Skip to content
2000
image of Recent Expansions and Future Outlook in the Delivery of Poorly Soluble Phytoconstituents through Solid Dispersion Technique

Abstract

Phytoconstituents, derived from plants, possess significant therapeutic potential but often face challenges such as poor solubility and low bioavailability, limiting their efficacy. Solid dispersion (SD) is a promising approach to improve the solubility and bioavailability of these poorly water-soluble phytoconstituents. By dispersing the active drug in a hydrophilic carrier, solid dispersion enhances the surface area of the drug, improving its dissolution rate and enhancing absorption. This review provides an overview of the various generations of solid dispersions, highlighting the evolution from crystalline carriers in first-generation solid dispersions to the more advanced amorphous solid solutions in second and third-generation formulations, which offer enhanced solubility and bioavailability. The article also discusses various techniques for preparing solid dispersions, including solvent evaporation, melting, and spray-drying methods, and emphasizes the importance of selecting appropriate carriers, such as hydrophilic polymers, to optimize the dissolution rate of phytoconstituents. The study highlighted the recent case studies on several phytochemicals, like alkaloids, glycosides, Polyphenols, ., demonstrating the effectiveness of solid dispersion in improving their solubility and therapeutic performance. Additionally, the review addresses the challenges related to the solubility of phytoconstituents and their impact on drug absorption, as well as the role of solid dispersion in overcoming these challenges. Overall, solid dispersion technology emerges as a versatile and effective tool for enhancing the oral bioavailability of phytoconstituents, paving the way for more efficient herbal therapies in modern medicine.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878341183250514112919
2025-05-23
2025-09-08
Loading full text...

Full text loading...

References

  1. Kumar A.P.N. Kumar M. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023 28 2 887 10.3390/molecules28020887 36677944
    [Google Scholar]
  2. Pahwa R. Kataria U. Rana A.C. Rao R. Nanda S. Solid dispersion technology: Recent advancements in the delivery of various phytoconstituents. Int. J. Pharm. Sci. Res. 2015 6 2 510
    [Google Scholar]
  3. Paolella G. Montefusco A. Caputo I. Gorrasi G. Viscusi G. Quercetin encapsulated polycaprolactone-polyvinylpyrrolidone electrospun membranes as a delivery system for wound healing applications. Eur. J. Pharm. Biopharm. 2024 200 114314 10.1016/j.ejpb.2024.114314 38740224
    [Google Scholar]
  4. Mohapatra D. Agrawal A.K. Sahu A.N. Exploring the potential of solid dispersion for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and bioactives. J. Microencapsul. 2021 38 7-8 594 612 10.1080/02652048.2021.1963342 34338596
    [Google Scholar]
  5. Imam S.S. Alshehri S. Ghoneim M.M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers (Basel) 2021 13 22 4036 10.3390/polym13224036 34833334
    [Google Scholar]
  6. Giri T.K. Kumar K. Alexander A. Ajazuddin, Badwaik H, Tripathi DK. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bull. Fac. Pharm. Cairo Univ. 2012 50 2 147 159 10.1016/j.bfopcu.2012.07.002
    [Google Scholar]
  7. Sakure K. Kumari L. Badwaik H. Development and evaluation of solid dispersion based rapid disintegrating tablets of poorly water-soluble anti-diabetic drug. J. Drug Deliv. Sci. Technol. 2020 60 101942 10.1016/j.jddst.2020.101942
    [Google Scholar]
  8. Kumar P. Singh J. Solubility enhancement techniques by solid dispersion. J. Pharm. Innov. 2022 1 1 10 17
    [Google Scholar]
  9. Saini M. Bhatt S. Dureja H. Solanki N. Recent patents on solid dispersions emphasize promising benefits in solubility enhancement of poorly water-soluble drugs. Recent Pat. Nanotechnol. 2023 10.2174/0118722105229356231030065938 38037907
    [Google Scholar]
  10. Tekade A.R. Yadav J.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv. Pharm. Bull. 2020 10 3 359 369 10.34172/apb.2020.044 32665894
    [Google Scholar]
  11. Kumari L. Choudhari Y. Patel P. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life 2023 13 5 1099 10.3390/life13051099 37240744
    [Google Scholar]
  12. Sareen S. Joseph L. Mathew G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig. 2012 2 1 12 17 10.4103/2230‑973X.96921 23071955
    [Google Scholar]
  13. Kumar B. Solid dispersion-A review. PharmaTutor 2017 5 2 24 29
    [Google Scholar]
  14. Sridhar I. Doshi A. Joshi B. Wankhede V. Doshi J. Solid dispersions: An approach to enhance solubility of poorly water soluble drug. J Sci Innov Res 2013 2 3 685 694
    [Google Scholar]
  15. Saffoon N. Uddin R. Huda N.H. Sutradhar K.B. Enhancement of oral bioavailability and solid dispersion: A review. J. Appl. Pharm. Sci. 2011 1 7 13 20
    [Google Scholar]
  16. Cid A.G. Simonazzi A. Palma S.D. Bermúdez J.M. Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Ther. Deliv. 2019 10 6 363 382 10.4155/tde‑2019‑0007 31094298
    [Google Scholar]
  17. Singh S. Baghel R.S. Yadav L. A review on solid dispersion. Int J Pharm Life Sci 2011 2 9 1078
    [Google Scholar]
  18. Kumari B. Bishnoi H.K. Solid dispersion: Its types and mechanism of enhancement of solubility by solid dispersion. J. Pharma Res. 2019 8 3 65 71 10.5281/zenodo.2594669
    [Google Scholar]
  19. Kaushik R. Budhwar V. Kaushik D. An overview on recent patents and technologies on solid dispersion. Recent Pat. Drug Deliv. Formul. 2020 14 1 63 74 10.2174/22124039MTAzoNzEwy 31951172
    [Google Scholar]
  20. Alshehri S. Imam S.S. Altamimi M.A. Host-guest complex of β-cyclodextrin and pluronic F127 with Luteolin: Physicochemical characterization, anti-oxidant activity and molecular modeling studies. J. Drug Deliv. Sci. Technol. 2020 55 101356 10.1016/j.jddst.2019.101356
    [Google Scholar]
  21. Eloy J.O. Marchetti J.M. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of fusion and solvent methods. Powder Technol. 2014 253 98 106 10.1016/j.powtec.2013.11.017
    [Google Scholar]
  22. Yu C. Zhang C. Guan X. Yuan D. The solid dispersion of resveratrol with enhanced dissolution and good system physical stability. J. Drug Deliv. Sci. Technol. 2023 84 104507 10.1016/j.jddst.2023.104507
    [Google Scholar]
  23. Ishtiaq M. Manzoor H. Khan I.U. Curcumin-loaded soluplus® based ternary solid dispersions with enhanced solubility, dissolution and antibacterial, antioxidant, anti-inflammatory activities. Heliyon 2024 10 14 e34636 10.1016/j.heliyon.2024.e34636 39130422
    [Google Scholar]
  24. Ishtiaq M. Asghar S. Khan I.U. Iqbal M.S. Khalid S.H. Development of the amorphous solid dispersion of curcumin: A rational selection of polymers for enhanced solubility and dissolution. Crystals (Basel) 2022 12 11 1606 10.3390/cryst12111606
    [Google Scholar]
  25. Khuanekkaphan M. Netsomboon K. Fristiohady A. Asasutjarit R. Development of quercetin solid dispersion-loaded dissolving microneedles and in vitro investigation of their anti-melanoma activities. Pharmaceutics 2024 16 10 1276 10.3390/pharmaceutics16101276 39458607
    [Google Scholar]
  26. Wang Y. Fang Y. Zhou F. Liang Q. Deng Y. The amorphous quercetin/hydroxypropylmethylcellulose acetate succinate solid dispersions prepared by co-precipitation method to enhance quercetin dissolution. J. Pharm. Sci. 2021 110 9 3230 3237 10.1016/j.xphs.2021.05.004 34004218
    [Google Scholar]
  27. Alkathiri F.A. Bukhari S.I. Imam S.S. Alshehri S. Mahdi W.A. Formulation of silymarin binary and ternary solid dispersions: Characterization, simulation study and cell viability assessment against lung cancer cell line. Heliyon 2024 10 1 e23221 10.1016/j.heliyon.2023.e23221 38163135
    [Google Scholar]
  28. Arora D. Taneja Y. Dhingra A.K. Guarve K. Chauhan M. Nagpal K. Solubility enhancement and antioxidant potential of silymarin: A poorly water-soluble drug. Curr. Drug Ther. 2024 19 1 103 115 10.2174/1574885518666230418114203
    [Google Scholar]
  29. Abbaspour M. Faeznia F. Zanjanian P. Preparation and evaluation of berberine-excipient complexes in enhancing the dissolution rate of berberine incorporated into pellet formulations. AAPS PharmSciTech 2024 25 6 154 10.1208/s12249‑024‑02863‑1 38961012
    [Google Scholar]
  30. Hatanaka Y. Uchiyama H. Kadota K. Tozuka Y. Designing amorphous formulations of polyphenols with naringin by spray-drying for enhanced solubility and permeability. Adv. Powder Technol. 2022 33 11 103627 10.1016/j.apt.2022.103627
    [Google Scholar]
  31. Panizzon G.P. Bueno F.G. Ueda-Nakamura T. Nakamura C.V. Dias Filho B.P. Manufacturing different types of solid dispersions of BCS class iv polyphenol (daidzein) by spray drying: Formulation and bioavailability. Pharmaceutics 2019 11 10 492 10.3390/pharmaceutics11100492 31557831
    [Google Scholar]
  32. Jin S. Lee C.H. Lim D.Y. Improved hygroscopicity and bioavailability of solid dispersion of red ginseng extract with silicon dioxide. Pharmaceutics 2021 13 7 1022 10.3390/pharmaceutics13071022 34371714
    [Google Scholar]
  33. Lim C. Kang J.K. Jung C.E. Preparation and characterization of a lutein solid dispersion to improve its solubility and stability. AAPS PharmSciTech 2021 22 5 169 10.1208/s12249‑021‑02036‑4 34080086
    [Google Scholar]
  34. Fan W. Zhang X. Zhu W. Di L. The preparation of curcumin sustained-release solid dispersion by hot-melt extrusion—II. Optimization of preparation process and evaluation in vitro and in vivo. J. Pharm. Sci. 2020 109 3 1253 1260 10.1016/j.xphs.2019.11.020 31794699
    [Google Scholar]
  35. Althobaiti A.A. Ashour E.A. Almutairi M. Almotairy A. Al Yahya M. Repka M.A. Formulation development of curcumin-piperine solid dispersion via hot-melt extrusion. J. Drug Deliv. Sci. Technol. 2022 76 103753 10.1016/j.jddst.2022.103753
    [Google Scholar]
  36. Dhoppalapudi S. Parupathi P. Hot melt extrusion: A single-step continuous manufacturing process for developing amorphous solid dispersions of poorly soluble drug substances. GSC Advanced Research and Reviews 2022 13 2 126 135 10.30574/gscarr.2022.13.2.0311
    [Google Scholar]
  37. Cao Y. Teng J. Selbo J. Amorphous solid dispersion of epigallocatechin gallate for enhanced physical stability and controlled release. Pharmaceuticals 2017 10 4 88 10.3390/ph10040088 29120370
    [Google Scholar]
  38. Tran P. Park J.S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2021 610 121247 10.1016/j.ijpharm.2021.121247 34740762
    [Google Scholar]
  39. Almeida H. Ferreira B. Fernandes-Lopes C. Third-generation solid dispersion through lyophilization enhanced oral bioavailability of resveratrol. ACS Pharmacol. Transl. Sci. 2024 7 3 888 898 10.1021/acsptsci.4c00029 38481698
    [Google Scholar]
  40. Yu D.G. Li J.J. Williams G.R. Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release 2018 292 91 110 10.1016/j.jconrel.2018.08.016 30118788
    [Google Scholar]
  41. Salević A. Prieto C. Cabedo L. Nedović V. Lagaron J.M. Physicochemical, antioxidant and antimicrobial properties of electrospun poly (ε-caprolactone) films containing a solid dispersion of sage (Salvia officinalis L.) extract. Nanomaterials (Basel) 2019 9 2 270 10.3390/nano9020270 30781390
    [Google Scholar]
  42. Badens E. Majerik V. Horváth G. Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int. J. Pharm. 2009 377 1-2 25 34 10.1016/j.ijpharm.2009.04.047 19442711
    [Google Scholar]
  43. Jakubowska E. Lulek J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review. J. Drug Deliv. Sci. Technol. 2021 62 102357 10.1016/j.jddst.2021.102357
    [Google Scholar]
  44. Tomar D. Singh P.K. Hoque S. Amorphous systems for delivery of nutraceuticals: Challenges opportunities. Crit. Rev. Food Sci. Nutr. 2022 62 5 1204 1221 10.1080/10408398.2020.1836607 33103462
    [Google Scholar]
  45. Alsammarraie H.J. Khan N.A. Mahmud R. Amphiphilic polymer for formulation of ethanol extract of moringa oleifera leaves as solid dispersion: Formulation, evaluation, and stability studies. Int J Drug Deliv Technol 2021 11 3 926 936
    [Google Scholar]
  46. Sharma A. Chaudhary A. Singh B. A review on solubility enhancement by solid dispersion technique. J. Pharm. Res. Int. 2021 33 63A 77 87 10.9734/jpri/2021/v33i63A35217
    [Google Scholar]
  47. Sharma V. A review on characterization of solid dispersion. Int J Eng Appl Sci Technol 2019 4 6 127 128 10.33564/IJEAST.2019.v04i06.021
    [Google Scholar]
  48. Ma X. Williams R.O. III Characterization of amorphous solid dispersions: An update. J. Drug Deliv. Sci. Technol. 2019 50 113 124 10.1016/j.jddst.2019.01.017
    [Google Scholar]
  49. Liu X. Feng X. Williams R.O. III Zhang F. Characterization of amorphous solid dispersions. J. Pharm. Investig. 2018 48 1 19 41 10.1007/s40005‑017‑0361‑5
    [Google Scholar]
  50. Sharma S.K. Verma D.S. Khan L.U. Kumar S. Khan S.B. Handbook of materials characterization. New York, NY, USA Springer International Publishing 2018 10.1007/978‑3‑319‑92955‑2
    [Google Scholar]
  51. Jatwani S. Rana A.C. Singh G. Aggarwal G. An overview on solubility enhancement techniques for poorly soluble drugs and solid dispersion as an eminent strategic approach. Int. J. Pharm. Sci. Res. 2012 3 4 942
    [Google Scholar]
  52. Sakure K. Patel A. Pradhan M. Badwaik H.R. Recent trends and future prospects of phytosomes: A concise review. Indian J. Pharm. Sci. 2024 86 3 10.36468/pharmaceutical‑sciences.1334
    [Google Scholar]
  53. Gharia B.D. Krishnamurthy R. Rajashekhar I. Phytosomes: Enhancing bioavailability of phytomedicine. IOSR J. Pharm. 2019 9 6 9 15
    [Google Scholar]
  54. Punitha S. Reddy G.S. Srikrishna T. Kumar M.L. Solid dispersions: A review. Res J Pharm Technol 2011 4 3 331 334
    [Google Scholar]
  55. Long J. Hu W. Ren T. Combating multidrug resistance of breast cancer with ginsenoside Rh2-irrigated nano-in-thermogel. Int. J. Pharm. 2024 650 123718 10.1016/j.ijpharm.2023.123718 38104849
    [Google Scholar]
  56. Sana S.S. Chandel A.K.S. Raorane C.J. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. Phytomedicine 2024 134 156007 10.1016/j.phymed.2024.156007 39276537
    [Google Scholar]
  57. Xi Z. Fei Y. Wang Y. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J. Drug Deliv. Sci. Technol. 2023 83 104351 10.1016/j.jddst.2023.104351
    [Google Scholar]
  58. Jha L.A. Imran M. Shrestha J. Effectiveness of phytoconstituents and potential of phyto-nanomedicines combination to treat osteoarthritis. Eur. Polym. J. 2024 215 113243
    [Google Scholar]
  59. Nielsen R.B. Larsen B.S. Holm R. Increased bioavailability of a P-gp substrate: Co-release of etoposide and zosuquidar from amorphous solid dispersions. Int. J. Pharm. 2023 642 123094 10.1016/j.ijpharm.2023.123094 37263451
    [Google Scholar]
  60. Bhattacharya S. Raval H. Bhirud D. Hyaluronic acid-functionalized carboxymethyl dextran-coated melatonin nanoconjugates for targeted etoposide delivery in metastatic colon cancer: Extensive in-vitro investigation in HCT116 cell lines, antimicrobial efficacy, and anti-angiogenic potential in chick chorioallantoic membrane (CAM) assay. Int. J. Biol. Macromol. 2024 281 Pt 3 136373 10.1016/j.ijbiomac.2024.136373 39395515
    [Google Scholar]
  61. Pongsamart K. Limwikrant W. Ruktanonchai U.R. Charoenthai N. Puttipipatkhachorn S. Preparation, characterization and antimalarial activity of dihydroartemisinin/β-cyclodextrin spray-dried powder. J. Drug Deliv. Sci. Technol. 2022 73 103434 10.1016/j.jddst.2022.103434
    [Google Scholar]
  62. Zhang S. Zeng Q. Zhao G. Effect of carrier materials on the properties of the andrographolide solid dispersion. Braz. J. Pharm. Sci. 2022 58 e191023 10.1590/s2175‑97902022e191023
    [Google Scholar]
  63. Assim Haq S. Paudwal G. Banjare N. Sustained release polymer and surfactant based solid dispersion of andrographolide exhibited improved solubility, dissolution, pharmacokinetics, and pharmacological activity. Int. J. Pharm. 2024 651 123786 10.1016/j.ijpharm.2024.123786 38185339
    [Google Scholar]
  64. Liang H. Sun C. Feng Z. Study on integrated pharmacokinetics of the component-based Chinese medicine of ginkgo biloba leaves based on nanocrystalline solid dispersion technology. Int. J. Nanomedicine 2022 17 4039 4057 10.2147/IJN.S379736 36105621
    [Google Scholar]
  65. Bunlung S. Nualnoi T. Issarachot O. Wiwattanapatapee R. Development of raft-forming liquid and chewable tablet formulations incorporating quercetin solid dispersions for treatment of gastric ulcers. Saudi Pharm. J. 2021 29 10 1143 1154 10.1016/j.jsps.2021.08.005 34703368
    [Google Scholar]
  66. Wiwattanapatapee R. Yaoduang T. Bairaham M. Pumjan S. Leelakanok N. Petchsomrit A. The development of expandable films based on starch and chitosan for stomach-specific delivery of quercetin solid dispersions. J. Drug Deliv. Sci. Technol. 2024 95 105631 10.1016/j.jddst.2024.105631
    [Google Scholar]
  67. Thenmozhi K. Yoo Y.J. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev. Ind. Pharm. 2017 43 9 1501 1509 10.1080/03639045.2017.1321658 28425323
    [Google Scholar]
  68. Garg A. Tomar D.S. Bhalala K. Wahajuddin M. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability. J. Drug Deliv. Sci. Technol. 2020 60 102072 10.1016/j.jddst.2020.102072
    [Google Scholar]
  69. Yen C.C. Liang Y.K. Cheng C.P. Hsu M.C. Wu Y.T. Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion. Int. J. Mol. Sci. 2020 21 7 2506 10.3390/ijms21072506 32260319
    [Google Scholar]
  70. Liu D. Mao Y. Ding L. Zeng X.A. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2019 91 586 597 10.1016/j.tifs.2019.07.038 32288229
    [Google Scholar]
  71. Choi J.S. Cho N.H. Kim D.H. Park J.S. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. Mater. Sci. Eng. C 2019 100 247 259 10.1016/j.msec.2019.03.002 30948059
    [Google Scholar]
  72. Shuai S. Yue S. Huang Q. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2016 41 4 413 422 10.1007/s13318‑015‑0265‑6 25669445
    [Google Scholar]
  73. Khan A.W. Kotta S. Ansari S.H. Sharma R.K. Ali J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev. Ind. Pharm. 2015 41 5 772 779 10.3109/03639045.2014.902466 24669978
    [Google Scholar]
  74. Pang S. Ma C. Zhang N. He L. Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier. Food Chem. 2015 174 564 570 10.1016/j.foodchem.2014.11.113 25529720
    [Google Scholar]
  75. Zhang Z. Chen Y. Deng J. Jia X. Zhou J. Lv H. Solid dispersion of berberine–phospholipid complex/TPGS 1000/SiO2: preparation, characterization and in vivo studies. Int. J. Pharm. 2014 465 1-2 306 316 10.1016/j.ijpharm.2014.01.023 24456672
    [Google Scholar]
  76. Jia X. Yan H. Zhang Z. Jiang Y. Ding D. Sun E. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO 3 and poloxamer 188. Pharmacogn. Mag. 2014 10 38 Suppl. 2 311 10.4103/0973‑1296.133286 24991109
    [Google Scholar]
  77. Lin S.P. Hou Y.C. Liao T.Y. Tsai S.Y. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Dev. Ind. Pharm. 2014 40 3 330 337 10.3109/03639045.2012.760580 23369092
    [Google Scholar]
  78. Shen Y. Lu F. Hou J. Shen Y. Guo S. Incorporation of paclitaxel solid dispersions with poloxamer188 or polyethylene glycol to tune drug release from poly(ϵ-caprolactone) films. Drug Dev. Ind. Pharm. 2013 39 8 1187 1196 10.3109/03639045.2012.704042 22803692
    [Google Scholar]
  79. Zhao G. Duan J. Xie Y. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L. Drug Dev. Ind. Pharm. 2013 39 7 1037 1045 10.3109/03639045.2012.699066 22757776
    [Google Scholar]
  80. Luo Y. Xu L. Xu M. Tao X. Ai R. Tang X. Improvement of dissolution and bioavailability of Ginsenosides by hot melt extrusion and cogrinding. Drug Dev. Ind. Pharm. 2013 39 1 109 116 10.3109/03639045.2012.659189 22339205
    [Google Scholar]
  81. Li B. Liu H. Amin M. Wegiel L.A. Taylor L.S. Edgar K.J. Enhancement of naringenin solution concentration by solid dispersion in cellulose derivative matrices. Cellulose 2013 20 4 2137 2149 10.1007/s10570‑013‑9970‑y
    [Google Scholar]
  82. Psimadas D. Georgoulias P. Valotassiou V. Loudos G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J. Pharm. Sci. 2012 101 7 2271 2280 10.1002/jps.23146 22488174
    [Google Scholar]
  83. Thakral N.K. Ray A.R. Bar-Shalom D. Eriksson A.H. Majumdar D.K. Soluplus-solubilized citrated camptothecin-a potential drug delivery strategy in colon cancer. AAPS PharmSciTech 2012 13 1 59 66 10.1208/s12249‑011‑9720‑0 22105472
    [Google Scholar]
  84. Xu H. Zhang T. Yang H. Preparation of evodiamine solid dispersions and its pharmacokinetics. Indian J. Pharm. Sci. 2011 73 3 276 281 22457550
    [Google Scholar]
  85. Ansari M.T. Sunderland V.B. Solid dispersions of dihydroartemisinin in polyvinylpyrrolidone. Arch. Pharm. Res. 2008 31 3 390 398 10.1007/s12272‑001‑1169‑6 18409055
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878341183250514112919
Loading
/content/journals/raddf/10.2174/0126673878341183250514112919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test