Skip to content
2000
image of Microrna Expression in Aurelia aurita Metamorphosis

Abstract

Introduction

In animal taxa and jellyfish, the same genome encodes for the different phenotypes that characterize life stages that follow each other during ontogeny. This situation underscores the existence of profound regulation of genomic information at the epigenetic level. MicroRNAs are fundamental epigenetic regulators. The aim of this study is to evaluate the role of microRNA regulation during jellyfish metamorphosis and to explore the existence of evolutionarily conserved microRNAs.

Methods

Specimens belonging to the 4-metamorphosis stages of (polyps, ephyra, young, and adult jellyfish) were bred and collected. The expression of 2,549 miRNAs for each stage was tested using microarray technology. The comparison of microRNA expression for each phase was performed using line plot analysis and Principal Component Analysis of variance (PCA), while the identification of microRNA clusters was performed volcano plot analysis.

Results

A remarkable number of miRNAs specifically hybridize with a human miRNA library. Each metamorphosis stage is characterized by a different level of expression of miRNAs: 1) Polyp vs. Ephyra stage: 128 upregulated, 2 downregulated; 2) Ephyra vs. Young stage: 2 upregulated, 135 downregulated; 3) Young vs. Adult stage: 69 upregulated, 6 downregulated. Specific functions inferred from known activities of corresponding miRNAs in higher animals (PubMed database) appear to be coherent with the correlated experimental model.

Discussion

Present results reveal that microRNAs with human homologs undergo specific expression changes throughout metamorphosis. This observation reinforces the hypothesis of a shared evolutionary origin of certain miRNA families between Cnidaria and Bilateria. The dynamic and stage-specific regulation pattern observed suggests that miRNAs play a key role in orchestrating the complex transitions involved in jellyfish development. These findings point to a broader conservation of epigenetic mechanisms, such as miRNA-mediated gene silencing, which may have emerged early in metazoan evolution and contributed to the regulation of cell differentiation and phenotype modulation.

Conclusion

The present study highlights the importance of as a model for investigating miRNA-driven epigenetic regulation in non-bilaterian animals. The identification of human-homologous miRNAs provides novel insights into the evolutionary stability of the epigenetic machinery and suggests conserved regulatory functions across distant taxa. Although limited by the use of a human-based microarray platform, the data presented here lay a solid foundation for future studies employing sequencing and functional assays to further explore the role of miRNAs in cnidarian development and evolution.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366376242250622154915
2025-10-28
2025-11-02
Loading full text...

Full text loading...

References

  1. Fuchs B. Wang W. Graspeuntner S. Regulation of polyp-to-jellyfish transition in Aurelia aurita. Curr. Biol. 2014 24 3 263 273 10.1016/j.cub.2013.12.003 24440392
    [Google Scholar]
  2. McBrayer Z. Ono H. Shimell M. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 2007 13 6 857 871 10.1016/j.devcel.2007.11.003 18061567
    [Google Scholar]
  3. Brown D.D. Cai L. Amphibian metamorphosis. Dev. Biol. 2007 306 1 20 33 10.1016/j.ydbio.2007.03.021 17449026
    [Google Scholar]
  4. Laudet V. The origins and evolution of vertebrate metamorphosis. Curr. Biol. 2011 21 18 R726 R737 10.1016/j.cub.2011.07.030 21959163
    [Google Scholar]
  5. Song J. Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 2020 77 10 1893 1909 10.1007/s00018‑019‑03361‑5 31724082
    [Google Scholar]
  6. Zhang X. Liu X. Liu C. Wei J. Yu H. Dong B. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 2018 19 1 168 10.1186/s12864‑018‑4566‑4 29490613
    [Google Scholar]
  7. Huang V. Li L.C. miRNA goes nuclear. RNA Biol. 2012 9 3 269 273 10.4161/rna.19354 22336708
    [Google Scholar]
  8. Mallory A.C. Vaucheret H. MicroRNAs: Something important between the genes. Curr. Opin. Plant Biol. 2004 7 2 120 125 10.1016/j.pbi.2004.01.006 15003210
    [Google Scholar]
  9. Saliminejad K. Khorram Khorshid H.R. Soleymani Fard S. Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019 234 5 5451 5465 10.1002/jcp.27486 30471116
    [Google Scholar]
  10. Selbach M. Schwanhäusser B. Thierfelder N. Fang Z. Khanin R. Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008 455 7209 58 63 10.1038/nature07228 18668040
    [Google Scholar]
  11. Rentzsch F. Layden M. Manuel M. The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip. Rev. Dev. Biol. 2017 6 1 e257 10.1002/wdev.257 27882698
    [Google Scholar]
  12. Park E. Hwang D.S. Lee J.S. Song J.I. Seo T.K. Won Y.J. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol. Phylogenet. Evol. 2012 62 1 329 345 10.1016/j.ympev.2011.10.008 22040765
    [Google Scholar]
  13. Putnam N.H. Srivastava M. Hellsten U. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007 317 5834 86 94 10.1126/science.1139158 17615350
    [Google Scholar]
  14. Berking S. Herrmann K. Compartments in scyphozoa. Int. J. Dev. Biol. 2007 51 3 221 228 10.1387/ijdb.062215sb 17486542
    [Google Scholar]
  15. Fujita S. Kuranaga E. Nakajima Y. Regeneration potential of jellyfish: Cellular mechanisms and molecular insights. Genes 2021 12 5 758 10.3390/genes12050758 34067753
    [Google Scholar]
  16. Brekhman V. Malik A. Haas B. Sher N. Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 2015 16 1 74 10.1186/s12864‑015‑1320‑z 25757467
    [Google Scholar]
  17. Di Camillo C.G. Betti F. Bo M. Martinelli M. Puce S. Bavestrello G. Contribution to the understanding of seasonal cycle of Aurelia aurita (Cnidaria: Scyphozoa) scyphopolyps in the northern Adriatic Sea. J. Mar. Biol. Assoc. U. K. 2010 90 6 1105 1110 10.1017/S0025315409000848
    [Google Scholar]
  18. Hofmann D.K. Neumann R. Henne K. Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 1978 47 2 161 176 10.1007/BF00395637
    [Google Scholar]
  19. Kroiher M. Siefker B. Berking S. Induction of segmentation in polyps of Aurelia aurita (Scyphozoa, Cnidaria) into medusae and formation of mirror-image medusa anlagen. Int. J. Dev. Biol. 2000 44 5 485 490 11032183
    [Google Scholar]
  20. Leitz T. Wagner T. The marine bacterium alteromonas espejiana induces metamorphosis of the hydroid hydractinia echinata. Mar. Biol. 1993 115 2 173 178 10.1007/BF00346332
    [Google Scholar]
  21. Miyake H. Terazaki M. Kakinuma Y. On the polyps of the common jellyfish Aurelia aurita in kagoshima Bay. J. Oceanogr. 2002 58 3 451 459 10.1023/A:1021628314041
    [Google Scholar]
  22. Collins A.G. Schuchert P. Marques A.C. Jankowski T. Medina M. Schierwater B. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst. Biol. 2006 55 1 97 115 10.1080/10635150500433615 16507527
    [Google Scholar]
  23. Helm R.R. Evolution and development of scyphozoan jellyfish. Biol. Rev. Camb. Philos. Soc. 2018 93 2 1228 1250 10.1111/brv.12393 29446223
    [Google Scholar]
  24. Leclère L. Horin C. Chevalier S. The genome of the jellyfish clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat. Ecol. Evol. 2019 3 5 801 810 10.1038/s41559‑019‑0833‑2 30858591
    [Google Scholar]
  25. Ishii H. Katsukoshi K. Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J. Oceanogr. 2010 66 3 329 336 10.1007/s10872‑010‑0029‑5
    [Google Scholar]
  26. Kusserow A. Pang K. Sturm C. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 2005 433 7022 156 160 10.1038/nature03158 15650739
    [Google Scholar]
  27. Miller M-E.C. Graham W.M. Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 2012 432-433 113 120 10.1016/j.jembe.2012.07.015
    [Google Scholar]
  28. Purcell J.E. Environmental effects on asexual reproduction rates of the scyphozoan aurelia labiata. Mar. Ecol. Prog. Ser. 2007 348 183 196 10.3354/meps07056
    [Google Scholar]
  29. Berking S. Czech N. Gerharz M. A newly discovered oxidant defence system and its involvement in the development of Aurelia aurita (Scyphozoa, Cnidaria): reactive oxygen species and elemental iodine control medusa formation. Int. J. Dev. Biol. 2005 49 8 969 976 10.1387/ijdb.052024sb 16281174
    [Google Scholar]
  30. Fridrich A. Modepalli V. Lewandowska M. Aharoni R. Moran Y. Unravelling the developmental and functional significance of an ancient argonaute duplication. Nat. Commun. 2020 11 1 6187 10.1038/s41467‑020‑20003‑8 33273471
    [Google Scholar]
  31. Grimson A. Srivastava M. Fahey B. Early origins and evolution of microRNAs and piwi-interacting RNAs in animals. Nature 2008 455 7217 1193 1197 10.1038/nature07415 18830242
    [Google Scholar]
  32. Krishna S. Nair A. Cheedipudi S. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata. Nucleic Acids Res. 2013 41 1 599 616 10.1093/nar/gks1020 23166307
    [Google Scholar]
  33. de Jong D. Eitel M. Jakob W. Multiple dicer genes in the early-diverging metazoa. Mol. Biol. Evol. 2009 26 6 1333 1340 10.1093/molbev/msp042 19276153
    [Google Scholar]
  34. Moran Y. Praher D. Schlesinger A. Ayalon A. Tal Y. Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. Mar. Biotechnol. (NY) 2013 15 3 329 339 10.1007/s10126‑012‑9491‑y 23151943
    [Google Scholar]
  35. Guzel Tanoglu E. Ozturk S. miR-145 suppresses epithelial-mesenchymal transition by targeting stem cells in ewing sarcoma cells. Bratisl. Med. J. 2021 122 1 71 77 10.4149/BLL_2021_009 33393324
    [Google Scholar]
  36. Chen Q. Zhou L. Ye X. Tao M. Wu J. miR-145-5p suppresses proliferation, metastasis and EMT of colorectal cancer by targeting CDCA3. Pathol. Res. Pract. 2020 216 4 152872 10.1016/j.prp.2020.152872 32107086
    [Google Scholar]
  37. Liu X. Yang Y. Wang X. MiR-184 directly targets Wnt3 in cardiac mesoderm differentiation of embryonic stem cells. Stem Cells 2020 38 12 1568 1577 Epub ahead of print10.1002/stem.3282 32997855
    [Google Scholar]
  38. Rao X. Lu Y. C1QTNF6 targeted by MiR-184 regulates the proliferation, migration, and invasion of lung adenocarcinoma cells. Mol. Biotechnol. 2022 64 11 1279 1287 Epub ahead of print10.1007/s12033‑022‑00495‑z 35578071
    [Google Scholar]
  39. Li C.J. Cheng P. Liang M.K. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest. 2015 125 4 1509 1522 10.1172/JCI77716 25751060
    [Google Scholar]
  40. Zhu W. Wu X. Yang B. miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta Biochim. Biophys. Sin. 2019 51 2 185 196 10.1093/abbs/gmy165 30668826
    [Google Scholar]
  41. Xie W Shui C Fang X Peng Y Qin L. miR-197-3p reduces epi-thelial-mesenchymal transition by targeting ABCA7 in ovarian cancer cells. 3 Biotech 2020 10 8 375 10.1007/s13205‑020‑02362‑7 32832335
    [Google Scholar]
  42. Li Y. Wu X. Gao F. Wang X. MiR-197-3p regulates endothelial cell proliferation and migration by targeting IGF1R and BCL2 in kawasaki disease. Int. J. Clin. Exp. Pathol. 2019 12 11 4181 4192 31933818
    [Google Scholar]
  43. Liu H. Luo J. miR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis. J. Biochem. 2019 166 6 495 502 10.1093/jb/mvz065 31396630
    [Google Scholar]
  44. Ye L. Wang H. Liu B. miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol. 2016 37 1 1151 1157 10.1007/s13277‑015‑3835‑y 26277787
    [Google Scholar]
  45. Xu J. Lei S. Sun S. MiR-324-3p regulates fibroblast proliferation via targeting TGF-β1 in atrial fibrillation. Int. Heart J. 2020 61 6 1270 1278 10.1536/ihj.20‑423 33191361
    [Google Scholar]
  46. Guo J. Cai Y. Ye X. MiR-409-5p as a regulator of neurite growth is down regulated in APP/PS1 murine model of Alzheimer’s Disease. Front. Neurosci. 2019 13 1264 10.3389/fnins.2019.01264 31849582
    [Google Scholar]
  47. Zhang J. Hou W. Jia J. Zhao Y. Zhao B. MiR‐409‐3p regulates cell proliferation and tumor growth by targeting E74‐like factor 2 in osteosarcoma. FEBS Open Bio 2017 7 3 348 357 10.1002/2211‑5463.12177 28286730
    [Google Scholar]
  48. Qu B. Gong K. Yang H.S. MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment. Biochem. Biophys. Res. Commun. 2018 496 1 120 126 10.1016/j.bbrc.2018.01.009 29305863
    [Google Scholar]
  49. Wu K. Wang J. He J. Chen Q. Yang L. miR-483-3p promotes proliferation and migration of neuroblastoma cells by targeting PUMA. Int. J. Clin. Exp. Pathol. 2018 11 2 490 501 31938135
    [Google Scholar]
  50. Qin W. Liu L. Wang Y. Wang Z. Yang A. Wang T. Mir-494 inhibits osteoblast differentiation by regulating BMP signaling in simulated microgravity. Endocrine 2019 65 2 426 439 10.1007/s12020‑019‑01952‑7 31129811
    [Google Scholar]
  51. Sun Y. Yi Y. Gan S. miR 574 5p mediates epithelial mesenchymal transition in small cell lung cancer by targeting vimentin via a competitive endogenous RNA network. Oncol. Lett. 2021 21 6 459 10.3892/ol.2021.12720 33907569
    [Google Scholar]
  52. Fu D. Liu B. Zang L.E. Jiang H. MiR-631/ZAP70: A novel axis in the migration and invasion of prostate cancer cells. Biochem. Biophys. Res. Commun. 2016 469 3 345 351 10.1016/j.bbrc.2015.11.093 26620225
    [Google Scholar]
  53. Lin Q.Y. Wang J.Q. Wu L.L. Zheng W.E. Chen P.R. miR-638 represses the stem cell characteristics of breast cancer cells by targeting E2F2. Breast Cancer 2020 27 1 147 158 10.1007/s12282‑019‑01002‑0 31410735
    [Google Scholar]
  54. Beveridge D.J. Richardson K.L. Epis M.R. The tumor suppressor miR-642a-5p targets Wilms Tumor 1 gene and cell-cycle progression in prostate cancer. Sci. Rep. 2021 11 1 18003 10.1038/s41598‑021‑97190‑x 34504167
    [Google Scholar]
  55. Yang W. Zhou C. Luo M. MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget 2016 7 13 16703 16715 10.18632/oncotarget.7697 26934648
    [Google Scholar]
  56. Wei Q. Sun H. Song S. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J. Clin. Invest. 2018 128 12 5448 5464 10.1172/JCI121859 30325740
    [Google Scholar]
  57. Lin J.C. Kuo C.Y. Tsai J.T. Liu W.H. miR-671-5p inhibition by MSI1 promotes glioblastoma tumorigenesis via radioresistance, tumor motility and cancer stem-like cell properties. Biomedicines 2021 10 1 21 10.3390/biomedicines10010021 35052701
    [Google Scholar]
  58. Fan Z. Wang Q. Deng H. Circ_0011460 upregulates HTRA1 expression by sponging miR‐762 to suppress HTR8/SVneo cell growth, migration, and invasion. Am. J. Reprod. Immunol. 2021 86 5 e13485 10.1111/aji.13485 34270834
    [Google Scholar]
  59. Xie B.H. He X. Hua R.X. Mir-765 promotes cell proliferation by downregulating INPP4B expression in human hepatocellular carcinoma. Cancer Biomark. 2016 16 3 405 413 10.3233/CBM‑160579 27062697
    [Google Scholar]
  60. Jia B. Xia L. Cao F. The role of miR-766-5p in cell migration and invasion in colorectal cancer. Exp. Ther. Med. 2018 15 3 2569 2574 10.3892/etm.2018.5716 29456660
    [Google Scholar]
  61. Mao Y. Wang J. Guo X. Bi Y. Wang C. Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem. Biophys. Res. Commun. 2018 505 1 119 125 10.1016/j.bbrc.2018.09.069 30241943
    [Google Scholar]
  62. Zhou Z. Xu Y.P. Wang L.J. Kong Y. miR-940 potentially promotes proliferation and metastasis of endometrial carcinoma through regulation of MRVI1. Biosci. Rep. 2019 39 6 BSR20190077 10.1042/BSR20190077 31085718
    [Google Scholar]
  63. Du B. Zhang P. Tan Z. Xu J. MiR-1202 suppresses hepatocellular carcinoma cells migration and invasion by targeting cyclin dependent kinase 14. Biomed. Pharmacother. 2017 96 1246 1252 10.1016/j.biopha.2017.11.090 29217161
    [Google Scholar]
  64. Wu G. Liu A. Zhu J. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget 2015 6 30 28882 28894 10.18632/oncotarget.4921 26337084
    [Google Scholar]
  65. Lin F. Li R. MiR-1226, mediated by ASCL1, suppresses the progression of non-small cell lung cancer by targeting FGF2. Bull. Cancer 2022 109 4 424 435 10.1016/j.bulcan.2021.11.017 35164915
    [Google Scholar]
  66. Lin L. Liu D. Liang H. Xue L. Su C. Liu M. MiR-1228 promotes breast cancer cell growth and metastasis through targeting SCAI protein. Int. J. Clin. Exp. Pathol. 2015 8 6 6646 6655 26261546
    [Google Scholar]
  67. Lu M. Wu Y. Zeng B. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis. Biochem. Biophys. Res. Commun. 2020 526 2 306 313 10.1016/j.bbrc.2020.03.084 32209259
    [Google Scholar]
  68. Ren J. Wang D. Huang H. Li X. Zhuang X. Li J. miR-1260b activates Wnt signaling by targeting secreted frizzled-related protein 1 to regulate taxane resistance in lung adenocarcinoma. Front. Oncol. 2020 10 557327 10.3389/fonc.2020.557327 33224874
    [Google Scholar]
  69. Hao W. Zhu Y. Guo Y. Wang H. miR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells (HNECs). Transpl. Immunol. 2021 68 101429 10.1016/j.trim.2021.101429 34139308
    [Google Scholar]
  70. Schwarzenbacher D. Klec C. Pasculli B. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 2019 21 1 20 10.1186/s13058‑019‑1104‑5 30709367
    [Google Scholar]
  71. Liu S. Qu D. Li W. miR-647 and miR-1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer. Mol. Med. Rep. 2017 16 6 8189 8199 10.3892/mmr.2017.7675 28990086
    [Google Scholar]
  72. Wu D. Zhou J. Tan M. Zhou Y. LINC01116 regulates proliferation, migration, and apoptosis of keloid fibroblasts by the TGF-β1/SMAD3 signaling via targeting miR-3141. Anal. Biochem. 2021 627 114249 10.1016/j.ab.2021.114249 34048784
    [Google Scholar]
  73. Zeng Y. Wang K.X. Xu H. Hong Y. Integrative miRNA analysis identifies hsa‐miR‐3154, hsa‐miR‐7‐3, and hsa‐miR‐600 as potential prognostic biomarker for cervical cancer. J. Cell. Biochem. 2018 119 2 1558 1566 10.1002/jcb.26315 28771797
    [Google Scholar]
  74. Matin F. Jeet V. Srinivasan S. MicroRNA-3162-5p-mediated crosstalk between kallikrein family members including prostate-specific antigen in prostate cancer. Clin. Chem. 2019 65 6 771 780 10.1373/clinchem.2018.295824 31018918
    [Google Scholar]
  75. Yao B. Li Y. Wang L. MicroRNA-3194-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by decreasing Wnt/β-catenin signaling through targeting BCL9. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3885 3895 10.1080/21691401.2019.1670190 31561723
    [Google Scholar]
  76. Zhao W Liu X. MiR-3682 promotes the progression of hepato-cellular carcinoma (HCC) via inactivating AMPK signaling by targeting ADRA1A. Ann Hepatol 2022 27 100570 Suppl. 1 10.1016/j.aohep.2021.100570 34706275
    [Google Scholar]
  77. Fu D. Xiao C. Xie Y. Gao J. Ye S. MiR-3926 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting toll like receptor 5. Gene 2019 687 200 206 10.1016/j.gene.2018.11.014 30412746
    [Google Scholar]
  78. Tsai C.C. Chen T.Y. Tsai K.J. NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori Associated gastric cancer. Biomed. Pharmacother. 2020 132 110869 10.1016/j.biopha.2020.110869 33113427
    [Google Scholar]
  79. Yang W.B. Zhang W.P. Shi J.L. Wang J.W. MiR-4299 suppresses non-small cell lung cancer cell proliferation, migration and invasion through modulating PTEN/AKT/PI3K pathway. Eur. Rev. Med. Pharmacol. Sci. 2018 22 11 3408 3414 10.26355/eurrev_201806_15163 29917192
    [Google Scholar]
  80. Shen C. Wang B. Zhang K. RGMB-AS1/miR-4428/PBX1 axis drives the progression of cervical cancer. Transl. Cancer Res. 2020 9 5 3180 3190 10.21037/tcr.2020.04.19 35117684
    [Google Scholar]
  81. Liu S. Yang N. Wang L. Wei B. Chen J. Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β‐catenin signaling pathway. J. Cell. Physiol. 2020 235 10 7541 7553 10.1002/jcp.29656 32239719
    [Google Scholar]
  82. Chen X. Zhong S. Lu P. miR-4443 participates in the malignancy of breast cancer. PLoS One 2016 11 8 e0160780 10.1371/journal.pone.0160780 27504971
    [Google Scholar]
  83. Fu J. Zhang Y. Wang M. Hu J. Fang Y. Inhibition of the long non‐coding RNA UNC5B‐AS1/miR‐4455/RSPO4 axis reduces cervical cancer growth in vitro and in vivo. J. Gene Med. 2021 23 12 e3382 10.1002/jgm.3382 34350661
    [Google Scholar]
  84. Shao F. Cai M. Fan F.F. Overexpression of circRNA chr7:154954255-154998784+ in cancer-associated pancreatic stellate cells promotes the growth and metastasis of pancreatic cancer by targeting the miR-4459/KIAA0513 axis. Am. J. Transl. Res. 2020 12 9 5048 5063 33042405
    [Google Scholar]
  85. Lu W. Han L. Su L. A 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459. Stem Cells Dev. 2015 24 9 1133 1140 10.1089/scd.2014.0353 25437332
    [Google Scholar]
  86. Li C. Li X. circPTEN suppresses colorectal cancer progression through regulating PTEN/AKT pathway. Mol. Ther. Nucleic Acids 2021 26 1418 1432 10.1016/j.omtn.2021.05.018 34938598
    [Google Scholar]
  87. Mi B. Xiong Y. Zhang C. SARS-CoV-2-induced overexpression of miR-4485 suppresses osteogenic differentiation and impairs fracture healing. Int. J. Biol. Sci. 2021 17 5 1277 1288 10.7150/ijbs.56657 33867845
    [Google Scholar]
  88. Zhang X. Chen Y. Wang L. MiR-4505 aggravates lipopolysaccharide-induced vascular endothelial injury by targeting heat shock protein A12B. Mol. Med. Rep. 2017 17 1 1389 1395 10.3892/mmr.2017.7936 29115487
    [Google Scholar]
  89. Yan L. Li Q. Sun K. Jiang F. MiR-4644 is upregulated in plasma exosomes of bladder cancer patients and promotes bladder cancer progression by targeting UBIAD1. Am. J. Transl. Res. 2020 12 10 6277 6289 33194029
    [Google Scholar]
  90. Liu F. Wei J. Hao Y. Long intergenic non-protein coding RNA 02570 promotes nasopharyngeal carcinoma progression by adsorbing microRNA miR-4649-3p thereby upregulating both sterol regulatory element binding protein 1, and fatty acid synthase. Bioengineered 2021 12 1 7108 7119 10.1080/21655979.2021.1979317 34546840
    [Google Scholar]
  91. Zhong X. Xie G. Zhang Z. MiR-4653-3p and its target gene FRS2 are prognostic biomarkers for hormone receptor positive breast cancer patients receiving tamoxifen as adjuvant endocrine therapy. Oncotarget 2016 7 38 61166 61182 10.18632/oncotarget.11278 27533459
    [Google Scholar]
  92. Wang Y. Chen Z. Chen W. Novel circulating microRNAs expression profile in colon cancer: A pilot study. Eur. J. Med. Res. 2017 22 1 51 10.1186/s40001‑017‑0294‑5 29187262
    [Google Scholar]
  93. Wei Y. Wei L. Li J. Retracted:SLCO4A1‐AS1 promotes cell growth and induces resistance in lung adenocarcinoma by modulating miR‐4701‐5p/NFE2L1 axis to activate WNT pathway. Cancer Med. 2020 9 19 7205 7217 10.1002/cam4.3270 32762035
    [Google Scholar]
  94. Zhao M. Tang Z. Wang Y. Ding J. Guo Y. Gao T. A direct negative feedback loop of miR-4721/FOXA1/Nanog promotes nasopharyngeal cell stem cell enrichment and metastasis. J. Transl. Med. 2021 19 1 387 10.1186/s12967‑021‑03059‑y 34503528
    [Google Scholar]
  95. Ho K.H. Chang C.K. Chen P.H. Wang Y.J. Chang W.C. Chen K.C. miR‐4725‐3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. J. Neurochem. 2018 146 3 269 288 10.1111/jnc.14459 29747239
    [Google Scholar]
  96. Zhou Y. Yuan Y. Li L. HER2-intronic miR-4728-5p facilitates HER2 expression and accelerates cell proliferation and migration by targeting EBP1 in breast cancer. PLoS One 2021 16 2 e0245832 10.1371/journal.pone.0245832 33529238
    [Google Scholar]
  97. Zhang Y. Li P. Hu J. Role and mechanism of miR-4778-3p and its targets NR2C2 and Med19 in cervical cancer radioresistance. Biochem. Biophys. Res. Commun. 2019 508 1 210 216 10.1016/j.bbrc.2018.11.110 30473219
    [Google Scholar]
  98. Lin H. Peng J. Zhu T. Xiong M. Zhang R. Lei L. Exosomal miR-4800-3p aggravates the progression of hepatocellular carcinoma via regulating the hippo signaling pathway by targeting STK25. Front. Oncol. 2022 12 759864 10.3389/fonc.2022.759864 35756606
    [Google Scholar]
  99. Wang R Wang X Zhang J Liu Y. LINC00942 promotes tumor proliferation and metastasis in lung adenocarcinoma via FZD1 upregulation. Technol Cancer Res Treat 2021 20 1 10 1533033820977526 10.1177/1533033820977526 34253104
    [Google Scholar]
  100. Wei Z. Lyu B. Hou D. Liu X. Mir-5100 mediates proliferation, migration and invasion of oral squamous cell carcinoma cells via targeting SCAI. J. Invest. Surg. 2021 34 8 834 841 10.1080/08941939.2019.1701754 31851859
    [Google Scholar]
  101. Wang H. Cui Y. Luan J. MiR-5100 promotes osteogenic differentiation by targeting Tob2. J. Bone Miner. Metab. 2017 35 6 608 615 10.1007/s00774‑016‑0799‑y 27873073
    [Google Scholar]
  102. Yang J. Yan D.M. Xhu L.X. Si D.M. Liang Q.H. MiR-5195-3p inhibits the proliferation of glioma cells by targeting BIRC2. Eur. Rev. Med. Pharmacol. Sci. 2020 24 1 267 273 10.26355/eurrev_202001_19921 31957840
    [Google Scholar]
  103. Yoo J.K. Kim J. Choi S. The hsa-miR-5739 modulates the endoglin network in endothelial cells derived from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2011 415 2 258 262 10.1016/j.bbrc.2011.10.030 22020071
    [Google Scholar]
  104. Chen W. Wang P. Lu Y. Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Theranostics 2019 9 20 5739 5754 10.7150/thno.37556 31534516
    [Google Scholar]
  105. Shi Y. Zha J. Zuo M. Yan Q. Song H. Long noncoding RNA CHL1‐AS1 promotes cell proliferation and migration by sponging miR‐6076 to regulate CHL1 expression in endometrial cancer. J. Cell. Biochem. 2020 121 3 2655 2663 10.1002/jcb.29486 31736153
    [Google Scholar]
  106. Piao X.M. Jeong P. Kim Y.H. Urinary cell‐free microRNA biomarker could discriminate bladder cancer from benign hematuria. Int. J. Cancer 2019 144 2 380 388 10.1002/ijc.31849 30183088
    [Google Scholar]
  107. Li H. Zhang N. Jiao X. Downregulation of microRNA‐6125 promotes colorectal cancer growth through YTHDF2‐dependent recognition of N6‐methyladenosine‐modified GSK3β. Clin. Transl. Med. 2021 11 10 e602 10.1002/ctm2.602 34709763
    [Google Scholar]
  108. Tubita V. Segui-Barber J. Lozano J.J. Effect of immunosuppression in miRNAs from extracellular vesicles of colorectal cancer and their influence on the pre-metastatic niche. Sci. Rep. 2019 9 1 11177 10.1038/s41598‑019‑47581‑y 31371743
    [Google Scholar]
  109. Shen D. Zhao H. Zeng P. Ge M. Shrestha S. Zhao W. Circular RNA circ_0001459 accelerates hepatocellular carcinoma progression via the miR‐6165/IGF1R axis. Ann. N. Y. Acad. Sci. 2022 1512 1 46 60 10.1111/nyas.14753 35199365
    [Google Scholar]
  110. Wang Z. Li Y. Cao J. MicroRNA profile identifies miR-6165 could suppress gastric cancer migration and invasion by targeting STRN4. OncoTargets Ther. 2020 13 1859 1869 10.2147/OTT.S208024 32184620
    [Google Scholar]
  111. Li Z.X. Wu G. Jiang W.J. HOXB5 promotes malignant progression in pancreatic cancer via the miR-6732 pathway. Cell Cycle 2020 19 2 233 245 10.1080/15384101.2019.1707456 31876226
    [Google Scholar]
  112. Zhou F. Lei Y. Xu X. LINC00355:8 promotes cell proliferation and migration with invasion via the MiR-6777-3p/Wnt10b axis in hepatocellular carcinoma. J. Cancer 2020 11 19 5641 5655 10.7150/jca.43831 32913459
    [Google Scholar]
  113. Gong Z.H. Ji J. Yao J. SphK1-targeted miR-6784 inhibits functions of skin squamous cell carcinoma cells. Aging 2021 13 3 3726 3741 10.18632/aging.202336 33465049
    [Google Scholar]
  114. Luo Z. Rong Z. Zhang J. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol. Cancer 2020 19 1 86 10.1186/s12943‑020‑01203‑8 32386516
    [Google Scholar]
  115. Wang W. Xu S. Di Y. Novel role of LINC01013/miR-6795-5p/FMNL3 axis in the regulation of hepatocellular carcinoma stem cell features. Acta Biochim. Biophys. Sin. 2021 53 6 652 662 10.1093/abbs/gmab040 33847733
    [Google Scholar]
  116. Kijima T. Hazama S. Tsunedomi R. MicroRNA-6826 and −6875 in plasma are valuable non-invasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncol. Rep. 2017 37 1 23 30 10.3892/or.2016.5267 27878288
    [Google Scholar]
  117. Li X. Chen W. Jia J. The Long Non-Coding RNA-RoR promotes the tumorigenesis of human colorectal cancer by targeting miR-6833-3p through SMC4. OncoTargets Ther. 2020 13 2573 2581 10.2147/OTT.S238947 32273727
    [Google Scholar]
  118. Xu Q. Liu H. Yu B. Long noncoding RNA ZEB2-AS1 facilitates laryngeal squamous cell carcinoma progression by miR-6840-3p/PLXNB1 axis. OncoTargets Ther. 2019 12 7337 7345 10.2147/OTT.S212749 31564916
    [Google Scholar]
  119. Guo W. Liang X. Liu L. MiR-6872 host gene SEMA3B and its antisense lncRNA SEMA3B-AS1 function synergistically to suppress gastric cardia adenocarcinoma progression. Gastric Cancer 2019 22 4 705 722 10.1007/s10120‑019‑00924‑0 30656427
    [Google Scholar]
  120. Chen M. Ai G. Zhou J. Mao W. Li H. Guo J. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed. Pharmacother. 2019 117 109064 10.1016/j.biopha.2019.109064 31226633
    [Google Scholar]
  121. Lee J.M. Yoo J.K. Yoo H. The novel miR-7515 decreases the proliferation and migration of human lung cancer cells by targeting c-Met. Mol. Cancer Res. 2013 11 1 43 53 10.1158/1541‑7786.MCR‑12‑0355 23087254
    [Google Scholar]
  122. Yoshida M. Horiguchi H. Kikuchi S. miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells. PLoS One 2019 14 3 e0213220 10.1371/journal.pone.0213220 30835743
    [Google Scholar]
  123. Mizoguchi A. Takayama A. Arai T. Kawauchi J. Sudo H. MicroRNA-8073: Tumor suppressor and potential therapeutic treatment. PLoS One 2018 13 12 e0209750 10.1371/journal.pone.0209750 30589909
    [Google Scholar]
  124. Li Z. Wang Y. Xiang S. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem. Biophys. Res. Commun. 2020 523 2 506 513 10.1016/j.bbrc.2019.12.065 31898972
    [Google Scholar]
  125. Houri-Zeevi L. Teichman G. Gingold H. Rechavi O. Stress resets ancestral heritable small RNA responses. eLife 2021 10 e65797 10.7554/eLife.65797 33729152
    [Google Scholar]
  126. Yao Q. Chen Y. Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019 51 11 17 10.1016/j.cbpa.2019.01.024 30825741
    [Google Scholar]
  127. Izzotti A. Molecular medicine and the development of cancer chemopreventive agents. Ann. N. Y. Acad. Sci. 2012 1259 1 26 32 10.1111/j.1749‑6632.2012.06646.x 22758633
    [Google Scholar]
  128. Izzotti A. Calin G.A. Arrigo P. Steele V.E. Croce C.M. De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009 23 3 806 812 10.1096/fj.08‑121384 18952709
    [Google Scholar]
  129. Izzotti A. Bagnasco M. Cartiglia C. Longobardi M. De Flora S. Proteomic analysis as related to transcriptome data in the lung of chromium(VI)-treated rats. Int. J. Oncol. 2004 24 6 1513 1522 15138595
    [Google Scholar]
  130. Houri-Zeevi L. Korem Kohanim Y. Antonova O. Rechavi O. Three rules explain transgenerational small RNA inheritance in C. elegans. Cell 2020 182 5 1186 1197.e12 10.1016/j.cell.2020.07.022 32841602
    [Google Scholar]
  131. Izzotti A. Calin G.A. Steele V.E. Croce C.M. De Flora S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J. 2009 23 9 3243 3250 10.1096/fj.09‑135251 19465468
    [Google Scholar]
  132. Li Y. Hui J.H.L. Small RNAs in Cnidaria: A review. Evol. Appl. 2023 16 2 354 364 10.1111/eva.13445 36793685
    [Google Scholar]
  133. Moran Y Agron M Praher D Technau U The evolutionary origin of plant and animal microRNAs. Nat Ecol Evo 2017 1 3 0027 10.1038/s41559‑016‑0027 28529980
    [Google Scholar]
  134. Ledda B. Ottaggio L. Izzotti A. Sukkar S.G. Miele M. Small RNAs in eucaryotes: New clues for amplifying microRNA benefits. Cell Biosci. 2020 10 1 1 10.1186/s13578‑019‑0370‑3 31911829
    [Google Scholar]
  135. He B. Zhao Z. Cai Q. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci. 2020 16 14 2628 2647 10.7150/ijbs.47203 32792861
    [Google Scholar]
  136. Lee R.C. Ambros V. An extensive class of small RNAs in caenorhabditis elegans. Science 2001 294 5543 862 864 10.1126/science.1065329 11679672
    [Google Scholar]
  137. Zhang Q. Pan J. Xiong D. Pulmonary aerosol delivery of Let‐7b microRNA confers a striking inhibitory effect on lung carcinogenesis through targeting the tumor immune microenvironment. Adv. Sci. 2021 8 17 2100629 10.1002/advs.202100629 34236760
    [Google Scholar]
  138. Weiland-Bräuer N. Koutsouveli V. Langfeldt D. Schmitz R.A. First insights into the Aurelia aurita transcriptome response upon manipulation of its microbiome. Front. Microbiol. 2023 14 1183627 10.3389/fmicb.2023.1183627 37637120
    [Google Scholar]
  139. Fridrich A. Salinas-Saaverda M. Kozlolvski I. An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis. Cell Rep. 2023 42 9 113072 10.1016/j.celrep.2023.113072 37676763
    [Google Scholar]
  140. Admoni Y. Fridrich A. Weavers P.K. miRNA-target complementarity in cnidarians resembles its counterpart in plants. EMBO Rep. 2025 26 3 836 859 10.1038/s44319‑024‑00350‑z 39747665
    [Google Scholar]
  141. Wheeler B.M. Heimberg A.M. Moy V.N. The deep evolution of metazoan microRNAs. Evol. Dev. 2009 11 1 50 68 10.1111/j.1525‑142X.2008.00302.x 19196333
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366376242250622154915
Loading
/content/journals/mirna/10.2174/0122115366376242250622154915
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: microRNA ; Epigenetic ; jellyfish ; Aurelia aurita ; epigenetic regulation ; metamorphosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test