Skip to content
2000
Volume 19, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Transdermal delivery systems and wound dressings are essential components of modern healthcare, with ongoing efforts focused on enhancing their efficacy, biocompatibility, and cost-effectiveness. Among emerging innovations, natural compounds, particularly those derived from plants, have shown great promise. Isoquinoline Quaternary Alkaloids (IQAs) are one such class of compounds with notable therapeutic properties, warranting exploration for advanced wound care applications.

Methods

This review investigates the design, fabrication techniques, and therapeutic potential of IQA-based nano dressings. It also provides a comparative analysis of these novel systems against conventional wound care methods to assess their advantages and clinical relevance.

Results

Dissolving IQA nano dressings exhibit transformative potential in chronic wound management. Their intrinsic properties, such as antimicrobial and anti-inflammatory activity, biocompatibility, and sustained drug release, support enhanced wound healing and reduced treatment burden.

Discussion

Compared to traditional approaches, IQA nano dressings offer improved outcomes and patient compliance, positioning them as a potential paradigm shift in wound care. By integrating nanotechnology with the unique pharmacological attributes of IQAs, these nano dressings demonstrate significant promise in promoting tissue regeneration while minimizing dressing frequency. This innovation holds the potential to revolutionize chronic wound treatment through safer, more effective, and patient-friendly therapeutic strategies.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878330005250326060103
2025-12-01
2025-11-16
Loading full text...

Full text loading...

References

  1. MulderG. JonesR. Cederholm‐WilliamsS. CherryG. RyanT. Fibrin cuff lysis in chronic venous ulcers treated with a hydrocolloid dressing.Int. J. Dermatol.199332430430610.1111/j.1365‑4362.1993.tb04275.x 8486467
    [Google Scholar]
  2. HanG. CeilleyR. Chronic wound healing: A review of current management and treatments.Adv. Ther.201734359961010.1007/s12325‑017‑0478‑y 28108895
    [Google Scholar]
  3. SnyderR.J. KirsnerR.S. WarrinerR.A. LaveryL.A. HanftJ.R. SheehanP. Consensus recommendations on advancing the standard of care for treating neuropathic foot ucers in patients with diabetes.Osto. Wound Manag.2010564 SupplS1S24 20424290
    [Google Scholar]
  4. VijayakumarV. SamalS.K. MohantyS. NayakS.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management.Int. J. Biol. Macromol.201912213714810.1016/j.ijbiomac.2018.10.120 30342131
    [Google Scholar]
  5. MoholkarD.N. SadalageP.S. PeixotoD. Paiva-SantosA.C. PawarK.D. Recent advances in biopolymer-based formulations for wound healing applications.Eur. Polym. J.202116011078410.1016/j.eurpolymj.2021.110784
    [Google Scholar]
  6. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  7. DhivyaS. PadmaV.V. SanthiniE. Wound dressings - A review.Biomedicine2015542210.7603/s40681‑015‑0022‑9 26615539
    [Google Scholar]
  8. DegreefH.J. How to heal a wound fast.Dermatol. Clin.199816236537510.1016/S0733‑8635(05)70019‑X 9589210
    [Google Scholar]
  9. SarkerS.D. NaharL. Chapter 4 - Organic, and Natural Product Chemistry.Chemistry for Pharmacy Students: General. Hoboken, New JerseyJohn Wiley & Sons, Ltd.201312910.1002/9781118687529
    [Google Scholar]
  10. WangX. FengS. DingN. HeY. LiC. LiM. Anti-inflammatory effects of berberine hydrochloride in an lps-induced murine model of mastitis.Evid Bas Compl Alternat Med20182018516431410.1155/2018/5164314 29849710
    [Google Scholar]
  11. ČerňákováM. KošťálováD. Antimicrobial activity of berberine—a constituent ofMahonia aquifolium.Folia Microbiol. (Praha)200247437537810.1007/BF02818693 12422513
    [Google Scholar]
  12. HostalkovaA. MarikovaJ. OpletalL. Isoquinoline alkaloids from Berberis vulgaris as potential lead compounds for the treatment of alzheimer’s disease.J. Nat. Prod.201982223924810.1021/acs.jnatprod.8b00592 30701972
    [Google Scholar]
  13. Jian-LingJ. Guo-QiangH. ZhenM. GaoP-J. Antibacterial mechanisms of berberine and reasons for little resistance of bacteria.Chin. Herb. Med.201042735
    [Google Scholar]
  14. QiuS. SunH. ZhangA.H. Natural alkaloids: Basic aspects, biological roles, and future perspectives.Chin. J. Nat. Med.201412640140610.1016/S1875‑5364(14)60063‑7 24969519
    [Google Scholar]
  15. BaiR. YaoC. ZhongZ. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation.Eur. J. Med. Chem.202121311316510.1016/j.ejmech.2021.113165 33454546
    [Google Scholar]
  16. ElsaidM.B. ElnaggarD.M. OwisA.I. AbouZidS.F. EldahmyS. Production of isoquinoline alkaloids from the in vitro conserved Fumaria parviflora and their in vitro wound healing activity.Nat. Prod. Res.202236102575257910.1080/14786419.2021.1904401 33823691
    [Google Scholar]
  17. MensahA.Y. HoughtonP.J. DicksonR.A. FleischerT.C. HeinrichM. BremnerP. In vitro evaluation of effects of two ghanaian plants relevant to wound healing.Phyther. Res.2006201194194410.1002/ptr.1978
    [Google Scholar]
  18. ToccoI. ZavanB. BassettoF. VindigniV. Nanotechnology-based therapies for skin wound regeneration.J. Nanomater.20122012171413410.1155/2012/714134
    [Google Scholar]
  19. MayetN. ChoonaraY.E. KumarP. A comprehensive review of advanced biopolymeric wound healing systems.J. Pharm. Sci.201410382211223010.1002/jps.24068 24985412
    [Google Scholar]
  20. ThomasV. YallapuM.M. SreedharB. BajpaiS.K. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application.J. Biomater. Sci. Polym. Ed.200920142129214410.1163/156856209X410102 19874682
    [Google Scholar]
  21. BirdD. RavindraN.M. Transdermal drug delivery and patches: An overview.Med. Devi. Sens.202036e1006910.1002/mds3.10069
    [Google Scholar]
  22. HosseinporH. KhalediA. EsmaeiliD. The properties of nanofiber scaffolds of polyurethane-Cinnamomum zeylanicum against pathogens of Pseudomonas aeruginosa and Staphylococcus aureus.Polym. Bull.202178122324510.1007/s00289‑019‑03095‑1
    [Google Scholar]
  23. ArchanaD. DuttaJ. DuttaP.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies.Int. J. Biol. Macromol.20135719320310.1016/j.ijbiomac.2013.03.002 23518244
    [Google Scholar]
  24. AhaniE. MontazerM. ToliyatT. Mahmoudi RadM. HarifiT. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity.J. Microencapsul.201734212113110.1080/02652048.2017.1296500 28609225
    [Google Scholar]
  25. LiT. SunM. WuS. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications.Nanomaterials (Basel)202212578410.3390/nano12050784 35269272
    [Google Scholar]
  26. ZhaoX. WuH. GuoB. DongR. QiuY. MaP.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.Biomaterials2017122344710.1016/j.biomaterials.2017.01.011 28107663
    [Google Scholar]
  27. KamounE.A. KenawyE.R.S. ChenX. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings.J. Adv. Res.20178321723310.1016/j.jare.2017.01.005 28239493
    [Google Scholar]
  28. PlazasE. AvilaM.M.C. MuñozD.R. CucaS.L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases.Pharmacol. Res.202217710612610.1016/j.phrs.2022.106126 35151857
    [Google Scholar]
  29. LiN. TanS. CuiJ. PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane.J. Antibiot. (Tokyo)2014671068969610.1038/ja.2014.49 24894184
    [Google Scholar]
  30. LiuD. MengX. WuD. QiuZ. LuoH. A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine.Front. Pharmacol.201910910.3389/fphar.2019.00009 30837865
    [Google Scholar]
  31. WarrenD. Wound healing and skin integrity wound healing and skin integrity.Int. J. Health Sci.20136S45521553210.7748/phc2013.09.23.7.13.s13
    [Google Scholar]
  32. HermanA. HermanA.P. Herbal products and their active constituents for diabetic wound healing—Preclinical and clinical studies.A systematic review. Pharmaceutics.202315128110.3390/pharmaceutics15010281 36678910
    [Google Scholar]
  33. HaqueS.T. SahaS.K. HaqueM.E. BiswasN. Nanotechnology-based therapeutic applications: In vitro and in vivo clinical studies for diabetic wound healing.Biomater. Sci.20219237705774710.1039/D1BM01211H 34709244
    [Google Scholar]
  34. LiuE. GaoH. ZhaoY. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence.Front. Pharmacol.20221390043910.3389/fphar.2022.900439 35935866
    [Google Scholar]
  35. WangW. LuK. YuC. HuangQ. DuY.Z. Nano-drug delivery systems in wound treatment and skin regeneration.J. Nanobiotechnology20191718210.1186/s12951‑019‑0514‑y 31291960
    [Google Scholar]
  36. AbazariM. GhaffariA. RashidzadehH. Momeni badeleh S, Maleki Y. Current status and future outlook of nano‐based systems for burn wound management.J. Biomed. Mater. Res. B Appl. Biomater.202010851934195210.1002/jbm.b.34535 31886606
    [Google Scholar]
  37. YandellP. KorzendorferH. HettrickH. VaughnM. GokooC. The use of collagen dressings in long-term care: A retrospective case series.Wounds2011238243251 25879235
    [Google Scholar]
  38. Rezvani GhomiE. KhaliliS. Nouri KhorasaniS. Esmaeely NeisianyR. RamakrishnaS. Wound dressings: Current advances and future directions.J. Appl. Polym. Sci.2019136274773810.1002/app.47738
    [Google Scholar]
  39. KajzarF. PearceE.M. TurovskijN.A. MukbanianiO.V. Interdisciplinary concepts and research.Key Engineering Materials. 1st Ed.. New JerseyApple Academic Press20142430
    [Google Scholar]
  40. LiJ.Y. WangX.B. LuoJ.G. KongL.Y. Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods.J. Chromatogr. Sci.20155371131113910.1093/chromsci/bmu175 25540292
    [Google Scholar]
  41. KhalafY.H. DawoodY. KhashanA.A. Green biosynthesis of berberine-mediated silver nanorods: Their protective and antidiabetic effects in streptozotocin-induced diabetic rats.Res Chem2023510072210.1016/j.rechem.2022.100722
    [Google Scholar]
  42. PeiH. ZengJ. HeZ. Palmatine ameliorates LPS‐induced HT‐22 cells and mouse models of depression by regulating apoptosis and oxidative stress.J. Biochem. Mol. Toxicol.2023371e2322510.1002/jbt.23225 36169195
    [Google Scholar]
  43. FuG. ChenZ. QiY. LiH. Response surface methodology optimization and antimicrobial activity of berberine modified trimethoprim carboxymethyl cellulose.Nord. Pulp Paper Res. J.2023227128410.1515/npprj‑2022‑0057
    [Google Scholar]
  44. ZhangR. TianS. ZhangT. Antibacterial activity mechanism of coptisine against Pasteurella multocida.Front. Cell. Infect. Microbiol.202313120785510.3389/fcimb.2023.1207855 37502603
    [Google Scholar]
  45. DhungelJ. MarasiniB.P. ManandharE. RathnayakaR.K. SamarakoonS.R. ShyaulaS.L. Cytotoxic activity of alkaloids isolated from Stephania glandulifera miers.J Biologi Act Prod Nat202313211812810.1080/22311866.2023.2224283
    [Google Scholar]
  46. LiangJ. LiX. BiC. Sanguinarine, similar to the MICs of spectinomycin, exhibits good anti-Neisseria gonorrhoeae activity in vitro.J. Infect. Chemother.202329992792910.1016/j.jiac.2023.05.022 37295648
    [Google Scholar]
  47. MallaR.R. BhamidipatiP. AdemM. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer.Biochem. Pharmacol.202321211556510.1016/j.bcp.2023.115565 37086811
    [Google Scholar]
  48. GuY. DongJ. LiJ. Antibacterial activity and mechanism of sanguinarine against Staphylococcus aureus by interfering with the permeability of the cell wall and membrane and inducing bacterial ROS production.Front. Vet. Sci.202310112108210.3389/fvets.2023.1121082 37065245
    [Google Scholar]
  49. SirinS. DolanbayN.S. AslimB. Role of plant derived alkaloids as antioxidant agents for neurodegenerative diseases Heal.Sci. Rev.2023610007110.1016/j.hsr.2022.100071
    [Google Scholar]
  50. RahmanA.F.M.M. AlamM.S. KwonY. Editorial: Small organic molecules with anticancer activity.Front Chem.202311125431210.3389/fchem.2023.1254312 37681208
    [Google Scholar]
  51. Calvillo-PáezV.I. Plascencia-JatomeaM. Ochoa-TeránA. Tetrandrine derivatives as promising antibacterial agents.ACS Omega2023831281562816410.1021/acsomega.3c01368 37576675
    [Google Scholar]
  52. PlatellaC. GhirgaF. MusumeciD. Selective targeting of cancer-related g-quadruplex structures by the natural compound dicentrine.Int. J. Mol. Sci.2023244407010.3390/ijms24044070 36835480
    [Google Scholar]
  53. ArcaroG. KogaA.Y. CarlettoB. BudelG.M. da Rocha GasparM.D. NadalJ.M. Preclinical trial of Ocotea puberula (rich.) nees (‘Canela-Guaicá’) in wound healing: Validation of a traditional medicine practice used by indigenous groups in southern Brazil.Evid Bas Compl Alternat Med20232023364138310.1155/2023/3641383 36818225
    [Google Scholar]
  54. ChenS. WeiB. FuY. A study of the chemical composition and biological activity of Michelia macclurei dandy heartwood: New sources of natural antioxidants, enzyme inhibitors and bacterial inhibitors.Int. J. Mol. Sci.2023249797210.3390/ijms24097972 37175683
    [Google Scholar]
  55. BandalaC. Cárdenas-RodríguezN. Mendoza-TorreblancaJ.G. Therapeutic potential of dopamine and related drugs as anti-inflammatories and antioxidants in neuronal and non-neuronal pathologies.Pharmaceutics202315269310.3390/pharmaceutics15020693 36840015
    [Google Scholar]
  56. ZhangW. GaoY. YangN. Sinomenine-loaded microcapsules fabricated by phase reversion emulsification-drying in liquid method: An evaluation of process parameters, characterization, and released properties.J. Bioact. Compat. Polym.201833438239610.1177/0883911517751159
    [Google Scholar]
  57. ZhaiX. WangK. GaoX. YanB. Research progress on chemical constituents and pharmacological activities of Menispermi rhizoma.Molecules2023286270110.3390/molecules28062701 36985672
    [Google Scholar]
  58. SongL. ZhaoF. LiuY. GuoX. WuC. LiuJ. Effects of 8-amino-isocorydine, a derivative of isocorydine, on gastric carcinoma cell proliferation and apoptosis.Curr. Ther. Res. Clin. Exp.20219410062410.1016/j.curtheres.2021.100624 34306264
    [Google Scholar]
  59. GuoB. LiX. SongS. (−)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity.Oncol. Rep.20163542246225610.3892/or.2016.4594 26821251
    [Google Scholar]
  60. GaoX. SunB. HouY. Anti-breast cancer sinomenine derivatives via mechanisms of apoptosis induction and metastasis reduction.J. Enzyme Inhib. Med. Chem.20223711870188310.1080/14756366.2022.2096020 35801430
    [Google Scholar]
  61. ZhaoC. ZhangC. CuiD. Design, synthesis, biological evaluation and silico prediction of novel sinomenine derivatives.Adv. Biomed.20213610.54730/abm.2021.030606
    [Google Scholar]
  62. HuY. LiB. WenL. HeK. Study on the anti-endotoxin effect of sinomenine using an Agilent genome array.QJM2018111317117810.1093/qjmed/hcx234 29240916
    [Google Scholar]
  63. YuanH. ZhangJ. LiF. LiW. WangH. Retracted: Sinomenine exerts antitumour effect in gastric cancer cells via enhancement of miR‐204 expression.Basic Clin. Pharmacol. Toxicol.2019125545045910.1111/bcpt.13285 31243880
    [Google Scholar]
  64. GaoF. DaiZ. ZhangT. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory and analgesic agent.RSC Advances20221246300013000710.1039/D2RA05558A 36321084
    [Google Scholar]
  65. KongY. LiL. ZhaoL.G. YuP. LiD.D. A patent review of berberine and its derivatives with various pharmacological activities (2016–2020).Expert Opin. Ther. Pat.202232221122310.1080/13543776.2021.1974001 34455891
    [Google Scholar]
  66. OchA. ZalewskiD. KomstaŁ. KołodziejP. KockiJ. Bogucka-KockaA. Cytotoxic and proapoptotic activity of sanguinarine, berberine, and extracts of Chelidonium majus L. and Berberis thunbergii DC. Toward hematopoietic cancer cell lines.Toxins (Basel)201911948510.3390/toxins11090485 31443589
    [Google Scholar]
  67. SamadianH. ZamiriS. EhteramiA. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies.Sci. Rep.2020101831210.1038/s41598‑020‑65268‑7 32433566
    [Google Scholar]
  68. GongN. WangL. AnL. XuY. Exploring the active ingredients and potential mechanisms of action of Sinomenium acutum in the treatment of rheumatoid arthritis based on systems biology and network pharmacology.Front. Mol. Biosci.202310106517110.3389/fmolb.2023.1065171 36923645
    [Google Scholar]
  69. ZhangJ-J. ZhouR. DengL-J. CaoG-Z. ZhangY. XuH. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats.Biomed. Pharmacother.202215011294810.1016/j.biopha.2022.112948 35430394
    [Google Scholar]
  70. HuH LuoF ZhangQ Berberine coated biocomposite hemostatic film based alginate as absorbable biomaterial for wound healing.Int J Biol Macromol2022209Pt B17314410.1016/j.ijbiomac.2022.04.132 35487376
    [Google Scholar]
  71. LinJ. LiC. ZhaoY. HuJ. ZhangL.M. Co-electrospun nanofibrous membranes of collagen and zein for wound healing.ACS Appl. Mater. Interfaces2012421050105710.1021/am201669z 22242622
    [Google Scholar]
  72. HuH. ZhongD. LiW. Microalgae-based bioactive hydrogel loaded with quorum sensing inhibitor promotes infected wound healing.Nano Today20224210136810.1016/j.nantod.2021.101368
    [Google Scholar]
  73. PaudelK.R. MehtaM. YinG.H.S. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro.Environ. Sci. Pollut. Res. Int.20222931468304684710.1007/s11356‑022‑19158‑2 35171422
    [Google Scholar]
  74. ShrivastavA. MishraA.K. GuptaA.K. Evaluation of wound healing potential of root bark extract of Berberis aristata and molecular docking analysis of Berberis phytoconstituents.Curr. Drug Discov. Technol.2023203e21022321386710.2174/1570163820666230221154851 36824006
    [Google Scholar]
  75. ZhouW-C. TanP-F. ChenX-H. CenY. YouC. TanL. Berberine-incorporated shape memory fiber applied as a novel surgical suture.Front. Pharmacol.201910150610.3389/fphar.2019.01506 31998123
    [Google Scholar]
  76. XieY.Y. ZhangY-W. LiuX-Z. Aggregation-induced emission-active amino acid/berberine hydrogels with enhanced photodynamic antibacterial and anti-biofilm activity.Chem. Eng. J.202141312754210.1016/j.cej.2020.127542
    [Google Scholar]
  77. HashemiM. KalaliniaF. RaziM. Evaluation of the efficiency of chitosan hydrogel containing Berberis integerrima root extract on a full-thickness skin wound in a rat model.Macromol. Res.202230852753510.1007/s13233‑022‑0043‑7
    [Google Scholar]
  78. LuJ. WangZ. CaiD. Carrier-free binary self-assembled nanomedicines originated from traditional herb medicine with multifunction to accelerate mrsa-infected wound healing by antibacterial, anti-inflammation and promoting angiogenesis.Int. J. Nanomedicine2023184885490610.2147/IJN.S422944 37667771
    [Google Scholar]
  79. NeagM.A. MocanA. EcheverríaJ. Berberine: Botanical Occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955710.3389/fphar.2018.00557 30186157
    [Google Scholar]
  80. ZhengT. ChenH. WuC. Fabrication of co-assembly from berberine and tannic acid for multidrug-resistant bacteria infection treatment.Pharmaceutics2023157178210.3390/pharmaceutics15071782 37513970
    [Google Scholar]
  81. MaW. ZhuM. ZhangD. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2.Phytomedicine201725455110.1016/j.phymed.2016.12.013 28190470
    [Google Scholar]
  82. LeeB. SurB. YeomM. ShimI. LeeH. HahmD.H. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats.Biomol. Ther. (Seoul)201422321322210.4062/biomolther.2014.032 25009702
    [Google Scholar]
  83. GuterresZ.R. da SilvaA.F.G. GarcezW.S. GarcezF.R. FernandesC.A. GarcezF.R. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20137571919610.1016/j.mrgentox.2013.07.004 23892138
    [Google Scholar]
  84. BashirD.J. ManzoorS. SarfarajM. AfzalS.M. BashirM. NidhiA. Magnoflorine-loaded chitosan collagen nanocapsules ameliorate cognitive deficit in scopolamine-induced alzheimer’s disease-like conditions in a rat model by downregulating il-1β, il-6, tnf-α, and oxidative stress and upregulating brain-derived neurotrophi.ACS Omega2022822227223610.1021/acsomega.2c06467 36687096
    [Google Scholar]
  85. SzalakR. MatysekM. KovalM. Magnoflorine from Berberis vulgaris roots—impact on hippocampal neurons in mice after short-term exposure.Int. J. Mol. Sci.2023248716610.3390/ijms24087166 37108329
    [Google Scholar]
  86. KimJ. Ha Quang BaoT. ShinY.K. KimK.Y. Antifungal activity of magnoflorine against Candida strains.World J. Microbiol. Biotechnol.2018341116710.1007/s11274‑018‑2549‑x 30382403
    [Google Scholar]
  87. LuoN. JinL. YangC. Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum.J. Antibiot. (Tokyo)202174320621410.1038/s41429‑020‑00380‑4 33082529
    [Google Scholar]
  88. BaranM. MiziakP. BonioK. Magnoflorine – A compound with anti-tumour activity.J Pre-Clini Clini Res20201439810110.26444/jpccr/127326
    [Google Scholar]
  89. PatelM.B. MishraS.M. Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats.J. Funct. Foods201241798610.1016/j.jff.2011.08.002
    [Google Scholar]
  90. ZhongL. QinY. LiuM. Magnoflorine improves cognitive deficits and pathology of Alzheimer’s disease via inhibiting of JNK signaling pathway.Phytomedicine202311215471410.1016/j.phymed.2023.154714 36812746
    [Google Scholar]
  91. Kukula-KochW. Kruk-SłomkaM. StępnikK. SzalakR. BiałaG. The evaluation of pro-cognitive and antiamnestic properties of berberine and magnoflorine isolated from barberry species by centrifugal partition chromatography (CPC), in relation to QSAR modelling.Int. J. Mol. Sci.20171812251110.3390/ijms18122511 29186770
    [Google Scholar]
  92. OkonE. Kukula-KochW. HalasaM. Magnoflorine—isolation and the anticancer potential against nci-h1299 lung, mda-mb-468 breast, t98g glioma, and te671 rhabdomyosarcoma cancer cells.Biomolecules20201011153210.3390/biom10111532 33182753
    [Google Scholar]
  93. UedaM. HirayamaY. OgawaH. NomuraT. TerashiH. SakakibaraS. Vasodilating effects of antispasmodic agents and their cytotoxicity in vascular smooth muscle cells and endothelial cells—potential application in microsurgery.Int. J. Mol. Sci.202324131085010.3390/ijms241310850 37446027
    [Google Scholar]
  94. GaberA. AlsanieW.F. KumarD.N. RefatM.S. SaiedE.M. Novel papaverine metal complexes with potential anticancer activities.Molecules20202522544710.3390/molecules25225447 33233775
    [Google Scholar]
  95. HeffezD.S. LeongK.W. Sustained release of papaverine for the treatment of cerebral vasospasm: In vitro evaluation of release kinetics and biological activity.J. Neurosurg.199277578378710.3171/jns.1992.77.5.0783 1403123
    [Google Scholar]
  96. WangF. ZhangY. PangR. ShiS. WangR. Scoulerine promotes cytotoxicity and attenuates stemness in ovarian cancer by targeting PI3K/AKT/mTOR axis.Acta Pharm.202373347548810.2478/acph‑2023‑0021 37708956
    [Google Scholar]
  97. TianJ. MoJ. XuL. Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells.Chem. Biol. Interact.202032710918410.1016/j.cbi.2020.109184 32590070
    [Google Scholar]
  98. WangchukP. KellerP.A. PyneS.G. WillisA.C. KamchonwongpaisanS. Antimalarial alkaloids from a Bhutanese traditional medicinal plant Corydalis dubia.J. Ethnopharmacol.2012143131031310.1016/j.jep.2012.06.037 22796506
    [Google Scholar]
  99. HitotsuyanagiY NishimuraK IkutaH TakeyaK ItokawaH. ChemInform abstract: Syntheses of antitumor morphinane alkaloids, sinococuline (IX) and 6‐ epi‐ (XI), 7‐epi‐ (X), and 6‐epi‐7‐epi‐sinococuline (XII), from sinomenine (I).ChemInform19952648chin.19954823010.1002/chin.199548230
    [Google Scholar]
  100. KilicM. SenerB. KayaE. Anti-cholinergic activities of Turkish Corydalis DC. species.Phytochem. Lett.20214514215610.1016/j.phytol.2021.08.006
    [Google Scholar]
  101. WangchukP SastrarujiT TaweechotipatrM KellerPA PyneSG Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids-scoulerine and cheilanthifoline.Nat Prod Commun201611121934578X160110120710.1177/1934578X160110120730508337
    [Google Scholar]
  102. ShuklaR. AhujaR. BeesettiH. Sinococuline, a bioactive compound of Cocculus hirsutus has potent anti-dengue activity.Sci. Rep.2023131102610.1038/s41598‑023‑27927‑3 36658277
    [Google Scholar]
  103. HoJ. LeungY. ChanC. Herbal medicine in the treatment of cancer.Curr. Med. Chem. Anticancer Agents20022220921410.2174/1568011023354164 12678744
    [Google Scholar]
  104. WarowickaA. NawrotR. Goździcka-JózefiakA. Antiviral activity of berberine.Arch. Virol.202016591935194510.1007/s00705‑020‑04706‑3 32594322
    [Google Scholar]
  105. KocićBD DimitrijevićMV MiladinovićLC MarkovićMS RankovićGŽ MiladinovićDL In vitro anti-Helicobacter pylori activity of berberine and barberry extracts: A preliminary report.Nat Prod Commun20191461934578X1985790510.1177/1934578X19857905
    [Google Scholar]
  106. LiuY. LongS. ZhangS. Synthesis and antioxidant activities of berberine 9- O -benzoic acid derivatives.RSC Advances20211129176111762110.1039/D1RA01339D 35480221
    [Google Scholar]
  107. NguyenH.T. PhamT.N. LeA.T. ThuyN.T. HuyT.Q. NguyenT.T.T. Antibacterial activity of a berberine nanoformulation.Beilstein J. Nanotechnol.20221364165210.3762/bjnano.13.56 35923171
    [Google Scholar]
  108. LuoA. FanY. Antioxidant activities of berberine hydrochloride.J. Med. Plants Res.201151637023707
    [Google Scholar]
  109. XuJ. RongS. QinZ. Preparation of berberine@carbon dots nano-formulation: Synthesis, characterization and herbicidal activity against Echinochloa crus-galli and Amaranthus retroflexus two common species of weed.Nanomaterials (Basel)20221224448210.3390/nano12244482 36558335
    [Google Scholar]
  110. DasK. IyerK.R. OrfaliR. In silico studies and evaluation of in vitro antidiabetic activity of berberine from ethanol seed extract of Coscinium fenestratum (Gaertn.) Colebr.J. King Saud Univ. Sci.202335510266610.1016/j.jksus.2023.102666
    [Google Scholar]
  111. MilataV. SvedovaA. BarbierikovaZ. Synthesis and anticancer activity of novel 9-O-substituted berberine derivatives.Int. J. Mol. Sci.2019209216910.3390/ijms20092169 31052469
    [Google Scholar]
  112. MilaniG. CavalluzziM.M. SolidoroR. Molecular simplification of natural products: Synthesis, antibacterial activity, and molecular docking studies of berberine open models.Biomedicines20219545210.3390/biomedicines9050452 33922200
    [Google Scholar]
  113. UtamiA.R. MaksumI.P. DeawatiY. Berberine and its study as an antidiabetic compound.Biology (Basel)202312797310.3390/biology12070973 37508403
    [Google Scholar]
  114. KumariA. SinglaR. GulianiA. YadavS.K. Nanoencapsulation for drug delivery.EXCLI J.201413265286 26417260
    [Google Scholar]
  115. GulA. GallusI. TegginamathA. MaryskaJ. YalcinkayaF. Electrospun antibacterial nanomaterials for wound dressings applications.Membranes (Basel)2021111290810.3390/membranes11120908 34940410
    [Google Scholar]
  116. HuW. WangZ. ZhaY. High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration.Adv. Healthc. Mater.2020923200003510.1002/adhm.202000035 32378346
    [Google Scholar]
  117. OmidianH. ChowdhuryS.D. Advancements and applications of injectable hydrogel composites in biomedical research and therapy.Gels20239753310.3390/gels9070533 37504412
    [Google Scholar]
  118. WangM. WangC. ChenM. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release.ACS Nano2019139102791029310.1021/acsnano.9b03656 31483606
    [Google Scholar]
  119. BhattT. KumarH. JainR. JainV. Emerging applications of electrospun nanofibers using various fabrication techniques.Ind J Pharmaceut Educ Res20235731966196710.5530/ijper.57.3.80
    [Google Scholar]
  120. NematpourN. FarhadianN. EbrahimiK.S. Sustained release nanofibrous composite patch for transdermal antibiotic delivery.Colloids Surf. A Physicochem. Eng. Asp.202058612426710.1016/j.colsurfa.2019.124267
    [Google Scholar]
  121. ZhangY. LiK. ShenL. Metal phenolic nanodressing of porous polymer scaffolds for enhanced bone regeneration via interfacial gating growth factor release and stem cell differentiation.ACS Appl. Mater. Interfaces202214126827710.1021/acsami.1c19633 34961319
    [Google Scholar]
  122. HuX. LiuS. ZhouG. HuangY. XieZ. JingX. Electrospinning of polymeric nanofibers for drug delivery applications.J. Control. Release2014185122110.1016/j.jconrel.2014.04.018 24768792
    [Google Scholar]
  123. PillayV. DottC. ChoonaraY.E. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications.J. Nanomater.20132013178928910.1155/2013/789289
    [Google Scholar]
  124. LiuM. DuanX.P. LiY.M. YangD.P. LongY.Z. Electrospun nanofibers for wound healing.Mater. Sci. Eng. C2017761413142310.1016/j.msec.2017.03.034 28482508
    [Google Scholar]
  125. ElnaggarM ShalabyE Abd-Al-AleemAAA YoussefA Nanomaterials and nanofibers as wound dressing mats: An overview of the fundamentals, properties and applications.Egypt J Chem20210(0): 0.10.21608/ejchem.2021.91351.4345
    [Google Scholar]
  126. Mascarenhas-MeloF. GonçalvesM.B.S. PeixotoD. Application of nanotechnology in management and treatment of diabetic wounds.J. Drug Target.2022301012110.1080/1061186X.2022.2092624 35735061
    [Google Scholar]
  127. AugustineR. Electrospun polymer nanocomposite scaffolds containing metal oxide nanoparticles for diabetic wound healing Qat FoundaAnn Res Confer Proc201920182HBPD116310.5339/qfarc.2018.HBPD1163
    [Google Scholar]
  128. RahmaniH. Mahmoudi NajafiS.H. AshoriA. Arab FashapoyehM. Aziz MohseniF. TorkamanS. Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing.Carbohydr. Polym.202023011560610.1016/j.carbpol.2019.115606 31887878
    [Google Scholar]
  129. ZhaoY. WangZ. LvY. LiS. GeW. HeC. Conformal fabrication of thick superhydrophobic coatings via reduction of sorption barrier against multiple damages.Surf. Coat. Technol202244412865810.1016/j.surfcoat.2022.128658
    [Google Scholar]
  130. AugustineR. RehmanS.R.U. AhmedR. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing.Int. J. Biol. Macromol.202015615317010.1016/j.ijbiomac.2020.03.207 32229203
    [Google Scholar]
  131. MiguelS.P. MoreiraA.F. CorreiaI.J. Chitosan based-asymmetric membranes for wound healing: A review.Int. J. Biol. Macromol.201912746047510.1016/j.ijbiomac.2019.01.072 30660567
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878330005250326060103
Loading
/content/journals/raddf/10.2174/0126673878330005250326060103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test