchio D. Selective targeting of cancer-related g-quadruplex structures by the natural compound dicentrine. Int. J. Mol. Sci. 2023 24 4 4070 10.3390/ijms24044070 36835480
    [Google Scholar]
  53. Arcaro G. Koga A.Y. Carletto B. Budel G.M. da Rocha Gaspar M.D. Nadal J.M. Preclinical trial of Ocotea puberula (rich.) nees (‘Canela-Guaicá’) in wound healing: Validation of a traditional medicine practice used by indigenous groups in southern Brazil. Evid. Bas. Compl. Alternat. Med. 2023 2023 3641383 10.1155/2023/3641383 36818225
    [Google Scholar]
  54. Chen S. Wei B. Fu Y. A study of the chemical composition and biological activity of Michelia macclurei dandy heartwood: New sources of natural antioxidants, enzyme inhibitors and bacterial inhibitors. Int. J. Mol. Sci. 2023 24 9 7972 10.3390/ijms24097972 37175683
    [Google Scholar]
  55. Bandala C. Cárdenas-Rodríguez N. Mendoza-Torreblanca J.G. Contreras-García I.J. Martínez-López V. Cruz-Hernández T.R. Carro-Rodríguez J. Vargas-Hernández M.A. Ignacio-Mejía I. Alfaro-Rodriguez A. Lara-Padilla E. Therapeutic potential of dopamine and related drugs as anti-inflammatories and antioxidants in neuronal and non-neuronal pathologies. Pharmaceutics 2023 15 2 693 10.3390/pharmaceutics15020693 36840015
    [Google Scholar]
  56. Zhang W. Gao Y. Yang N. Zhang H. Zhang F. Chen H.Q. Meng J. Zhang S.Y. Li W. Sinomenine-loaded microcapsules fabricated by phase reversion emulsification-drying in liquid method: An evaluation of process parameters, characterization, and released properties. J. Bioact. Compat. Polym. 2018 33 4 382 396 10.1177/0883911517751159
    [Google Scholar]
  57. Zhai X. Wang K. Gao X. Yan B. Research progress on chemical constituents and pharmacological activities of Menispermi Rhizoma. Molecules 2023 28 6 2701 10.3390/molecules28062701 36985672
    [Google Scholar]
  58. Song L. Zhao F. Liu Y. Guo X. Wu C. Liu J. Effects of 8-amino-isocorydine, a derivative of isocorydine, on gastric carcinoma cell proliferation and apoptosis. Curr. Ther. Res. Clin. Exp. 2021 94 100624 10.1016/j.curtheres.2021.100624 34306264
    [Google Scholar]
  59. Guo B. Li X. Song S. Chen M. Cheng M. Zhao D. Li F. (−)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity. Oncol. Rep. 2016 35 4 2246 2256 10.3892/or.2016.4594 26821251
    [Google Scholar]
  60. Gao X. Sun B. Hou Y. Liu L. Sun J. Xu F. Li D. Hua H. Anti-breast cancer sinomenine derivatives via mechanisms of apoptosis induction and metastasis reduction. J. Enzyme Inhib. Med. Chem. 2022 37 1 1870 1883 10.1080/14756366.2022.2096020 35801430
    [Google Scholar]
  61. Zhao C. Zhang C. Cui D. Li J. Zhang L. Nian X. Gao M. Li S. Design, synthesis, biological evaluation and silico prediction of novel sinomenine derivatives. Adv. Biomed. 2021 3 6 10.54730/abm.2021.030606
    [Google Scholar]
  62. Hu Y. Li B. Wen L. He K. Study on the anti-endotoxin effect of sinomenine using an Agilent genome array. QJM 2018 111 3 171 178 10.1093/qjmed/hcx234 29240916
    [Google Scholar]
  63. Yuan H. Zhang J. Li F. Li W. Wang H. Retracted: Sinomenine exerts antitumour effect in gastric cancer cells via enhancement of miR‐204 expression. Basic Clin. Pharmacol. Toxicol. 2019 125 5 450 459 10.1111/bcpt.13285 31243880
    [Google Scholar]
  64. Gao F. Dai Z. Zhang T. Gu Y. Cai D. Lu M. Zhang Z. Zeng Q. Shang B. Xu B. Lei H. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory and analgesic agent. RSC Advances 2022 12 46 30001 30007 10.1039/D2RA05558A 36321084
    [Google Scholar]
  65. Kong Y. Li L. Zhao L.G. Yu P. Li D.D. A patent review of berberine and its derivatives with various pharmacological activities (2016–2020). Expert Opin. Ther. Pat. 2022 32 2 211 223 10.1080/13543776.2021.1974001 34455891
    [Google Scholar]
  66. Och A. Zalewski D. Komsta Ł. Kołodziej P. Kocki J. Bogucka-Kocka A. Cytotoxic and proapoptotic activity of sanguinarine, berberine, and extracts of chelidonium majus L. and berberis thunbergii DC. Toward hematopoietic cancer cell lines. Toxins (Basel) 2019 11 9 485 10.3390/toxins11090485 31443589
    [Google Scholar]
  67. Samadian H. Zamiri S. Ehterami A. Farzamfar S. Vaez A. Khastar H. Alam M. Ai A. Derakhshankhah H. Allahyari Z. Goodarzi A. Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci. Rep. 2020 10 1 8312 10.1038/s41598‑020‑65268‑7 32433566
    [Google Scholar]
  68. Gong N. Wang L. An L. Xu Y. Exploring the active ingredients and potential mechanisms of action of sinomenium acutum in the treatment of rheumatoid arthritis based on systems biology and network pharmacology. Front. Mol. Biosci. 2023 10 1065171 10.3389/fmolb.2023.1065171 36923645
    [Google Scholar]
  69. Zhang J.-J. Zhou R. Deng L.-J. Cao G.-Z. Zhang Y. Xu H. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomed. Pharmacoth. 2022 150 112948 10.1016/j.biopha.2022.112948 35430394
    [Google Scholar]
  70. Hu H. Luo F. Zhang Q. Xu M. Chen X. Liu Z. Xu H. Wang L. Ye F. Zhang K. Chen B. Zheng S. Jin J. Berberine coated biocomposite hemostatic film based alginate as absorbable biomaterial for wound healing. Int. J. Biol. Macromol. 2022 209 Pt B 1731 1744 10.1016/j.ijbiomac.2022.04.132 35487376
    [Google Scholar]
  71. Lin J. Li C. Zhao Y. Hu J. Zhang L.M. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl. Mater. Interfaces 2012 4 2 1050 1057 10.1021/am201669z 22242622
    [Google Scholar]
  72. Hu H. Zhong D. Li W. Lin X. He J. Sun Y. Wu Y. Shi M. Chen X. Xu F. Zhou M. Microalgae-based bioactive hydrogel loaded with quorum sensing inhibitor promotes infected wound healing. Nano Today 2022 42 101368 10.1016/j.nantod.2021.101368
    [Google Scholar]
  73. Paudel K.R. Mehta M. Yin G.H.S. Yen L.L. Malyla V. Patel V.K. Panneerselvam J. Madheswaran T. MacLoughlin R. Jha N.K. Gupta P.K. Singh S.K. Gupta G. Kumar P. Oliver B.G. Hansbro P.M. Chellappan D.K. Dua K. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Environ. Sci. Pollut. Res. Int. 2022 29 31 46830 46847 10.1007/s11356‑022‑19158‑2 35171422
    [Google Scholar]
  74. Shrivastav A. Mishra A.K. Gupta A.K. Evaluation of wound healing potential of root bark extract of Berberis aristata and molecular docking analysis of Berberis phytoconstituents. Curr. Drug Discov. Technol. 2023 20 3 e210223213867 10.2174/1570163820666230221154851 36824006
    [Google Scholar]
  75. Zhou W.-C. Tan P.-F. Chen X.-H. Cen Y. You C. Tan L. Berberine-incorporated shape memory fiber applied as a novel surgical suture. Front. Pharmacol. 2019 10 1506 10.3389/fphar.2019.01506 31998123
    [Google Scholar]
  76. Xie Y.Y. Zhang Y-W. Liu X-Z. Ma X-F. Qin X-T. Jia S-R. Zhong C. Aggregation-induced emission-active amino acid/berberine hydrogels with enhanced photodynamic antibacterial and anti-biofilm activity. Chem. Eng. J. 2021 413 127542 10.1016/j.cej.2020.127542
    [Google Scholar]
  77. Hashemi M. Kalalinia F. Razi M. Moameri F. Bazzaz B.S.F. Iranshahi M. Movaffagh J. Evaluation of the efficiency of chitosan hydrogel containing berberis integerrima root extract on a full-thickness skin wound in a rat model. Macromol. Res. 2022 30 8 527 535 10.1007/s13233‑022‑0043‑7
    [Google Scholar]
  78. Lu J. Wang Z. Cai D. Lin X. Huang X. Yuan Z. Zhang Y. Lei H. Wang P. Carrier-free binary self-assembled nanomedicines originated from traditional herb medicine with multifunction to accelerate mrsa-infected wound healing by antibacterial, anti-inflammation and promoting angiogenesis. Int. J. Nanomedicine 2023 18 4885 4906 10.2147/IJN.S422944 37667771
    [Google Scholar]
  79. Neag M.A. Mocan A. Echeverría J. Pop R.M. Bocsan C.I. Crişan G. Buzoianu A.D. Berberine: Botanical Occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018 9 557 10.3389/fphar.2018.00557 30186157
    [Google Scholar]
  80. Zheng T. Chen H. Wu C. Wang J. Cui M. Ye H. Feng Y. Li Y. Dong Z. Fabrication of co-assembly from berberine and tannic acid for multidrug-resistant bacteria infection treatment. Pharmaceutics 2023 15 7 1782 10.3390/pharmaceutics15071782 37513970
    [Google Scholar]
  81. Ma W. Zhu M. Zhang D. Yang L. Yang T. Li X. Zhang Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine 2017 25 45 51 10.1016/j.phymed.2016.12.013 28190470
    [Google Scholar]
  82. Lee B. Sur B. Yeom M. Shim I. Lee H. Hahm D.H. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats. Biomol. Ther. (Seoul) 2014 22 3 213 222 10.4062/biomolther.2014.032 25009702
    [Google Scholar]
  83. Guterres Z.R. da Silva A.F.G. Garcez W.S. Garcez F.R. Fernandes C.A. Garcez F.R. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013 757 1 91 96 10.1016/j.mrgentox.2013.07.004 23892138
    [Google Scholar]
  84. Bashir D.J. Manzoor S. Sarfaraj M. Afzal S.M. Bashir M. Nidhi A. Magnoflorine-loaded chitosan collagen nanocapsules ameliorate cognitive deficit in scopolamine-induced alzheimer’s disease-like conditions in a rat model by downregulating il-1β, il-6, tnf-α, and oxidative stress and upregulating brain-derived neurotrophi. ACS Omega 2022 8 2 2227 2236 10.1021/acsomega.2c06467 36687096
    [Google Scholar]
  85. Szalak R. Matysek M. Koval M. Dziedzic M. Kowalczuk-Vasilev E. Kruk-Slomka M. Koch W. Arciszewski M.B. Kukula-Koch W. Magnoflorine from Berberis vulgaris roots—impact on hippocampal neurons in mice after short-term exposure. Int. J. Mol. Sci. 2023 24 8 7166 10.3390/ijms24087166 37108329
    [Google Scholar]
  86. Kim J. Ha Quang Bao T. Shin Y.K. Kim K.Y. Antifungal activity of magnoflorine against Candida strains. World J. Microbiol. Biotechnol. 2018 34 11 167 10.1007/s11274‑018‑2549‑x 30382403
    [Google Scholar]
  87. Luo N. Jin L. Yang C. Zhu Y. Ye X. Li X. Zhang B. Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum. J. Antibiot. (Tokyo) 2021 74 3 206 214 10.1038/s41429‑020‑00380‑4 33082529
    [Google Scholar]
  88. Baran M. Miziak P. Bonio K. Magnoflorine – a compound with anti-tumour activity. J. Pre-Clini. Clini. Res. 2020 14 3 98 101 10.26444/jpccr/127326
    [Google Scholar]
  89. Patel M.B. Mishra S.M. Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. J. Funct. Foods 2012 4 1 79 86 10.1016/j.jff.2011.08.002
    [Google Scholar]
  90. Zhong L. Qin Y. Liu M. Sun J. Tang H. Zeng Y. Zhang J. Wang W. Liang G. Zhao X. Magnoflorine improves cognitive deficits and pathology of Alzheimer’s disease via inhibiting of JNK signaling pathway. Phytomedicine 2023 112 154714 10.1016/j.phymed.2023.154714 36812746
    [Google Scholar]
  91. Kukula-Koch W. Kruk-Słomka M. Stępnik K. Szalak R. Biała G. The evaluation of pro-cognitive and antiamnestic properties of berberine and magnoflorine isolated from barberry species by centrifugal partition chromatography (CPC), in relation to QSAR modelling. Int. J. Mol. Sci. 2017 18 12 2511 10.3390/ijms18122511 29186770
    [Google Scholar]
  92. Okon E. Kukula-Koch W. Halasa M. Jarzab A. Baran M. Dmoszynska-Graniczka M. Angelis A. Kalpoutzakis E. Guz M. Stepulak A. Wawruszak A. Magnoflorine—isolation and the anticancer potential against nci-h1299 lung, mda-mb-468 breast, t98g glioma, and te671 rhabdomyosarcoma cancer cells. Biomolecules 2020 10 11 1532 10.3390/biom10111532 33182753
    [Google Scholar]
  93. Ueda M. Hirayama Y. Ogawa H. Nomura T. Terashi H. Sakakibara S. Vasodilating effects of antispasmodic agents and their cytotoxicity in vascular smooth muscle cells and endothelial cells—potential application in microsurgery. Int. J. Mol. Sci. 2023 24 13 10850 10.3390/ijms241310850 37446027
    [Google Scholar]
  94. Gaber A. Alsanie W.F. Kumar D.N. Refat M.S. Saied E.M. Novel papaverine metal complexes with potential anticancer activities. Molecules 2020 25 22 5447 10.3390/molecules25225447 33233775
    [Google Scholar]
  95. Heffez D.S. Leong K.W. Sustained release of papaverine for the treatment of cerebral vasospasm: In vitro evaluation of release kinetics and biological activity. J. Neurosurg. 1992 77 5 783 787 10.3171/jns.1992.77.5.0783 1403123
    [Google Scholar]
  96. Wang F. Zhang Y. Pang R. Shi S. Wang R. Scoulerine promotes cytotoxicity and attenuates stemness in ovarian cancer by targeting PI3K/AKT/mTOR axis. Acta Pharm. 2023 73 3 475 488 10.2478/acph‑2023‑0021 37708956
    [Google Scholar]
  97. Tian J. Mo J. Xu L. Zhang R. Qiao Y. Liu B. Jiang L. Ma S. Shi G. Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells. Chem. Biol. Interact. 2020 327 109184 10.1016/j.cbi.2020.109184 32590070
    [Google Scholar]
  98. Wangchuk P. Keller P.A. Pyne S.G. Willis A.C. Kamchonwongpaisan S. Antimalarial alkaloids from a Bhutanese traditional medicinal plant Corydalis dubia. J. Ethnopharmacol. 2012 143 1 310 313 10.1016/j.jep.2012.06.037 22796506
    [Google Scholar]
  99. Hitotsuyanagi Y. Nishimura K. Ikuta H. Takeya K. Itokawa H. ChemInform abstract: Syntheses of antitumor morphinane alkaloids, sinococuline (IX) and 6‐ epi‐ (XI), 7‐epi‐ (X), and 6‐epi‐7‐epi‐sinococuline (XII), from sinomenine (I). ChemInform 1995 26 48 chin.199548230 10.1002/chin.199548230
    [Google Scholar]
  100. Kilic M. Sener B. Kaya E. Anti-cholinergic activities of Turkish Corydalis DC. species. Phytochem. Lett. 2021 45 142 156 10.1016/j.phytol.2021.08.006
    [Google Scholar]
  101. Wangchuk P. Sastraruji T. Taweechotipatr M. Keller P.A. Pyne S.G. Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids-scoulerine and cheilanthifoline. Nat. Prod. Commun. 2016 11 12 1934578X1601101207 10.1177/1934578X1601101207 30508337
    [Google Scholar]
  102. Shukla R. Ahuja R. Beesetti H. Garg A. Aggarwal C. Chaturvedi S. Nayyar K. Arora U. Lal A.A. Khanna N. Sinococuline, a bioactive compound of Cocculus hirsutus has potent anti-dengue activity. Sci. Rep. 2023 13 1 1026 10.1038/s41598‑023‑27927‑3 36658277
    [Google Scholar]
  103. Ho J. Leung Y. Chan C. Herbal medicine in the treatment of cancer. Curr. Med. Chem. Anticancer Agents 2002 2 2 209 214 10.2174/1568011023354164 12678744
    [Google Scholar]
  104. Warowicka A. Nawrot R. Goździcka-Józefiak A. Antiviral activity of berberine. Arch. Virol. 2020 165 9 1935 1945 10.1007/s00705‑020‑04706‑3 32594322
    [Google Scholar]
  105. Kocić B.D. Dimitrijević M.V. Miladinović L.C. Marković M.S. Ranković G.Ž. Miladinović D.L. In vitro anti-helicobacter pylori activity of berberine and barberry extracts: A preliminary report. Nat. Prod. Commun. 2019 14 6 1934578X19857905 10.1177/1934578X19857905
    [Google Scholar]
  106. Liu Y. Long S. Zhang S. Tan Y. Wang T. Wu Y. Jiang T. Liu X. Peng D. Liu Z. Synthesis and antioxidant activities of berberine 9- O -benzoic acid derivatives. RSC Advances 2021 11 29 17611 17621 10.1039/D1RA01339D 35480221
    [Google Scholar]
  107. Nguyen H.T. Pham T.N. Le A.T. Thuy N.T. Huy T.Q. Nguyen T.T.T. Antibacterial activity of a berberine nanoformulation. Beilstein J. Nanotechnol. 2022 13 641 652 10.3762/bjnano.13.56 35923171
    [Google Scholar]
  108. Luo A. Fan Y. Antioxidant activities of berberine hydrochloride. J. Med. Plants Res. 2011 5 16 3702 3707
    [Google Scholar]
  109. Xu J. Rong S. Qin Z. Shen G. Wu Y. Zhang Z. Qian K. Preparation of Berberine@carbon Dots Nano-Formulation: Synthesis, Characterization and Herbicidal Activity against Echinochloa crus-galli and Amaranthus retroflexus Two Common Species of Weed. Nanomaterials (Basel) 2022 12 24 4482 10.3390/nano12244482 36558335
    [Google Scholar]
  110. Das K. Iyer K.R. Orfali R. Asdaq S.M.B. Alotaibi N.S. Alotaibi F.S. Alshehri S. Quadri M.S.A. Almarek A. Makhashin N.B. Alrashed A.A. Mohzari Y.A. Ghoneim M. In silico studies and evaluation of in vitro antidiabetic activity of berberine from ethanol seed extract of Coscinium fenestratum (Gaertn.) Colebr. J. King Saud Univ. Sci. 2023 35 5 102666 10.1016/j.jksus.2023.102666
    [Google Scholar]
  111. Milata V. Svedova A. Barbierikova Z. Holubkova E. Cipakova I. Cholujova D. Jakubikova J. Panik M. Jantova S. Brezova V. Cipak L. Synthesis and anticancer activity of novel 9-O-substituted berberine derivatives. Int. J. Mol. Sci. 2019 20 9 2169 10.3390/ijms20092169 31052469
    [Google Scholar]
  112. Milani G. Cavalluzzi M.M. Solidoro R. Salvagno L. Quintieri L. Di Somma A. Rosato A. Corbo F. Franchini C. Duilio A. Caputo L. Habtemariam S. Lentini G. Molecular simplification of natural products: Synthesis, antibacterial activity, and molecular docking studies of berberine open models. Biomedicines 2021 9 5 452 10.3390/biomedicines9050452 33922200
    [Google Scholar]
  113. Utami A.R. Maksum I.P. Deawati Y. Berberine and its study as an antidiabetic compound. Biology (Basel) 2023 12 7 973 10.3390/biology12070973 37508403
    [Google Scholar]
  114. Kumari A. Singla R. Guliani A. Yadav S.K. Nanoencapsulation for drug delivery. EXCLI J. 2014 13 265 286 26417260
    [Google Scholar]
  115. Gul A. Gallus I. Tegginamath A. Maryska J. Yalcinkaya F. Electrospun antibacterial nanomaterials for wound dressings applications. Membranes (Basel) 2021 11 12 908 10.3390/membranes11120908 34940410
    [Google Scholar]
  116. Hu W. Wang Z. Zha Y. Gu X. You W. Xiao Y. Wang X. Zhang S. Wang J. High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration. Adv. Healthc. Mater. 2020 9 23 2000035 10.1002/adhm.202000035 32378346
    [Google Scholar]
  117. Omidian H. Chowdhury S.D. Advancements and applications of injectable hydrogel composites in biomedical research and therapy. Gels 2023 9 7 533 10.3390/gels9070533 37504412
    [Google Scholar]
  118. Wang M. Wang C. Chen M. Xi Y. Cheng W. Mao C. Xu T. Zhang X. Lin C. Gao W. Guo Y. Lei B. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano 2019 13 9 10279 10293 10.1021/acsnano.9b03656 31483606
    [Google Scholar]
  119. Bhatt T. Kumar H. Jain R. Jain V. Emerging applications of electrospun nanofibers using various fabrication techniques. Ind. J. Pharmaceut. Educ. Res. 2023 57 3 1966 1967 10.5530/ijper.57.3.80
    [Google Scholar]
  120. Nematpour N. Farhadian N. Ebrahimi K.S. Arkan E. Seyedi F. Khaledian S. Shahlaei M. Moradi S. Sustained release nanofibrous composite patch for transdermal antibiotic delivery. Colloids Surf. A Physicochem. Eng. Asp. 2020 586 124267 10.1016/j.colsurfa.2019.124267
    [Google Scholar]
  121. Zhang Y. Li K. Shen L. Yu L. Ding T. Ma B. Ge S. Li J. Metal phenolic nanodressing of porous polymer scaffolds for enhanced bone regeneration via interfacial gating growth factor release and stem cell differentiation. ACS Appl. Mater. Interfaces 2022 14 1 268 277 10.1021/acsami.1c19633 34961319
    [Google Scholar]
  122. Hu X. Liu S. Zhou G. Huang Y. Xie Z. Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014 185 12 21 10.1016/j.jconrel.2014.04.018 24768792
    [Google Scholar]
  123. Pillay V. Dott C. Choonara Y.E. Tyagi C. Tomar L. Kumar P. du Toit L.C. Ndesendo V.M.K. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013 2013 1 789289 10.1155/2013/789289
    [Google Scholar]
  124. Liu M. Duan X.P. Li Y.M. Yang D.P. Long Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C 2017 76 1413 1423 10.1016/j.msec.2017.03.034 28482508
    [Google Scholar]
  125. Elnaggar M. Shalaby E. Abd-Al-Aleem A.A.A. Youssef A. Nanomaterials and nanofibers as wound dressing mats: An overview of the fundamentals, properties and applications. Egypt. J. Chem. 2021 0 0 0 10.21608/ejchem.2021.91351.4345
    [Google Scholar]
  126. Mascarenhas-Melo F. Gonçalves M.B.S. Peixoto D. Pawar K.D. Bell V. Chavda V.P. Zafar H. Raza F. Paiva-Santos A.C. Application of nanotechnology in management and treatment of diabetic wounds. J. Drug Target. 2022 30 10 1 21 10.1080/1061186X.2022.2092624 35735061
    [Google Scholar]
  127. Augustine R. Electrospun polymer nanocomposite scaffolds containing metal oxide nanoparticles for diabetic wound healing Qat. Founda. Ann. Res. Confer. Proc. 2019 2018 2 HBPD1163 10.5339/qfarc.2018.HBPD1163
    [Google Scholar]
  128. Rahmani H. Mahmoudi Najafi S.H. Ashori A. Arab Fashapoyeh M. Aziz Mohseni F. Torkaman S. Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydr. Polym. 2020 230 115606 10.1016/j.carbpol.2019.115606 31887878
    [Google Scholar]
  129. Zhao Y. Wang Z. Lv Y. Li S. Ge W. He C. Conformal fabrication of thick superhydrophobic coatings via reduction of sorption barrier against multiple damages. Surf. Coati. Technol. 2022 444 128658 10.1016/j.surfcoat.2022.128658
    [Google Scholar]
  130. Augustine R. Rehman S.R.U. Ahmed R. Zahid A.A. Sharifi M. Falahati M. Hasan A. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int. J. Biol. Macromol. 2020 156 153 170 10.1016/j.ijbiomac.2020.03.207 32229203
    [Google Scholar]
  131. Miguel S.P. Moreira A.F. Correia I.J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol. 2019 127 460 475 10.1016/j.ijbiomac.2019.01.072 30660567
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878330005250326060103
Loading
/content/journals/raddf/10.2174/0126673878330005250326060103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test