Skip to content
2000
Volume 14, Issue 2
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Background

miRNAs are small non-coding conserved RNA molecules (18-24 nts) that act as crucial gene regulators post-transcriptional/translational modifications through interacting with the respective mRNAs during various pathophysiological conditions. Recent research has suggested that non-coding RNAs, particularly miRNAs, can be passed from one species to another to regulate gene expression. Since miRNA-mediated gene regulation has not yet been found in Plasmodia, it is hypothesized that erythrocytic miRNAs from Plasmodium falciparum (P. falciparum) could potentially migrate from the cytoplasm to the parasitophorous vacuole developed intracellularly by the parasite to regulate its transcriptome.

Objective

The objective of this study is to investigate the role of trans-kingdom interactions in host-parasite dynamics and their implications for malaria infection.

Methods

Using the trans-kingdom target gene prediction tool, psRNA target server, a total of 15 human erythrocytic miRNAs from 12 distinct families were selected and obtained from miRBase to find potential P. falciparum candidate genes. This study utilized ShinyGO (version 0.80) for gene enrichment analysis with statistical analysis of the selected features. The PPI-network analysis was performed using the Maximal Clique Centrality (MCC) approach, along with the CytoHubba plugin for identifying hub nodes. The PPI network was visualized using Cytoscape version 3.7.

Results

A total of 145 target genes of Pf3D7 were predicted, with the following genes repeatedly targeted: conserved Plasmodium proteins, conserved Plasmodium membrane proteins, PfEMP1, rifin, RAD54, E3 ubiquitin-protein ligase, and transcription factors related genes. Outputs of ShinyGO included enriched GO pathways of 62 uniquely identified Pf3D7 genes with detailed descriptions and visualized networks. For overlapping relationships, a hierarchical clustering tree of enriched gene sets was carried out, along with a genome plot for representing the chromosomal locations of these genes. According to their coding-noncoding distribution chart, most of these genes were found to be members of the coding gene family. Additionally, PPI-network analysis reported the top 10 hub nodes: PFE0400w, MAL13P1.380, MAL7P1.167, PFD0900w, PF11_0243, PFE0440w, PFE1120w, MAL13P1.315, PF08_0126, and MAL8P1.23. Three KEGG pathway diagrams of pfa 05144 for Malaria, pfa 03440 for homologous recombination, and pfa 00750 for vitamin B6 metabolism with identified Pf3D7 genes were drawn and highlighted in red.

Conclusion

The important target genes of Plasmodium falciparum 3D7 were identified by carrying out a trans-kingdom investigation, thus offering preliminary insights into the potential of erythrocytic miRNAs-mediated trans-kingdom regulation.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366321119250123113447
2025-07-01
2025-12-17
Loading full text...

Full text loading...

References

  1. BaderS. TullerT. Advanced computational predictive models of miRNA-mRNA interaction efficiency.Comput. Struct. Biotechnol. J.2024231740175410.1016/j.csbj.2024.04.01538689718
    [Google Scholar]
  2. AbusaibaTH HusseinAA Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front Endocrinol.2024940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  3. KatariaP. SurelaN. ChaudharyA. DasJ. MiRNA: Biological regulator in host-parasite interaction during malaria infection.Int. J. Environ. Res. Public Health2022194239510.3390/ijerph1904239535206583
    [Google Scholar]
  4. SchmidtM.F. RNA: Information and Function Carrier. InChemical Biology: And Drug Discovery.Berlin, HeidelbergSpringer Berlin Heidelberg20227780
    [Google Scholar]
  5. VenkatesanP. The 2023 WHO World malaria report.Lancet Microbe202453e21410.1016/S2666‑5247(24)00016‑838309283
    [Google Scholar]
  6. GrinevA. FokinaN. BogomolovD. BerechikidzeI. LazarevaY. Prediction of gene expression regulation by human microRNAs in Plasmodium falciparum.Genes Environ.20214312210.1186/s41021‑021‑00198‑y34130734
    [Google Scholar]
  7. VenugopalK. HentzschelF. ValkiūnasG. MartiM. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host.Nat. Rev. Microbiol.202018317718910.1038/s41579‑019‑0306‑231919479
    [Google Scholar]
  8. LiuT. ZhuF. TanN. ChenS. XuW. Plasmodium.Molecular Medical Microbiology.New YorkAcademic Press202430053029
    [Google Scholar]
  9. OleinikovA.V. Malaria parasite plasmodium falciparum proteins on the surface of infected erythrocytes as targets for novel drug discovery.Biochemistry202287S1S192S20210.1134/S000629792214015235501996
    [Google Scholar]
  10. WangZ. XiJ. HaoX. DengW. LiuJ. WeiC. GaoY. ZhangL. WangH. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum.Emerg. Microbes Infect.20176111110.1038/emi.2017.63
    [Google Scholar]
  11. ChandanK. GuptaM. SarwatM. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases.Front. Immunol.202010308110.3389/fimmu.2019.0308132038627
    [Google Scholar]
  12. RathjenT. NicolC. McConkeyG. DalmayT. Analysis of short RNAs in the malaria parasite and its red blood cell host.FEBS Lett.2006580225185518810.1016/j.febslet.2006.08.06316963026
    [Google Scholar]
  13. LaMonteG. PhilipN. ReardonJ. LacsinaJ.R. MajorosW. ChapmanL. ThornburgC.D. TelenM.J. OhlerU. NicchittaC.V. HaysteadT. ChiJ.T. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance.Cell Host Microbe201212218719910.1016/j.chom.2012.06.00722901539
    [Google Scholar]
  14. WuY. LeykS. TorabiH. HöhnK. HoneckerB. TaulerM.P.M. CadarD. JacobsT. BruchhausI. MetwallyN.G. Plasmodium falciparum infection reshapes the human microRNA profiles of red blood cells and their extracellular vesicles.iScience202326710711910.1016/j.isci.2023.10711937534175
    [Google Scholar]
  15. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells902027631979244
    [Google Scholar]
  16. SampaioN.G. EmeryS.J. GarnhamA.L. TanQ.Y. SisquellaX. PimentelM.A. JexA.R. RudzkiR.N. SchofieldL. ErikssonE.M. Extracellular vesicles from early stage Plasmodium falciparum -infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes.Cell. Microbiol.2018205e1282210.1111/cmi.1282229349926
    [Google Scholar]
  17. GroomesP.V. KanjeeU. DuraisinghM.T. RBC membrane biomechanics and Plasmodium falciparum invasion: Probing beyond ligand–receptor interactions.Trends Parasitol.202238430231510.1016/j.pt.2021.12.00534991983
    [Google Scholar]
  18. PaulA.S. EganE.S. DuraisinghM.T. Host–parasite interactions that guide red blood cell invasion by malaria parasites.Curr. Opin. Hematol.201522322022610.1097/MOH.000000000000013525767956
    [Google Scholar]
  19. RosaA.M.F. TaylerN.M. DortaD. CoronadoL.M. SpadaforaC. P. falciparum invasion and erythrocyte aging.Cells202413433410.3390/cells1304033438391947
    [Google Scholar]
  20. GuptaH. SahuP.K. PattnaikR. MohantyA. MajhiM. MohantyA.K. PirpamerL. HoffmannA. MohantyS. WassmerS.C. Plasma levels of hsa‐miR‐3158‐3p microRNA on admission correlate with MRI findings and predict outcome in cerebral malaria.Clin. Transl. Med.2021116e39610.1002/ctm2.39634185402
    [Google Scholar]
  21. PengR. SantosH.J. NozakiT. Transfer RNA-derived small RNAs in the pathogenesis of parasitic protozoa.Genes202213228610.3390/genes1302028635205331
    [Google Scholar]
  22. ChamnanchanuntS. FucharoenS. UmemuraT. Circulating microRNAs in malaria infection: Bench to bedside.Malar. J.201716133410.1186/s12936‑017‑1990‑x28807026
    [Google Scholar]
  23. JoshiU. PatelM. PandyaH. GeorgeL.B. HighlandH. Functional prediction of human erythrocytic miR-451a on Plasmodium falciparum 3D7 transcriptome—an in-silico study.ExRNA20213310.21037/exrna‑21‑5
    [Google Scholar]
  24. DandewadV. VinduA. JosephJ. SeshadriV. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression.J. Biosci.20194425010.1007/s12038‑019‑9870‑x31180063
    [Google Scholar]
  25. KetprasitN. ChengI.S. DeutschF. TranN. ImwongM. CombesV. PalasuwanD. The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients.Malar. J.202019128510.1186/s12936‑020‑03360‑z32778117
    [Google Scholar]
  26. MohantyA. RajendranV. Mammalian host microRNA response to plasmodial infection: Role as therapeutic target and potential biomarker.Parasitol. Res.2021120103341335310.1007/s00436‑021‑07293‑734423387
    [Google Scholar]
  27. PrabhuS.R. WareA.P. SaadiA.V. Erythrocyte miRNA regulators and malarial pathophysiology.Infect. Genet. Evol.20219310500010.1016/j.meegid.2021.10500034252617
    [Google Scholar]
  28. WuY. The role of human endothelium and microRNAs as active participants in the immune response and pathogenesis during malaria.(Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky).2023
    [Google Scholar]
  29. HarpO.K. BashiA. BotchwayF. MicroRNAs miR-451a and let-7i5p profiles in circulating exosomes vary among individuals with different sickle hemoglobin genotypes and malaria.J. Clin. Med.202211350010.3390/jcm1103050035159951
    [Google Scholar]
  30. DiengM.M. DiawaraA. ManikandanV. JarkassT.E.H. SerméS.S. SombiéS. BarryA. CoulibalyS.A. DiarraA. DrouN. ArnouxM. YousifA. TionoA.B. SirimaS.B. SoulamaI. IdaghdourY. Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria.Nat. Commun.2020111509310.1038/s41467‑020‑18915‑633037226
    [Google Scholar]
  31. RangelG. TeerawattanapongN. ChamnanchanuntS. UmemuraT. PinyachatA. WanramS. Candidate microRNAs as biomarkers in malaria infection: A systematic review.Curr. Mol. Med.2019201364310.2174/156652401966619082012482731429687
    [Google Scholar]
  32. ChamnanchanuntS. KurokiC. DesakornV. EnomotoM. ThanachartwetV. SahassanandaD. SattabongkotJ. JenwithisukR. FucharoenS. SvastiS. UmemuraT. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection.Exp. Parasitol.2015155192510.1016/j.exppara.2015.04.01325913668
    [Google Scholar]
  33. AlonsoM.A. CohenA. RicaldeQ.M.A. ForondaP. BenitoA. BerzosaP. ValladaresB. GrauG.E. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways.Sci. Rep.2018811127710.1038/s41598‑018‑29721‑y30050092
    [Google Scholar]
  34. LoddeV. FlorisM. MuroniM.R. CuccaF. IddaM.L. Non‐coding RNAs in malaria infection.Wiley Interdiscip. Rev. RNA2022133e169710.1002/wrna.169734651456
    [Google Scholar]
  35. MantelP.Y. HjelmqvistD. WalchM. HessK.S. NilssonS. RavelD. RibeiroM. GrüringC. MaS. PadmanabhanP. TrachtenbergA. AnkarklevJ. BrancucciN.M. HuttenhowerC. DuraisinghM.T. GhiranI. KuoW.P. FilgueiraL. MartinelliR. MartiM. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria.Nat. Commun.2016711272710.1038/ncomms1272727721445
    [Google Scholar]
  36. OjhaR. NandaniR. PandeyR.K. MishraA. PrajapatiV.K. Emerging role of circulating microRNA in the diagnosis of human infectious diseases.J. Cell. Physiol.201923421030104310.1002/jcp.2712730146762
    [Google Scholar]
  37. WangT. WuF. YuD. miR-144/451 in hematopoiesis and beyond.ExRNA2019111610.1186/s41544‑019‑0035‑834171007
    [Google Scholar]
  38. NunesS. BastosR. MarinhoA.I. VieiraR. BenícioI. Noronhad.M.A. LírioS. BrodskynC. TavaresN.M. Recent advances in the development and clinical application of miRNAs in infectious diseases.Noncoding RNA Res.202510415410.1016/j.ncrna.2024.09.00539296638
    [Google Scholar]
  39. Loonv.W. GaiP.P. HamannL. AddoB.G. MockenhauptF.P. MiRNA-146a polymorphism increases the odds of malaria in pregnancy.Malar. J.2019181710.1186/s12936‑019‑2643‑z30642347
    [Google Scholar]
  40. RangelG. NuchnoiP. WanramS. Computational analysis on micrornas that modulate significant host response genes as potential biomarkers in cerebral malaria infection.Nanome. Nanosci. Tech.20222114
    [Google Scholar]
  41. ObohM.A. MorenikejiO.B. OjurongbeO. ThomasB.N. Transcriptomic analyses of differentially expressed human genes, micro RNAs and long-non-coding RNAs in severe, symptomatic and asymptomatic malaria infection.Sci. Rep.20241411690110.1038/s41598‑024‑67663‑w39043812
    [Google Scholar]
  42. PrabhuS.R. WareA.P. UmakanthS. HandeM. MahabalaC. SaadiA.V. SatyamoorthyK. Erythrocyte miRNA-92a-3p interactions with PfEMP1 as determinants of clinical malaria.Funct. Integr. Genomics20232329310.1007/s10142‑023‑01028‑w36941394
    [Google Scholar]
  43. ChakrabartiM. GargS. RajagopalA. PatiS. SinghS. Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion.Dis. Model. Mech.2020136dmm04282010.1242/dmm.04282032493727
    [Google Scholar]
  44. HaidarM. LanglseyG. Clinical potential of miRNAs in human and infectious diseases.Mol. Cell. Ther.20208111810.13052/mct2052‑8426.811
    [Google Scholar]
  45. GadhaviH. PatelM. MangukiaN. ShahK. BhadreshaK. PatelS.K. RawalR.M. PandyaH.A. Transcriptome-wide miRNA identification of Bacopa monnieri : A cross-kingdom approach.Plant Signal. Behav.2020151169926510.1080/15592324.2019.169926531797719
    [Google Scholar]
  46. GeS.X. JungD. YaoR. ShinyGO: A graphical gene-set enrichment tool for animals and plants.Bioinformatics20203682628262910.1093/bioinformatics/btz93131882993
    [Google Scholar]
  47. LuoW. BrouwerC. Pathview: An R/Bioconductor package for pathway-based data integration and visualization.Bioinformatics201329141830183110.1093/bioinformatics/btt28523740750
    [Google Scholar]
  48. KanehisaM. FurumichiM. SatoY. WatanabeI.M. TanabeM. KEGG: Integrating viruses and cellular organisms.Nucleic Acids Res.202149D1D545D55110.1093/nar/gkaa97033125081
    [Google Scholar]
  49. PatelM. PatelS. MangukiaN. PatelS. MankadA. PandyaH. RawalR. Ocimum basilicum miRNOME revisited: A cross kingdom approach.Genomics2019111477278510.1016/j.ygeno.2018.04.01629775783
    [Google Scholar]
  50. JoshiU. GeorgeL.B. HighlandH. Determination of the role of miR-451a on Plasmodium falciparum red blood cell stages, oxidative stress, and proteomic profiling.Mol. Biol. Rep.2024511104110.1007/s11033‑024‑09938‑z39373748
    [Google Scholar]
  51. ZengJ. GuptaV.K. JiangY. YangB. GongL. ZhuH. Cross-kingdom small RNAs among animals, plants and microbes.Cells20198437110.3390/cells804037131018602
    [Google Scholar]
  52. XueX. ZhangQ. HuangY. FengL. PanW. No miRNA were found in plasmodium and the ones identified in erythrocytes could not be correlated with infection.Malar. J.2008714710.1186/1475‑2875‑7‑4718328111
    [Google Scholar]
  53. YingS.Y. ChangD.C. LinS.L. The MicroRNA.MicroRNA Protocols2018125
    [Google Scholar]
  54. HannaJ. HossainG.S. KocerhaJ. The potential for microRNA therapeutics and clinical research.Front. Genet.20191047810.3389/fgene.2019.0047831156715
    [Google Scholar]
  55. WiserM.F. Knobs, adhesion, and severe falciparum malaria.Trop. Med. Infect. Dis.20238735310.3390/tropicalmed807035337505649
    [Google Scholar]
  56. OtobohSE Genetic validation of the function of PfEMP1 in Plasmodium falciparum rosette formation.University of EdinburghBiological Sciences thesis and dissertation collection202427210.7488/era/4571
    [Google Scholar]
  57. DuntuP.E. AfrifaJ. OpokuY.K. AsareK.K. Plasmodium falciparum rifins: Role in malaria pathogenesis.Integrated Health Res J202312647610.47963/ihrj.v1i2.1375
    [Google Scholar]
  58. KaurJ. MishraP.C. HoraR. Variable surface antigens of plasmodium falciparum : Protein families with divergent roles.Protein Pept. Lett.202431640942310.2174/010929866529856724053017092438910420
    [Google Scholar]
  59. MunjalA. KannanD. SinghS. A C2 domain containing plasma membrane protein of Plasmodium falciparum merozoites mediates calcium-dependent binding and invasion to host erythrocytes.J. Microbiol56113914910.1016/j.jmii.2022.07.00835995671
    [Google Scholar]
  60. AzadM.T.A. SugiT. QulsumU. KatoK. Detection of developmental asexual stage-specific rna editing events in plasmodium falciparum 3d7 malaria parasite.Microorganisms202412113710.3390/microorganisms1201013738257964
    [Google Scholar]
  61. JoshiU. PandyaM. GuptaS. GeorgeL.B. HighlandH. Extracellular proteomic profiling from the erythrocytes infected with plasmodium falciparum 3d7 holds promise for the detection of biomarkers.Protein J.202443481983310.1007/s10930‑024‑10212‑139009910
    [Google Scholar]
  62. DonaghM.J. MarchesiniA. SpigaA. FallicoM.J. ArríasP.N. MonzonA.M. VagionaA.C. KulikG.M. MierP. NavarroA.M.A. Structured tandem repeats in protein interactions.Int. J. Mol. Sci.2024255299410.3390/ijms2505299438474241
    [Google Scholar]
  63. WeinerJ. KooijT. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets.Microb. Cell201631051152110.15698/mic2016.10.53428357319
    [Google Scholar]
  64. MartinR.E. The transportome of the malaria parasite.Biol. Rev. Camb. Philos. Soc.202095230533210.1111/brv.1256531701663
    [Google Scholar]
  65. EdayeS. GeorgesE. Characterization of native PfABCG protein in Plasmodium falciparum.Biochem. Pharmacol.201597213714610.1016/j.bcp.2015.06.03526239803
    [Google Scholar]
  66. TranP.N. BrownS.H.J. MitchellT.W. MatuschewskiK. McMillanP.J. KirkK. DixonM.W.A. MaierA.G. A female gametocyte-specific ABC transporter plays a role in lipid metabolism in the malaria parasite.Nat. Commun.201451477310.1038/ncomms577325198203
    [Google Scholar]
  67. JúniorM.J.C. KrügerA. PalmisanoG. WrengerC. Transporter-mediated solutes uptake as drug target in Plasmodium falciparum.Front. Pharmacol.20221384584110.3389/fphar.2022.84584135370717
    [Google Scholar]
  68. WichersJ.S. Gelderv.C. FuchsG. RugeJ.M. PietschE. FerreiraJ.L. SafaviS. Thienv.H. BurdaP.C. RamirezM.P. SpielmannT. StraussJ. GilbergerT.W. BachmannA. Characterization of apicomplexan amino acid transporters (ApiATs) in the malaria parasite Plasmodium falciparum.MSphere202166e00743-2110.1128/mSphere.00743‑2134756057
    [Google Scholar]
  69. Grüningv.H. CoradinM. MendozaM.R. ReaderJ. SidoliS. GarciaB.A. BirkholtzL.M. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development.Mol. Cell. Proteomics202221310019910.1016/j.mcpro.2022.10019935051657
    [Google Scholar]
  70. WatersN. KopydlowskiK.M. GuszczynskiT. WeiL. SellersP. FerlanJ.T. LeeP.J. LiZ. WoodardC.L. ShallomS. GardnerM.J. PriggeS.T. Functional characterization of the acyl carrier protein (PfACP) and beta-ketoacyl ACP synthase III (PfKASIII) from Plasmodium falciparum.Mol. Biochem. Parasitol.20021232859410.1016/S0166‑6851(02)00140‑812270624
    [Google Scholar]
  71. BiddauM MüllerS. Carbon metabolism of plasmodium falciparum.Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery.2016371398
    [Google Scholar]
  72. JainJ. JainS.K. WalkerL.A. TekwaniB.L. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.BMC Pharmacol. Toxicol.20171814010.1186/s40360‑017‑0147‑428577368
    [Google Scholar]
  73. WuJ. XiaL. YaoX. YuX. TumasK.C. SunW. ChengY. HeX. PengY. SinghB.K. ZhangC. QiC.F. BollandS. BestS.M. GowdaC. HuangR. MyersT.G. LongC.A. WangR.F. SuX. The E3 ubiquitin ligase MARCH1 regulates antimalaria immunity through interferon signaling and T cell activation.Proc. Natl. Acad. Sci. USA202011728165671657810.1073/pnas.200433211732606244
    [Google Scholar]
  74. UllahN. AndaleebH. MudogoC.N. FalkeS. BetzelC. WrengerC. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex.Int. J. Mol. Sci.20202117597110.3390/ijms2117597132825141
    [Google Scholar]
  75. AbazaS. Recent advances in identification of potential drug targets and development of novel drugs in parasitic diseases. Part I: Drug resistance.Parasitol. United J.202114324426010.21608/puj.2021.103436.1141
    [Google Scholar]
  76. YangY. TangT. FengB. LiS. HouN. MaX. JiangL. XinX. ChenQ. Disruption of Plasmodium falciparum histidine-rich protein 2 may affect haem metabolism in the blood stage.Parasit. Vectors202013161110.1186/s13071‑020‑04460‑033298142
    [Google Scholar]
  77. SultanaH. NeelakantaG. Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases.Curr. Opin. Insect Sci.202040394710.1016/j.cois.2020.05.01732590312
    [Google Scholar]
  78. VydyamP. DuttaD. SutramN. BhattacharyyaS. BhattacharyyaM.K. A small-molecule inhibitor of the DNA recombinase Rad51 from Plasmodium falciparum synergizes with the antimalarial drugs artemisinin and chloroquine.J. Biol. Chem.2019294208171818310.1074/jbc.RA118.00500930936202
    [Google Scholar]
  79. TalukdarP.D. ChatterjiU. Transcriptional co-activators: Emerging roles in signaling pathways and potential therapeutic targets for diseases.Signal Transduct. Target. Ther.20238142710.1038/s41392‑023‑01651‑w37953273
    [Google Scholar]
  80. YudaM. KanekoI. MurataY. IwanagaS. OkuboK. NishiT. Plasmodium 6-cysteine proteins determine the commitment of sporozoites to liver-infection.Parasitol. Int.20239310270010.1016/j.parint.2022.10270036403748
    [Google Scholar]
  81. ArredondoS.A. KappeS.H.I. The s48/45 six-cysteine proteins: Mediators of interaction throughout the Plasmodium life cycle.Int. J. Parasitol.201747740942310.1016/j.ijpara.2016.10.00227899328
    [Google Scholar]
  82. HollinT. AbelS. BanksC. HristovB. PrudhommeJ. HalesK. FlorensL. NobleS.W. RochL.K.G. Proteome-wide identification of RNA-dependent proteins and an emerging role for RNAs in Plasmodium falciparum protein complexes.Nat. Commun.2024151136510.1038/s41467‑024‑45519‑138355719
    [Google Scholar]
  83. LuckyA.B. WangC. LiX. OngC.A. AdapaS.R. QuinlivanE.P. JiangR. CuiL. MiaoJ. Characterization of the dual role of Plasmodium falciparum DNA methyltransferase in regulating transcription and translation.Nucleic Acids Res.20235183918393310.1093/nar/gkad24837026483
    [Google Scholar]
  84. SethumadhavanD.V. GovindarajuG. JabeenaC.A. RajaveluA. Plasmodium falciparum SET2 domain is allosterically regulated by its PHD-like domain to methylate at H3K36.Biochim. Biophys. Acta. Gene Regul. Mech.202118641019474410.1016/j.bbagrm.2021.19474434389510
    [Google Scholar]
  85. DA.K. ShrivastavaD. SahasrabuddheA.A. HabibS. TrivediV. Plasmodium falciparum FIKK9.1 is a monomeric serine–threonine protein kinase with features to exploit as a drug target.Chem. Biol. Drug Des.202197496297710.1111/cbdd.1382133486853
    [Google Scholar]
  86. JainB.P. PandeyS. WD40 repeat proteins: Signalling scaffold with diverse functions.Protein J.201837539140610.1007/s10930‑018‑9785‑730069656
    [Google Scholar]
  87. LiuY. Investigation of NOT1 proteins in regulating gene expression in plasmodium falciparum. . Doctoral thesis, Nanyang Technological University, Singapore201910.32657/10220/49669
    [Google Scholar]
  88. SaundersS.J.L. SinhaA. BloxhamT.S. HagenahL.M. SunG. PreiserP.R. DedonP.C. FidockD.A. tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum.Nat. Microbiol.2024961483149810.1038/s41564‑024‑01664‑338632343
    [Google Scholar]
  89. GaoJ. FanY.Z. GaoS.S. ZhangW.T. Circulating microRNAs as potential biomarkers for the diagnosis of endometrial cancer: A meta‐analysis.Reprod. Sci.202330246447210.1007/s43032‑022‑01019‑535764858
    [Google Scholar]
  90. CortésA. DeitschK.W. Malaria Epigenetics.Cold Spring Harb. Perspect. Med.201777a02552810.1101/cshperspect.a02552828320828
    [Google Scholar]
  91. ChauvetM. ChhuonC. LipeckaJ. DechavanneS. DechavanneC. LohezicM. OrtalliM. PineauD. RibeilJ.A. ManceauS. Le Van KimC. LutyA.J.F. NabiasM.F. AzouziS. GuerreraI.C. MerckxA. Sickle cell trait modulates the proteome and phosphoproteome of Plasmodium falciparum-infected erythrocytes.Front. Cell. Infect. Microbiol.20211163760410.3389/fcimb.2021.63760433842387
    [Google Scholar]
  92. AlmelliT. Parasite genetic factors implicated in cerebral malaria.(Doctoral dissertation, Université René Descartes-Paris V) Paris: Université René Descartes 2014https://theses.hal.science/tel-01124341v1/file/2014PA05P605.pdf
    [Google Scholar]
  93. ParkD.J. LukensA.K. NeafseyD.E. SchaffnerS.F. ChangH.H. ValimC. RibackeU. TyneV.D. GalinskyK. GalliganM. BeckerJ.S. NdiayeD. MboupS. WiegandR.C. HartlD.L. SabetiP.C. WirthD.F. VolkmanS.K. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite.Proc. Natl. Acad. Sci. USA201210932130521305710.1073/pnas.121058510922826220
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366321119250123113447
Loading
/content/journals/mirna/10.2174/0122115366321119250123113447
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test