Skip to content
2000
image of Advancing Drug Stability Using Non-Aqueous Gels: Properties, Applications, and Emerging Challenges

Abstract

This study explores the emerging potential of non-aqueous gels for topical therapy, examining their unique properties, diverse applications, and the challenges involved in their formulation and clinical use. By highlighting these aspects, the article aims to shed light on the future of localized drug delivery and inspire further research and innovation in this promising field. Additionally, the article addresses the critical need for regulatory considerations, stability testing, and patient acceptability. It also emphasizes the role of non-aqueous gels in revolutionizing dermatological and transdermal therapies, particularly by enhancing the stability of drugs that are hydrolyzed in the presence of water.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878371228250519073422
2025-05-21
2025-10-27
Loading full text...

Full text loading...

References

  1. Kaur J. Kaur J. Jaiswal S. Gupta G.D. Recent advances in topical drug delivery system. Indo Am. J. Pharmaceut. Res. 2016 6 6353 6369
    [Google Scholar]
  2. Mendonsa N.S. Murthy S.N. Hashemnejad S.M. Kundu S. Zhang F. Repka M.A. Development of poloxamer gel formulations via hot-melt extrusion technology. Int. J. Pharm. 2018 537 1-2 122 131 10.1016/j.ijpharm.2017.12.008 29253585
    [Google Scholar]
  3. Patil P.B. Datir S.K. Saudagar R.B. A review on topical gels as drug delivery system. J. Drug Deliv. Ther. 2019 9 3-s 989 994 10.22270/jddt.v9i3‑s.2930
    [Google Scholar]
  4. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012 64 18 23 10.1016/j.addr.2012.09.010 11755703
    [Google Scholar]
  5. Singh V.K. Singh P.K. Sharma P.K. Srivastava P.K. Mishra A. Formulation and evaluation of topical gel of acelofenac containing piparine. Indo Am J Pharm Res. 2013 3 7 5268 5278
    [Google Scholar]
  6. Zhang Y. Sadgrove M.P. Sueda K. Yang Y.T. Pacyniak E.K. Kagel J.R. Braun B.A. Zamboni W.C. Mumper R.J. Jay M. Nonaqueous gel for the transdermal delivery of a DTPA penta-ethyl ester prodrug. AAPS J. 2013 15 2 523 532 10.1208/s12248‑013‑9459‑5 23389812
    [Google Scholar]
  7. Bhuyan M.M. Islam M. Jeong J.H. The preparation and characterization of N,N-dimethyl acrylamide-diallyl maleate gel/hydrogel in a non-aqueous solution. Gels 2023 9 8 598 10.3390/gels9080598 37623053
    [Google Scholar]
  8. Hervéou L. Legrand G. Divoux T. Baeza G. Understanding polymer-colloid gels: A solvent perspective using low-field NMR. arXiv:2409.09864 2024 10.1039/D4SM01098A
    [Google Scholar]
  9. Zalivskaya A. Fadeeva D. Shestopalova N. Avtina N. Radyukova V. Ivanova V. Comparative characteristics of gel bases for semisolid dosage forms. BIO Web of Conf. 2021 40 03008 10.1051/bioconf/20214003008
    [Google Scholar]
  10. Agarwal M. Sharma S. Shankar V. Joshi Y.M. Distinguishing thixotropy from viscoelasticity. J. Rheol. (N.Y.N.Y.) 2021 65 4 663 680 10.1122/8.0000262
    [Google Scholar]
  11. Heng P.W.S. Chan L.W. Chow K.T. Development of novel nonaqueous ethylcellulose gel matrices: rheological and mechanical characterization. Pharm. Res. 2005 22 4 676 684 10.1007/s11095‑005‑2484‑z 15846476
    [Google Scholar]
  12. Chow K.T. Chan L.W. Heng P.W.S. Formulation of hydrophilic non-aqueous gel: drug stability in different solvents and rheological behavior of gel matrices. Pharm. Res. 2008 25 1 207 217 10.1007/s11095‑007‑9457‑3 17909742
    [Google Scholar]
  13. Wang G.K. Yang Y.M. Jia D. Programming viscoelastic properties in a complexation gel composite by utilizing entropy-driven topologically frustrated dynamical state. Nat. Commun. 2024 15 1 3569 10.1038/s41467‑024‑47969‑z 38671020
    [Google Scholar]
  14. Cm J. Stability study of griseofulvin in non aqueous microemulsion system. Asian J. Biomed. Pharmaceut. Sci. 2014 4 35 71 75 10.15272/ajbps.v4i35.574
    [Google Scholar]
  15. Li J. Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016 1 12 16071 10.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  16. Agarwal P. Rupenthal I.D. Non-aqueous formulations in topical ocular drug delivery – A paradigm shift? Adv. Drug Deliv. Rev. 2023 198 114867 10.1016/j.addr.2023.114867 37178927
    [Google Scholar]
  17. Vrettos N.N. Roberts C.J. Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics 2021 13 10 1591 10.3390/pharmaceutics13101591 34683884
    [Google Scholar]
  18. Zaman M.A. Martin G.P. Rees G.D. Mucoadhesion, hydration and rheological properties of non-aqueous delivery systems (NADS) for the oral cavity. J. Dent. 2008 36 5 351 359 10.1016/j.jdent.2008.01.014 18343013
    [Google Scholar]
  19. Chelu M. Musuc A.M. Polymer gels: Classification and recent developments in biomedical applications. Gels 2023 9 2 161 10.3390/gels9020161 36826331
    [Google Scholar]
  20. Pan P. Svirskis D. Waterhouse G.I.N. Wu Z. Hydroxypropyl methylcellulose bioadhesive hydrogels for topical application and sustained drug release: The effect of polyvinylpyrrolidone on the physicomechanical properties of hydrogel. Pharmaceutics 2023 15 9 2360 10.3390/pharmaceutics15092360 37765328
    [Google Scholar]
  21. Mokdad R. Aouabed A. Ball V. Si Youcef F.F. Nasrallah N. Heurtault B. HadjSadok A. Formulation and rheological evaluation of liposomes-loaded carbopol hydrogels based on thermal waters. Drug Dev. Ind. Pharm. 2022 48 11 635 645 10.1080/03639045.2022.2152044 36420770
    [Google Scholar]
  22. Kumar K. Dhawan N. Sharma H. Vaidya S. Vaidya B. Bioadhesive polymers: Novel tool for drug delivery. Artif. Cells Nanomed. Biotechnol. 2014 42 4 274 283 10.3109/21691401.2013.815194 23859698
    [Google Scholar]
  23. Petri D.F.S. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015 132 23 app.42035 10.1002/app.42035
    [Google Scholar]
  24. Scleroglucan Properties. Available from:https://www.cargill.com/personal-care/hydrocolloids/scleroglucan?utm_source=chatgpt.com (accessed on 14-3-2024).
  25. Gokhale K.M. Pandey D.S. Formulation development of novel curcumin analogue loaded non-aqueous gel and curcumin analogue loaded nanoparticle (ca-np) gel for topical use and in-vitro antioxidant study. J. Pharm. Res. Int. 2021 2021 284 302 10.9734/jpri/2021/v33i58B34204
    [Google Scholar]
  26. Wu Y. Levons J. Narang A.S. Raghavan K. Rao V.M. Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility. AAPS PharmSciTech 2011 12 4 1248 1263 10.1208/s12249‑011‑9677‑z 21948318
    [Google Scholar]
  27. Migliozzi S. Meridiano G. Angeli P. Mazzei L. Investigation of the swollen state of Carbopol molecules in non-aqueous solvents through rheological characterization. Soft Matter 2020 16 42 9799 9815 10.1039/D0SM01196G 33005911
    [Google Scholar]
  28. Migliozzi S. Study of the continuous gelation process of non-aqueous carbopol gels. 2nd International Process Intensification Conference (IPIC2) 2019 Available from:https://www.researchgate.net/publication/337947257_Study_of_the_continuous_gelation_process_of_non-aqueous_carbopol_gels (accessed on 14-3-2024).
    [Google Scholar]
  29. Joshi D.R. Adhikari N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019 28 3 1 18 10.9734/jpri/2019/v28i330203
    [Google Scholar]
  30. Nikolić L. Zdravkovic A. Nikolić V. Ilic-Stojanovic S. Synthetic hydrogels and their impact on health and environment. Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series Springer 2019 1363 1391 10.1007/978‑3‑319‑77830‑3_61
    [Google Scholar]
  31. Guo C. Zhang L.Q. Jiang W. Biodegrading plastics with a synthetic non-biodegradable enzyme. Chem 2023 9 2 363 376 10.1016/j.chempr.2022.09.008
    [Google Scholar]
  32. Kolimi P. Youssef A.A.A. Narala S. Nyavanandi D. Dudhipala N. Bandari S. Repka M.A. Development and characterization of itraconazole non-aqueous creams for the treatment of topical fungal infections. J. Drug Deliv. Sci. Technol. 2022 76 103818 10.1016/j.jddst.2022.103818
    [Google Scholar]
  33. Malkin A.Y. Derkach S.R. Kulichikhin V.G. Rheology of gels and yielding liquids. Gels 2023 9 9 715 10.3390/gels9090715 37754396
    [Google Scholar]
  34. Pekcan Ö. Kara S. Gelation Mechanisms. Mod. Phys. Lett. B 2012 26 27 1230019 10.1142/S0217984912300190
    [Google Scholar]
  35. Microbiological quality considerations in non-sterile drug manufacturing. Available from:https://www.fda.gov/regulatory-information/search-fda-guidance-documents/microbiological-quality-considerations-non-sterile-drug-manufacturing (accessed on 14-3-2024).
  36. Larrañeta E. Stewart S. Ervine M. Al-Kasasbeh R. Donnelly R. Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. J. Funct. Biomater. 2018 9 1 13 10.3390/jfb9010013 29364833
    [Google Scholar]
  37. Lal D.K. Kumar B. Saeedan A.S. Ansari M.N. An overview of nanoemulgels for bioavailability enhancement in inflammatory conditions via topical delivery. Pharmaceutics 2023 15 4 1187 10.3390/pharmaceutics15041187 37111672
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878371228250519073422
Loading
/content/journals/raddf/10.2174/0126673878371228250519073422
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Non-aqueous ; applications ; topical drug delivery ; creams ; gels ; hydrolysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test