Skip to content
2000
image of Equine MicroRNAs: Performance, Reproduction, and Disease

Abstract

MicroRNAs (miRNAs) are molecules that regulate gene expression by targeting the 3′ untranslated region (UTR) of mRNAs. They are essential in numerous biological processes like growth, metabolism, and muscle development. miRNA research has become crucial in livestock breeding, offering solutions for improving animal health and productivity. This review focuses on miRNAs' roles in equine performance, reproduction, and disease, highlighting key findings and future applications in these areas. It discusses the use of circulating miRNAs (ci-miRNA) as biomarkers for athletic performance, particularly in endurance sports, by monitoring responses to exercise-induced stress and recovery. It also examines miRNAs involved in reproductive health, such as those influencing endometritis, oocyte maturation, and embryo development. In terms of disease, miRNAs are highlighted as potential biomarkers for osteoarthritis and sarcoids, offering insights into early diagnosis and treatment. Overall, the review emphasizes the promise of miRNAs in improving equine care through personalized diagnostics and therapeutic approaches.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366369721250606113102
2025-06-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Bartel D.P. MicroRNAs. Cell 2004 116 2 281 297 10.1016/S0092‑8674(04)00045‑5 14744438
    [Google Scholar]
  2. Lim L.P. Lau N.C. Weinstein E.G. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003 17 8 991 1008 10.1101/gad.1074403 12672692
    [Google Scholar]
  3. Dini P. El-Sheikh Ali H. Carossino M. Expression profile of the chromosome 14 MicroRNA cluster (C14MC) ortholog in equine maternal circulation throughout pregnancy and its potential implications. Int. J. Mol. Sci. 2019 20 24 6285 10.3390/ijms20246285 31847075
    [Google Scholar]
  4. Wang K. Liu C-Y. Zhang X-J. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015 22 6 1058 1068 10.1038/cdd.2014.200 25501599
    [Google Scholar]
  5. Kikuchi M. Ishige T. Minamijima Y. Identification of potential miRNA biomarkers to detect hydrocortisone administration in horses. Int. J. Mol. Sci. 2023 24 19 14515 10.3390/ijms241914515 37833961
    [Google Scholar]
  6. Kim M.C. Lee S.W. Ryu D.Y. Cui F.J. Bhak J. Kim Y. Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing. PLoS One 2014 9 4 e93662 10.1371/journal.pone.0093662 24695583
    [Google Scholar]
  7. McGivney B.A. Griffin M.E. Gough K.F. Evaluation of microRNA expression in plasma and skeletal muscle of thoroughbred racehorses in training. BMC Vet. Res. 2017 13 1 347 10.1186/s12917‑017‑1277‑z 29166903
    [Google Scholar]
  8. Kolk D.V.J.H. Pacholewska A. Gerber V. The role of microRNAs in equine medicine: A review. Vet. Q. 2015 35 2 88 96 10.1080/01652176.2015.1021186 25695624
    [Google Scholar]
  9. Mooren F.C. Viereck J. Krüger K. Thum T. Circulating micrornas as potential biomarkers of aerobic exercise capacity. Am. J. Physiol. Heart Circ. Physiol. 2014 306 4 H557 H563 10.1152/ajpheart.00711.2013 24363306
    [Google Scholar]
  10. Polakovičová M. Musil P. Laczo E. Hamar D. Kyselovič J. Circulating microRNAs as potential biomarkers of exercise response. Int. J. Mol. Sci. 2016 17 10 1553 10.3390/ijms17101553 27782053
    [Google Scholar]
  11. Xu T. Liu Q. Yao J. Dai Y. Wang H. Xiao J. Circulating microRNAs in response to exercise. Scand. J. Med. Sci. Sports 2015 25 2 e149 e154 10.1111/sms.12421 25648616
    [Google Scholar]
  12. Turchinovich A. Weiz L. Langheinz A. Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 39 16 7223 7233 10.1093/nar/gkr254 21609964
    [Google Scholar]
  13. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  14. Cappelli K. Felicetti M. Capomaccio S. Nocelli C. Silvestrelli M. Verini-Supplizi A. Effect of training status on immune defence related gene expression in Thoroughbred: Are genes ready for the sprint? Vet. J. 2013 195 3 373 376 10.1016/j.tvjl.2012.07.021 22990119
    [Google Scholar]
  15. Cappelli K. Amadori M. Mecocci S. Miglio A. Antognoni M.T. Razzuoli E. Immune response in young Thoroughbred racehorses under training. Animals 2020 10 10 1809 10.3390/ani10101809 33027949
    [Google Scholar]
  16. Dhabhar F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014 58 2-3 193 210 10.1007/s12026‑014‑8517‑0 24798553
    [Google Scholar]
  17. Morton J.P. Kayani A.C. McArdle A. Drust B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009 39 8 643 662 10.2165/00007256‑200939080‑00003 19769414
    [Google Scholar]
  18. Noakes T.D. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sports 2000 10 3 123 145 10.1034/j.1600‑0838.2000.010003123.x 10843507
    [Google Scholar]
  19. Fielding C.L. Magdesian K.G. Rhodes D.M. Meier C.A. Higgins J.C. Clinical and biochemical abnormalities in endurance horses eliminated from competition for medical complications and requiring emergency medical treatment: 30 cases (2005–2006). J. Vet. Emerg. Crit. Care 2009 19 5 473 478 10.1111/j.1476‑4431.2009.00441.x 19821889
    [Google Scholar]
  20. Makarova J.A. Maltseva D.V. Galatenko V.V. Exercise immunology meets MiRNAs. Exerc. Immunol. Rev. 2014 20 135 164 10.1016/j.immuni.2014.04.006 24974725
    [Google Scholar]
  21. Garciarena C.D. Pinilla O.A. Nolly M.B. Endurance training in the spontaneously hypertensive rat: Conversion of pathological into physiological cardiac hypertrophy. Hypertension 2009 53 4 708 714 10.1161/HYPERTENSIONAHA.108.126805 19221208
    [Google Scholar]
  22. Feng H.J. Ouyang W. Liu J.H. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz. J. Med. Biol. Res. 2014 47 5 361 368 10.1590/1414‑431X20142937 24728214
    [Google Scholar]
  23. Faraldi M. Gomarasca M. Sansoni V. Perego S. Banfi G. Lombardi G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 2019 9 1 1584 10.1038/s41598‑019‑38505‑x 30733582
    [Google Scholar]
  24. Das A. Samidurai A. Salloum F.N. Deciphering non-coding RNAs in cardiovascular health and disease. Front. Cardiovasc. Med. 2018 5 73 10.3389/fcvm.2018.00073 30013975
    [Google Scholar]
  25. Keller P. Vollaard N.B.J. Gustafsson T. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J. Appl. Physiol. 2011 110 1 46 59 10.1152/japplphysiol.00634.2010
    [Google Scholar]
  26. Friedman J.M. Liang G. Liu C.C. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009 69 6 2623 2629 10.1158/0008‑5472.CAN‑08‑3114 19258506
    [Google Scholar]
  27. Wang J. Liew O. Richards A. Chen Y.T. Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int. J. Mol. Sci. 2016 17 5 749 10.3390/ijms17050749 27213331
    [Google Scholar]
  28. Cappelli K. Mecocci S. Capomaccio S. Circulating transcriptional profile modulation in response to metabolic unbalance due to long-term exercise in equine athletes: A pilot study. Genes 2021 12 12 1965 10.3390/genes12121965 34946914
    [Google Scholar]
  29. Solich J. Kuśmider M. Faron-Górecka A. Serum level of miR-1 and miR-155 as potential biomarkers of stress-resilience of NET-KO and SWR/J mice. Cells 2020 9 4 917 10.3390/cells9040917 32283635
    [Google Scholar]
  30. Håkansson K.E.J. Sollie O. Simons K.H. Quax P.H.A. Jensen J. Nossent A.Y. Circulating small non-coding RNAs as biomarkers for recovery after exhaustive or repetitive exercise. Front. Physiol. 2018 9 1136 10.3389/fphys.2018.01136 30246800
    [Google Scholar]
  31. Nielsen S. Åkerström T. Rinnov A. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One 2014 9 2 e87308 10.1371/journal.pone.0087308 24586268
    [Google Scholar]
  32. Brown M.D. Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: Involvement of VEGF and metalloproteinases. Angiogenesis 2003 6 1 1 14 10.1023/A:1025809808697 14517399
    [Google Scholar]
  33. Huang Z. Li Q. Li M. Li C. Transcriptome analysis reveals the long intergenic noncoding RNAs contributed to skeletal muscle differences between Yorkshire and Tibetan pig. Sci. Rep. 2021 11 1 2622 10.1038/s41598‑021‑82126‑2 33514792
    [Google Scholar]
  34. Qaisar R. Bhaskaran S. Remmen V.H. Muscle fiber type diversification during exercise and regeneration. Free Radic. Biol. Med. 2016 98 56 67 10.1016/j.freeradbiomed.2016.03.025 27032709
    [Google Scholar]
  35. Bou T. Han H. Mongke T. Fast and slow myofiber-specific expression profiles are affected by noncoding RNAs in Mongolian horses. Comp. Biochem. Physiol. Part D Genomics Proteomics 2022 41 100942 10.1016/j.cbd.2021.100942 34823143
    [Google Scholar]
  36. Hagiwara N. Yeh M. Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev. Dyn. 2007 236 8 2062 2076 10.1002/dvdy.21223 17584907
    [Google Scholar]
  37. Jackson H.E. Ono Y. Wang X. Elworthy S. Cunliffe V.T. Ingham P.W. The role of Sox6 in zebrafish muscle fiber type specification. Skelet. Muscle 2015 5 1 2 10.1186/s13395‑014‑0026‑2 25671076
    [Google Scholar]
  38. Yeung F. Chung E. Guess M.G. Bell M.L. Leinwand L.A. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 2012 40 15 7303 7318 10.1093/nar/gks466 22638570
    [Google Scholar]
  39. Ka Y. Lee I. Ji K. Thyroid and growth hormone endocrine disruption and mechanisms of homosalate and octisalate using wild-type, thrαa-/-, and dre-miR-499-/- zebrafish embryo/larvae. Ecotoxicol. Environ. Saf. 2024 286 117170 10.1016/j.ecoenv.2024.117170 39413646
    [Google Scholar]
  40. Nachtigall P.G. Dias M.C. Carvalho R.F. Martins C. Pinhal D. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia. PLoS One 2015 10 3 e0119804 10.1371/journal.pone.0119804 25793727
    [Google Scholar]
  41. Ding W. Gong W. Liu H. Changes of mRNA, miRNA and lncRNA expression contributing to skeletal muscle differences between fetus and adult Mongolian horses. Comp Biochem Physiol Part D Genom Prot 2024 52 101294 10.1016/j.cbd.2024.101294 39180870
    [Google Scholar]
  42. Herkenhoff M.E. Oliveira A.C. Nachtigall P.G. Fishing into the microRNA transcriptome. Front. Genet. 2018 9 88 10.3389/fgene.2018.00088 29616080
    [Google Scholar]
  43. Zhang D. Li Y. Yao X. miR-182 regulates metabolic homeostasis by modulating glucose utilization in muscle. Cell Rep. 2016 16 3 757 768 10.1016/j.celrep.2016.06.040 27396327
    [Google Scholar]
  44. Zhang Y. Li C. Li H. miR-378 activates the pyruvate-PEP futile cycle and enhances lipolysis to ameliorate obesity in mice. EBioMedicine 2016 5 93 104 10.1016/j.ebiom.2016.01.035 27077116
    [Google Scholar]
  45. Chen C. Li J. Li Z. Sustained injection of miR-499-5p alters the gastrocnemius muscle metabolome in broiler chickens. Arch. Tierzucht 2022 65 3 275 284 10.5194/aab‑65‑275‑2022 36035876
    [Google Scholar]
  46. Canisso I.F. Segabinazzi L.G.T.M. Fedorka C.E. Persistent breeding-induced endometritis in mares-A multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int. J. Mol. Sci. 2020 21 4 1432 10.3390/ijms21041432 32093296
    [Google Scholar]
  47. Rashid M.H. Prevalence of mycotic endometritis in buffaloes and mares maintained under different managemental conditions in District Faisalabad, Pakistan. Vet. J. 2021 41 3 414 418 10.29261/pakvetj/2021.034
    [Google Scholar]
  48. Ricciotti E. FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011 31 5 986 1000 10.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  49. Salilew-Wondim D. Ibrahim S. Gebremedhn S. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics 2016 17 1 218 10.1186/s12864‑016‑2513‑9 26965375
    [Google Scholar]
  50. Ibrahim S. Szóstek-Mioduchowska A. Skarzynski D. Expression profiling of selected miRNAs in equine endometrium in response to LPS challenge in vitro: A new understanding of the inflammatory immune response. Vet. Immunol. Immunopathol. 2019 209 37 44 10.1016/j.vetimm.2019.02.006 30885304
    [Google Scholar]
  51. Ibrahim S. Hedia M. Taqi M.O. Alterations in the Expression Profile of Serum miR-155, miR-223, miR-17, miR-200a, miR-205, as well as Levels of Interleukin 6, and Prostaglandins during Endometritis in Arabian Mares. Vet. Sci. 2021 8 6 98 10.3390/vetsci8060098 34199703
    [Google Scholar]
  52. Woodward E.M. Christoffersen M. Campos J. Squires E.L. Troedsson M.H.T. Susceptibility to persistent breeding-induced endometritis in the mare: Relationship to endometrial biopsy score and age, and variations between seasons. Theriogenology 2012 78 3 495 501 10.1016/j.theriogenology.2012.02.028 22494681
    [Google Scholar]
  53. Asif S Umar T Umar Z MicroRNAs in equine Endometritis: A review of pathophysiology and molecular insights for diagnostic and therapeutic strategies. Int Immunopharmacol 2023 124 (Pt B): 110949. 10.1016/j.intimp.2023.110949
    [Google Scholar]
  54. Zhao G. Jiang K. Yang Y. The potential therapeutic role of miR-223 in bovine endometritis by targeting the NLRP3 inflammasome. Front. Immunol. 2018 9 1916 10.3389/fimmu.2018.01916 30186287
    [Google Scholar]
  55. Zhang T. Zhao G. Zhu X. Sodium selenite induces apoptosis via ROS‐mediated NF‐κB signaling and activation of the Bax–caspase‐9–caspase‐3 axis in 4T1 cells. J. Cell. Physiol. 2019 234 3 2511 2522 10.1002/jcp.26783 30218457
    [Google Scholar]
  56. Zhao J.R. Cheng W.W. Wang Y.X. Cai M. Wu W.B. Zhang H.J. Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis. 2018 9 2 94 10.1038/s41419‑017‑0108‑2 29367697
    [Google Scholar]
  57. Zhou W. Wang Y. Wu R. He Y. Su Q. Shi G. MicroRNA-488 and -920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Res. Ther. 2017 19 1 203 10.1186/s13075‑017‑1418‑6 28915828
    [Google Scholar]
  58. Zhu H. Cao X.X. Liu J. Hua H. MicroRNA‐488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J. Cell. Mol. Med. 2019 23 4 2419 2430 10.1111/jcmm.14078 30729701
    [Google Scholar]
  59. Fan H. He J. Bai Y. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J. Ovarian Res. 2022 15 1 34 10.1186/s13048‑022‑00965‑7 35300716
    [Google Scholar]
  60. Gebremedhn S. Gad A. Ishak G.M. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol. Hum. Reprod. 2023 29 4 gaad009 10.1093/molehr/gaad009 36852862
    [Google Scholar]
  61. Ren W. Wang J. Zeng Y. Wang T. Meng J. Yao X. Differential age-related transcriptomic analysis of ovarian granulosa cells in Kazakh horses. Front. Endocrinol. 2024 15 1346260 10.3389/fendo.2024.1346260 38352714
    [Google Scholar]
  62. Rudolf Vegas A. Hamdi M. Podico G. Bollwein H. Fröhlich T. Canisso I.F. Bauersachs S. 2022 Uterine extracellular vesicles as multi-signal messengers during maternal recognition of pregnancy in the mare. Scientific Reports 12 1 15616 10.1038/s41598‑022‑19958‑z
    [Google Scholar]
  63. Shakerzadeh J. Movahedin M. Eidi A. Roodbari N.H. Parivar K. Forced suppression of let-7a-5p in mouse blastocysts improves implantation rate. Reprod. Sci. 2022 29 6 1730 1737 10.1007/s43032‑021‑00659‑3 34254278
    [Google Scholar]
  64. Wang Y. Zhou T. Wan J. Comparative transcriptome analysis reveals a regulatory network of microRNA-29b during mouse early embryonic development. Oncotarget 2016 7 33 53772 53782 10.18632/oncotarget.10741 27449102
    [Google Scholar]
  65. Moro L.N. Amin G. Furmento V. MicroRNA characterization in equine induced pluripotent stem cells. PLoS One 2018 13 12 e0207074 10.1371/journal.pone.0207074 30507934
    [Google Scholar]
  66. Alipour M. Abtin M. Hosseinzadeh A. Maleki M. Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2019 36 11 2237 2244 10.1007/s10815‑019‑01573‑z 31605260
    [Google Scholar]
  67. Zhu Y. Lu H. Huo Z. MicroRNA-16 inhibits feto-maternal angiogenesis and causes recurrent spontaneous abortion by targeting vascular endothelial growth factor. Sci. Rep. 2016 6 1 35536 10.1038/srep35536 27748453
    [Google Scholar]
  68. Jiang K. Yang J. Yang C. miR‐148a suppresses inflammation in lipopolysaccharide‐induced endometritis. J. Cell. Mol. Med. 2020 24 1 405 417 10.1111/jcmm.14744 31756048
    [Google Scholar]
  69. Lin X. Beckers E. Cafferty M.S. Bovine embryo-secreted microRNA-30c is a potential non-invasive biomarker for hampered preimplantation developmental competence. Front. Genet. 2019 10 315 10.3389/fgene.2019.00315 31024625
    [Google Scholar]
  70. Mori A. Nishi H. Sasaki T. HLA-G expression is regulated by miR-365 in trophoblasts under hypoxic conditions. Placenta 2016 45 37 41 10.1016/j.placenta.2016.07.004 27577708
    [Google Scholar]
  71. Carranza J. Yoong W.A. Mateos C. Vergara C.B. Gómez C.L. Macías V. Reproductive phenology of Creole horses in Ecuador in the absence of photoperiod variation: The effects of forage availability and flooding affecting body condition of mares. Anim. Sci. J. 2017 88 12 2063 2070 10.1111/asj.12818 28748628
    [Google Scholar]
  72. Senra R.L. Ramírez-López C.J. Magalhães-Júnior M.J. Kallikrein proteoforms and reproductive parameters in stallion are conditioned by climate. Sci. Rep. 2022 12 1 18690 10.1038/s41598‑022‑21350‑w 36333376
    [Google Scholar]
  73. Williams G.L. Thorson J.F. Prezotto L.D. Velez I.C. Cardoso R.C. Amstalden M. Reproductive seasonality in the mare: Neuroendocrine basis and pharmacologic control. Domest. Anim. Endocrinol. 2012 43 2 103 115 10.1016/j.domaniend.2012.04.001 22579068
    [Google Scholar]
  74. Shen Y. Ulaangerel T. Ren H. Comprehensive analysis of the whole-transcriptome landscape of the ovarian cortex from Mongolian horses that reproduce seasonally. Comp Biochem Physiol Part D Genom Prot 2024 49 101179 10.1016/j.cbd.2023.101179 38134534
    [Google Scholar]
  75. Bai H. Sakurai T. Fujiwara H. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod. Med. Biol. 2012 11 3 109 116 10.1007/s12522‑011‑0117‑2 29699116
    [Google Scholar]
  76. Bazer F.W. Pregnancy recognition signaling mechanisms in ruminants and pigs. J. Anim. Sci. Biotechnol. 2013 4 1 23 10.1186/2049‑1891‑4‑23 23800120
    [Google Scholar]
  77. Stout T.A.E. Embryo–maternal communication during the first 4 weeks of equine pregnancy. Theriogenology 2016 86 1 349 354 10.1016/j.theriogenology.2016.04.048 27156682
    [Google Scholar]
  78. Swegen A. Maternal recognition of pregnancy in the mare: Does it exist and why do we care? Reproduction 2021 161 6 R139 R155 10.1530/REP‑20‑0437 33957605
    [Google Scholar]
  79. Almiñana C. Tsikis G. Labas V. Deciphering the oviductal extracellular vesicles content across the estrous cycle: Implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 2018 19 1 622 10.1186/s12864‑018‑4982‑5 30134841
    [Google Scholar]
  80. Hamdi M. Cañon-Beltrán K. Mazzarella R. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J. 2021 35 12 e22000 10.1096/fj.202101023R 34731497
    [Google Scholar]
  81. Shi S. Tan Q. Liang J. Placental trophoblast cell-derived exosomal microRNA-1290 promotes the interaction between endometrium and embryo by targeting LHX6. Mol. Ther. Nucleic Acids 2021 26 760 772 10.1016/j.omtn.2021.09.009 34729246
    [Google Scholar]
  82. Hua M. Liu W. Chen Y. Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization. Cell Discov. 2019 5 1 20 10.1038/s41421‑019‑0087‑9 30992999
    [Google Scholar]
  83. Kose M. Hitit M. Kaya M.S. Expression pattern of microRNAs in ovine endometrium during the peri-implantation. Theriogenology 2022 191 35 46 10.1016/j.theriogenology.2022.07.015 35944411
    [Google Scholar]
  84. Li Q. Liu W. Chiu P.C.N. Yeung W.S.B. MiR-let-7a/g enhances uterine receptivity via suppressing Wnt/β-catenin under the modulation of ovarian hormones. Reprod. Sci. 2020 27 5 1164 1174 10.1007/s43032‑019‑00115‑3 31942710
    [Google Scholar]
  85. Ponsuksili S. Tesfaye D. Schellander K. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol. Reprod. 2014 91 6 135 10.1095/biolreprod.114.121392 25253731
    [Google Scholar]
  86. Sadowska A. Molcan T. Wójtowicz A. Bioinformatic analysis of endometrial miRNA expression profile at day 26–28 of pregnancy in the mare. Sci. Rep. 2024 14 1 3900 10.1038/s41598‑024‑53499‑x 38365979
    [Google Scholar]
  87. Su L. Liu R. Cheng W. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLoS One 2014 9 2 e87867 10.1371/journal.pone.0087867 24505325
    [Google Scholar]
  88. Veit T.D. Chies J.A.B. Tolerance versus immune response — MicroRNAs as important elements in the regulation of the HLA-G gene expression. Transpl. Immunol. 2009 20 4 229 231 10.1016/j.trim.2008.11.001 19038339
    [Google Scholar]
  89. Zhang L. Liu X. Liu J. miR‐26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN ‐PI3K/AKT pathway in dairy goats. J. Cell. Physiol. 2018 233 6 4688 4706 10.1002/jcp.26252 29115668
    [Google Scholar]
  90. Li W. Xi Y. Xue S. Sequence analysis of microRNAs during pre-implantation between Meishan and Yorkshire pigs. Gene 2018 646 20 27 10.1016/j.gene.2017.12.046 29287711
    [Google Scholar]
  91. Liu W. Niu Z. Li Q. Pang R.T.K. Chiu P.C.N. Yeung W.S.B. MicroRNA and embryo implantation. Am. J. Reprod. Immunol. 2016 75 3 263 271 10.1111/aji.12470 26707514
    [Google Scholar]
  92. Zhang H. Zheng W. Li D. Zheng J. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage 2021 13 2 Suppl. 1467S 1477S 10.1177/19476035211023550 34315248
    [Google Scholar]
  93. Christensen B.W. Equine reproduction. Melbourne, Tokyo Wiley-Blackwell 2011 2267 2276
    [Google Scholar]
  94. Nagel C. Aurich J. Aurich C. Prediction of the onset of parturition in horses and cattle. Theriogenology 2020 150 308 312 10.1016/j.theriogenology.2020.01.072 32088038
    [Google Scholar]
  95. Varner D.D. Love C.C. Brinsko S.P. Semen processing for the subfertile stallion. J. Equine Vet. Sci. 2008 28 11 677 685 10.1016/j.jevs.2008.10.012
    [Google Scholar]
  96. Colleoni S. Lagutina I. Lazzari G. Rodriguez-Martinez H. Galli C. Morrell J.M. New methods for selecting stallion spermatozoa for assisted reproduction. J. Equine Vet. Sci. 2011 31 9 536 541 10.1016/j.jevs.2011.03.009
    [Google Scholar]
  97. Ing N.H. Konganti K. Ghaffari N. Specific microRNAs in stallion spermatozoa are potential biomarkers of high functionality. Reprod. Domest. Anim. 2024 59 7 e14674 10.1111/rda.14674 39005151
    [Google Scholar]
  98. Kataruka S. Kinterova V. Horvat F. Kulmann M.I.R. Kanka J. Svoboda P. Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant. EMBO Rep. 2022 23 2 e53514 10.15252/embr.202153514 34866300
    [Google Scholar]
  99. Dlamini N.H. Nguyen T. Gad A. Characterization of extracellular vesicle-coupled miRNA profiles in seminal plasma of boars with divergent semen quality status. Int. J. Mol. Sci. 2023 24 4 3194 10.3390/ijms24043194 36834606
    [Google Scholar]
  100. Gòdia M. Estill M. Castelló A. An RNA-Seq analysis to describe the boar sperm transcriptome and its seasonal changes. Front. Genet. 2019 10 299 10.3389/fgene.2019.00299 31040860
    [Google Scholar]
  101. McIlwraith C.W. Frisbie D.D. Kawcak C.E. The horse as a model of naturally occurring osteoarthritis. Bone Joint Res. 2012 1 11 297 309 10.1302/2046‑3758.111.2000132 23610661
    [Google Scholar]
  102. Schlueter A.E. Orth M.W. Equine osteoarthritis: A brief review of the disease and its causes. Equine and Comparative Exercise Physiology 2004 1 4 221 231 10.1079/ECP200428
    [Google Scholar]
  103. Loeser R.F. Goldring S.R. Scanzello C.R. Goldring M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012 64 6 1697 1707 10.1002/art.34453 22392533
    [Google Scholar]
  104. Roseti L. Desando G. Cavallo C. Petretta M. Grigolo B. Articular cartilage regeneration in osteoarthritis. Cells 2019 8 11 1305 10.3390/cells8111305 31652798
    [Google Scholar]
  105. Fox S.A.J. Bedi A. Rodeo S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009 1 6 461 468 10.1177/1941738109350438 23015907
    [Google Scholar]
  106. Evans C.H. Advances in regenerative orthopedics. Mayo Clin. Proc. 2013 88 11 1323 1339 10.1016/j.mayocp.2013.04.027 24182709
    [Google Scholar]
  107. Barley R.D.C. Adesida A.B. Bagnall K.M. Jomha N.M. Immunohistochemical characterization of reparative tissue present in human osteoarthritic tissue. Virchows Arch. 2010 456 5 561 569 10.1007/s00428‑010‑0890‑z 20182744
    [Google Scholar]
  108. Andersen C. Walters M. Bundgaard L. Intraarticular treatment with integrin α10β1-selected mesenchymal stem cells affects microRNA expression in experimental post-traumatic osteoarthritis in horses. Front. Vet. Sci. 2024 11 1374681 10.3389/fvets.2024.1374681 38596460
    [Google Scholar]
  109. Castanheira C.I.G.D. Anderson J.R. Fang Y. Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis. Osteoarthritis and Cartilage Open 2021 3 4 100186 10.1016/j.ocarto.2021.100186 34977596
    [Google Scholar]
  110. Jin L. Zhao J. Jing W. Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int. J. Mol. Med. 2014 34 2 451 463 10.3892/ijmm.2014.1808 24939082
    [Google Scholar]
  111. Liu J.N. Lu S. Fu C.M. MiR-146a expression profiles in osteoarthritis in different tissue sources: A meta-analysis of observational studies. J. Orthop. Surg. Res. 2022 17 1 148 10.1186/s13018‑022‑02989‑7 35248106
    [Google Scholar]
  112. Shao J. Ding Z. Peng J. MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm. Res. 2020 69 6 619 630 10.1007/s00011‑020‑01346‑w 32328683
    [Google Scholar]
  113. Yamasaki K. Nakasa T. Miyaki S. Expression of MicroRNA‐146a in osteoarthritis cartilage. Arthritis Rheum. 2009 60 4 1035 1041 10.1002/art.24404 19333945
    [Google Scholar]
  114. Andersen C. Jacobsen S. Uvebrant K. Integrin α10β1-selected mesenchymal stem cells reduce pain and cartilage degradation and increase immunomodulation in an equine osteoarthritis model. Cartilage 2023 14 1 19476035231209402 10.1177/19476035231209402 37990503
    [Google Scholar]
  115. Baker M.E. Lee S. Clinton M. Investigation of MicroRNA biomarkers in equine distal interphalangeal joint osteoarthritis. Int. J. Mol. Sci. 2022 23 24 15526 10.3390/ijms232415526 36555166
    [Google Scholar]
  116. Anderson J.R. Jacobsen S. Walters M. Small non-coding RNA landscape of extracellular vesicles from a post-traumatic model of equine osteoarthritis. Front. Vet. Sci. 2022 9 901269 10.3389/fvets.2022.901269 36003409
    [Google Scholar]
  117. Antunes J. Salcedo-Jiménez R. Lively S. microRNAs are differentially expressed in equine plasma of horses with osteoarthritis and osteochondritis dissecans versus control horses. PLoS One 2024 19 2 e0297303 10.1371/journal.pone.0297303 38394252
    [Google Scholar]
  118. Castanheira C. Balaskas P. Falls C. Equine synovial fluid small non-coding RNA signatures in early osteoarthritis. BMC Vet. Res. 2021 17 1 26 10.1186/s12917‑020‑02707‑7 33422071
    [Google Scholar]
  119. Castanheira C. James V. Taylor S. Skiöldebrand E. Clegg P.D. Peffers M.J. Synovial fluid and serum small non-coding RNA signatures in equine osteoarthritis. Osteoarthritis Cartilage 2021 29 S162 10.1016/j.joca.2021.02.226
    [Google Scholar]
  120. Schaffer P.A. Wobeser B. Martin L.E.R. Dennis M.M. Duncan C.G. Cutaneous neoplastic lesions of equids in the central United States and Canada: 3,351 biopsy specimens from 3,272 equids (2000–2010). J. Am. Vet. Med. Assoc. 2013 242 1 99 104 10.2460/javma.242.1.99 23234288
    [Google Scholar]
  121. Valentine B.A. Survey of equine cutaneous neoplasia in the Pacific Northwest. J. Vet. Diagn. Invest. 2006 18 1 123 126 10.1177/104063870601800121 16566271
    [Google Scholar]
  122. Chambers G. Ellsmore V.A. O’Brien P.M. Association of bovine papillomavirus with the equine sarcoid. J. Gen. Virol. 2003 84 5 1055 1062 10.1099/vir.0.18947‑0 12692268
    [Google Scholar]
  123. Christen G. Gerber V. Dolf G. Burger D. Koch C. Inheritance of equine sarcoid disease in franches-montagnes horses. Vet. J. 2014 199 1 68 71 10.1016/j.tvjl.2013.09.053 24152383
    [Google Scholar]
  124. Staiger E.A. Tseng C.T. Miller D. Host genetic influence on papillomavirus‐induced tumors in the horse. Int. J. Cancer 2016 139 4 784 792 10.1002/ijc.30120 27037728
    [Google Scholar]
  125. Knottenbelt D.C. Kelly D.F. The diagnosis and treatment of periorbital sarcoid in the horse: 445 cases from 1974 to 1999. Vet. Ophthalmol. 2000 3 2-3 169 191 10.1046/j.1463‑5224.2000.00119.x 11397301
    [Google Scholar]
  126. Bogaert L. Martens A. Poucke V.M. High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet. Microbiol. 2008 129 1-2 58 68 10.1016/j.vetmic.2007.11.008 18093754
    [Google Scholar]
  127. Koch C. Martens A. Hainisch E.K. Schüpbach G. Gerber V. Haspeslagh M. The clinical diagnosis of equine sarcoids — Part 1: Assessment of sensitivity and specificity using a multicentre case-based online examination. Vet. J. 2018 242 77 82 10.1016/j.tvjl.2018.08.009 30195623
    [Google Scholar]
  128. Martens A. Moor D.A. Ducatelle R. PCR detection of bovine papilloma virus DNA in superficial swabs and scrapings from equine sarcoids. Vet. J. 2001 161 3 280 286 10.1053/tvjl.2000.0524 11352485
    [Google Scholar]
  129. Pratscher B. Hainisch E.K. Sykora S. Brandt S. Jindra C. No evidence of bovine papillomavirus type 1 or 2 infection in healthy equids. Equine Vet. J. 2019 51 5 612 616 10.1111/evj.13061 30560998
    [Google Scholar]
  130. Iorio M.V. Croce C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012 4 3 143 159 10.1002/emmm.201100209 22351564
    [Google Scholar]
  131. Piletič K. Kunej T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016 90 10 2405 2419 10.1007/s00204‑016‑1815‑7 27557899
    [Google Scholar]
  132. Chong Z.X. Yeap S.K. Ho W.Y. Roles of circulating microRNA(s) in human breast cancer. Arch. Biochem. Biophys. 2020 695 108583 10.1016/j.abb.2020.108583 32956633
    [Google Scholar]
  133. Ghafouri-Fard S. Shoorei H. Taheri M. Role of microRNAs in the development, prognosis and therapeutic response of patients with prostate cancer. Gene 2020 759 144995 10.1016/j.gene.2020.144995 32721477
    [Google Scholar]
  134. Shigeyasu K. Toden S. Zumwalt T.J. Okugawa Y. Goel A. Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin. Cancer Res. 2017 23 10 2391 2399 10.1158/1078‑0432.CCR‑16‑1676 28143873
    [Google Scholar]
  135. Cosandey J. Hamza E. Gerber V. Diagnostic and prognostic potential of eight whole blood microRNAs for equine sarcoid disease. PLoS One 2021 16 12 e0261076 10.1371/journal.pone.0261076 34941894
    [Google Scholar]
  136. Calewaert A Palarea-Albaladejo J Coultous R Comparison of serum microRNA in healthy horses and horses with moderate to severe mitral valve regurgitation using a commercially available canine cardiac panel. Equine Vet J 2024; evj 14434 10.1111/evj.14434 39567225
    [Google Scholar]
  137. França N.R. Júnior M.D. Lima A.B. Pucci F.V.C. Andrade L.E.C. Silva N.P. Interferência por RNA: Uma nova alternativa para terapia nas doenças reumáticas. Rev. Bras. Reumatol. 2010 50 6 695 702 10.1590/S0482‑50042010000600008 21243308
    [Google Scholar]
  138. Menck C.F.M. A nova grande promessa da inovação em fármacos: RNA interferência saindo do laboratório para a clínica. Estud. Av. 2010 24 70 99 108 10.1590/S0103‑40142010000300007
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366369721250606113102
Loading
/content/journals/mirna/10.2174/0122115366369721250606113102
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: reproduction ; microRNAs ; diseases ; Horse ; farm animals ; performance ; gene expression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test