Skip to content
2000
image of Advanced Gene Editing Technologies for Refining Precision Medicine: Revolutionizing Therapeutic Potential by Non-viral and Viral Drug Delivery Systems

Abstract

Precision medicine seeks to transform healthcare by offering customized care based on a person's lifestyle, environment, and genetic makeup. Precision medicine has expanded its potential by combining cutting-edge targeted drug delivery systems with gene editing technologies like CRISPR-Cas9, enabling unmatched specificity and efficacy in treating complex disorders. This review examines how these two innovative methods work together, highlighting their impact on tailored therapies. Using gene editing technologies, genetic material can be precisely altered to provide therapeutic solutions for cancer, hereditary disorders, and other genetically based ailments. One major challenge remains the efficient delivery of gene-editing tools to target cells and tissues. Targeted drug delivery systems, such as polymeric carriers, lipid nanoparticles, and nanocarriers, address the safe, effective, and precise administration of gene-editing components. Focusing on successful preclinical and clinical applications, this paper explores current developments in combining gene editing with delivery strategies, with particular relevance to rare diseases, immuno-oncology, and monogenic disorder therapies. Additionally, it discusses challenges related to immunogenicity, scalability, off-target effects, and ethical considerations. By examining the current state and future prospects of this interdisciplinary approach, the study highlights its revolutionary impact on precision medicine. The integration of gene editing and targeted drug delivery technologies holds the potential to usher in a new era of personalized healthcare, enhancing therapeutic precision and enabling innovative treatments for unmet medical needs.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031393987251006103531
2025-10-21
2026-02-02
Loading full text...

Full text loading...

References

  1. Lamichhane P. Agrawal A. Precision medicine and implications in medical education. Ann. Med. Surg. (Lond.) 2023 85 4 1342 1345 10.1097/MS9.0000000000000298 37113952
    [Google Scholar]
  2. Doudna J.A. Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014 346 6213 1258096 10.1126/science.1258096 25430774
    [Google Scholar]
  3. Torchilin V.P. Drug delivery systems and their role in clinical practice. Nat. Rev. Drug Discov. 2018 17 2 83 96
    [Google Scholar]
  4. McKinney M.S. Strickler J.H. Introduction and overview of cancer precision medicine. Genomic and Precision Medicine. Academic Press 2022 1 11
    [Google Scholar]
  5. Rosenblum D. Gutkin A. Dammes N. Peer D. Elinav E. Precision medicine in cancer treatment: A novel targeted drug delivery system. J. Control. Release 2020 322 113 125
    [Google Scholar]
  6. Sun W. Ji W. Hall J.M. Hu Q. Wang C. Beisel C.L. Gu Z. Converging CRISPR and nanotechnology for precision cancer therapeutics. Nat. Biomed. Eng. 2021 5 1 64 73 10.1038/s41551‑020‑00672‑y 33483710
    [Google Scholar]
  7. Fischer A. Hacein-Bey-Abina S. Cavazzana M. Gene therapy for rare diseases takes center stage. Hum. Gene Ther. 2019 30 10 1263 1271 31319709
    [Google Scholar]
  8. Liang P. Xie X. Zhi S. Sun H. Zhang X. Genome editing and its applications in treating genetic disorders. Trends Biotechnol. 2022 40 2 114 127
    [Google Scholar]
  9. Ginn S.L. Amaya A.K. Alexander I.E. Edelstein M. Abedi M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 2018 20 5 3015 10.1002/jgm.3015 29575374
    [Google Scholar]
  10. Kφnig H. Perera R.J. La Russa M. CRISPR-Cas9 gene editing in Therapy: Opportunities and challenges. Front. Bioeng. Biotechnol. 2020 8 148
    [Google Scholar]
  11. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  12. Zhou J. Zhang Z. Zhang J. Multi-Omics for precision oncology. Nat. Biotechnol. 2023 41 1 22 28 36653492
    [Google Scholar]
  13. Wang H. Park J. Duh E.J. Gene editing and precision medicine: Emerging paradigms and future directions. Curr. Opin. Biomed. Eng. 2022 24 100428
    [Google Scholar]
  14. Duan H. Liu Y. Gao Z. Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B 2021 11 1 55 70 10.1016/j.apsb.2020.09.016 33532180
    [Google Scholar]
  15. Xu X. Qi Y. Wang Y. Gene editing technology for precision medicine. Biotechnol. Adv. 2023 62 108075
    [Google Scholar]
  16. Tavakoli K. Pour-Aboughadareh A. Kianersi F. Poczai P. Etminan A. Shooshtari L. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech 2021 10 3 14 10.3390/biotech10030014 35822768
    [Google Scholar]
  17. Becker S. Boch J. TALE and TALEN genome editing technologies. Gene Genome Editing 2021 2 100007 10.1016/j.ggedit.2021.100007
    [Google Scholar]
  18. Janik E. Niemcewicz M. Ceremuga M. Krzowski L. Saluk-Bijak J. Bijak M. Various aspects of a gene editing system-crispr–cas9. Int. J. Mol. Sci. 2020 21 24 9604 10.3390/ijms21249604 33339441
    [Google Scholar]
  19. Zhuo C. Zhang J. Lee J.H. Jiao J. Cheng D. Liu L. Kim H.W. Tao Y. Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct. Target. Ther. 2021 6 1 238 10.1038/s41392‑021‑00645‑w 34148061
    [Google Scholar]
  20. Hussain F. How CRISPR-Cas9 Gene Editing Is Revolutionizing Medical Research - Pharma Mirror Magazine. Pharma Mirror Magazine 2019
    [Google Scholar]
  21. Zhang H. Qin C. An C. Zheng X. Wen S. Chen W. Liu X. Lv Z. Yang P. Xu W. Gao W. Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021 20 1 126 10.1186/s12943‑021‑01431‑6 34598686
    [Google Scholar]
  22. Khalil A.M. The genome editing revolution: Review. J. Genet. Eng. Biotechnol. 2020 18 1 68 10.1186/s43141‑020‑00078‑y 33123803
    [Google Scholar]
  23. Lu Y. Happi Mbakam C. Song B. Bendavid E. Tremblay J.P. Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Front Genome Editing 2022 4 892769 10.3389/fgeed.2022.892769 35958050
    [Google Scholar]
  24. Anzalone A.V. Koblan L.W. Liu D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020 38 7 824 844 10.1038/s41587‑020‑0561‑9 32572269
    [Google Scholar]
  25. Porto E.M. Komor A.C. Slaymaker I.M. Yeo G.W. Base editing: Advances and therapeutic opportunities. Nat. Rev. Drug Discov. 2020 19 12 839 859 10.1038/s41573‑020‑0084‑6 33077937
    [Google Scholar]
  26. Guo C. Ma X. Gao F. Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023 11 1143157 10.3389/fbioe.2023.1143157 36970624
    [Google Scholar]
  27. Ewaisha R. Anderson K.S. Immunogenicity of CRISPR therapeutics—Critical considerations for clinical translation. Front. Bioeng. Biotechnol. 2023 11 1138596 10.3389/fbioe.2023.1138596 36873375
    [Google Scholar]
  28. Schleidgen S. Dederer H.G. Sgodda S. Cravcisin S. Lüneburg L. Cantz T. Heinemann T. Human germline editing in the era of CRISPR-Cas: Risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med. Ethics 2020 21 1 87 10.1186/s12910‑020‑00487‑1 32912206
    [Google Scholar]
  29. Hou Y. Ureña-Bailén G. Mohammadian Gol T. Gratz P.G. Gratz H.P. Roig-Merino A. Antony J.S. Lamsfus-Calle A. Daniel-Moreno A. Handgretinger R. Mezger M. Challenges in gene therapy for somatic reverted mosaicism in X-linked combined immunodeficiency by CRISPR/Cas9 and prime editing. Genes 2022 13 12 2348 10.3390/genes13122348 36553615
    [Google Scholar]
  30. van Haasteren J. Li J. Scheideler O.J. Murthy N. Schaffer D.V. The delivery challenge: Fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 2020 38 7 845 855 10.1038/s41587‑020‑0565‑5 32601435
    [Google Scholar]
  31. Karunarathna I. Hapuarachchi T. Ekanayake U. Gunathilake S. The ethics of genetic editing: Navigating the future of science. Sri Lanka Uva Clinical Research, Teaching Hospital Badulla 2024 1 12
    [Google Scholar]
  32. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  33. Shah A. Aftab S. Nisar J. Ashiq M.N. Iftikhar F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol. 2021 62 102426 10.1016/j.jddst.2021.102426
    [Google Scholar]
  34. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  35. Yan L. Shen J. Wang J. Yang X. Dong S. Lu S. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology. Dose Response 2020 18 3 1559325820936161 10.1177/1559325820936161 32699536
    [Google Scholar]
  36. Engineering precision nanoparticles for drug delivery. 2020 Available from: https://www.pharmaexcipients.com/
  37. Zhao P. Astruc D. Nanomedicine for targeted cancer therapy: Progress and perspectives. Chemistry 2020 26 17 3790 3804
    [Google Scholar]
  38. Liu Y. Lu Y. Surface modification for nanoparticle-based drug delivery. Mol. Pharm. 2021 18 8 2961 2972
    [Google Scholar]
  39. Hong S. Choi D.W. Kim H.N. Park C.G. Lee W. Park H.H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics 2020 12 7 604 10.3390/pharmaceutics12070604 32610448
    [Google Scholar]
  40. Chen C.K. Huang P.K. Law W.C. Chu C.H. Chen N.T. Lo L.W. Biodegradable polymers for gene-delivery applications. Int. J. Nanomedicine 2020 15 2131 2150 10.2147/IJN.S222419 32280211
    [Google Scholar]
  41. Idrees H. Zaidi S.Z.J. Sabir A. Khan R.U. Zhang X. Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020 10 10 1970 10.3390/nano10101970 33027891
    [Google Scholar]
  42. Geszke-Moritz M. Moritz M. Biodegradable polymeric nanoparticle-based drug delivery systems: Comprehensive overview, perspectives and challenges. Polymers 2024 16 17 2536 10.3390/polym16172536 39274168
    [Google Scholar]
  43. Wang X. Li C. Wang Y. Chen H. Zhang X. Luo C. Zhou W. Li L. Teng L. Yu H. Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022 12 11 4098 4121 10.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  44. Tian B. Liu Y. Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym. 2021 251 116871 10.1016/j.carbpol.2020.116871 33142550
    [Google Scholar]
  45. Ho D. Quake S.R. McCabe E.R.B. Chng W.J. Chow E.K. Ding X. Gelb B.D. Ginsburg G.S. Hassenstab J. Ho C.M. Mobley W.C. Nolan G.P. Rosen S.T. Tan P. Yen Y. Zarrinpar A. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020 38 5 497 518 10.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  46. Yang Y. Zeng W. Huang P. Zeng X. Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2021 2 2 20200042 10.1002/VIW.20200042
    [Google Scholar]
  47. Khan A. A. Allemailem K. S. Almatroodi S. A. Almatroudi A. Rahmani A. H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical ap-plications. 3 Biotech 2020 10 4 163 10.1007/s13205‑020‑2144‑3 32206497
    [Google Scholar]
  48. Salunkhe S. Dheeraj; Basak, M.; Chitkara, D.; Mittal, A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release 2020 326 599 614 10.1016/j.jconrel.2020.07.042 32730952
    [Google Scholar]
  49. Duong V.A. Polymer surface treatments for drug delivery and wound healing. Appl. Sci. 2023 13 16 9054 10.3390/app13169054
    [Google Scholar]
  50. Duan L. Xu L. Xu X. Qin Z. Zhou X. Xiao Y. Liang Y. Xia J. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale 2021 13 3 1387 1397 10.1039/D0NR07622H 33350419
    [Google Scholar]
  51. Ferreira D. Moreira J.N. Rodrigues L.R. New advances in exosome-based targeted drug delivery systems. Crit. Rev. Oncol. Hematol. 2022 172 103628 10.1016/j.critrevonc.2022.103628 35189326
    [Google Scholar]
  52. Lee J. Lee J.H. Chakraborty K. Hwang J. Lee Y.K. Exosome-based drug delivery systems and their therapeutic applications. RSC Advances 2022 12 29 18475 18492 10.1039/D2RA02351B 35799926
    [Google Scholar]
  53. Cully M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 2021 20 1 6 7 10.1038/d41573‑020‑00220‑y 33311580
    [Google Scholar]
  54. Maged A. Abdelbaset R. Mahmoud A.A. Elkasabgy N.A. Merits and advances of microfluidics in the pharmaceutical field: Design technologies and future prospects. Drug Deliv. 2022 29 1 1549 1570 10.1080/10717544.2022.2069878 35612293
    [Google Scholar]
  55. Ma Z. Li B. Peng J. Gao D. Recent development of drug delivery systems through microfluidics: From synthesis to evaluation. Pharmaceutics 2022 14 2 434 10.3390/pharmaceutics14020434 35214166
    [Google Scholar]
  56. Fabozzi A. Della Sala F. di Gennaro M. Barretta M. Longobardo G. Solimando N. Pagliuca M. Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip 2023 23 5 1389 1409 10.1039/D2LC00933A 36647782
    [Google Scholar]
  57. Sayed N. Allawadhi P. Khurana A. Singh V. Navik U. Pasumarthi S.K. Khurana I. Banothu A.K. Weiskirchen R. Bharani K.K. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022 294 120375 10.1016/j.lfs.2022.120375 35123997
    [Google Scholar]
  58. Kunjiappan S. Pavadai P. Vellaichamy S. Ram Kumar Pandian S. Ravishankar V. Palanisamy P. Govindaraj S. Srinivasan G. Premanand A. Sankaranarayanan M. Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev. Res. 2021 82 3 309 340 10.1002/ddr.21758 33170541
    [Google Scholar]
  59. Chen Y. Ping Y. Development of CRISPR/Cas delivery systems for in vivo precision genome editing. Acc. Chem. Res. 2023 56 16 2185 2196 10.1021/acs.accounts.3c00279 37525893
    [Google Scholar]
  60. Ma P. Wang Q. Luo X. Mao L. Wang Z. Ye E. Loh X.J. Li Z. Wu Y.L. Recent advances in stimuli-responsive polymeric carriers for controllable CRISPR/Cas9 gene editing system delivery. Biomater. Sci. 2023 11 15 5078 5094 10.1039/D3BM00529A 37282836
    [Google Scholar]
  61. van Hees M. Slott S. Hansen A.H. Kim H.S. Ji H.P. Astakhova K. New approaches to moderate CRISPR-Cas9 activity: Addressing issues of cellular uptake and endosomal escape. Mol. Ther. 2022 30 1 32 46 10.1016/j.ymthe.2021.06.003 34091053
    [Google Scholar]
  62. Zhou P. Liu W. Cheng Y. Qian D. Nanoparticle‐based applications for cervical cancer treatment in drug delivery, gene editing, and therapeutic cancer vaccines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 5 1718 10.1002/wnan.1718 33942532
    [Google Scholar]
  63. Gao P. Duan Z. Xu G. Gong Q. Wang J. Luo K. Chen J. Harnessing and mimicking bacterial features to combat cancer: From living entities to artificial mimicking systems. Adv. Mater. 2024 36 35 2405075 10.1002/adma.202405075 39136067
    [Google Scholar]
  64. Krut Z. Gazit D. Gazit Z. Pelled G. Applications of ultrasound-mediated gene delivery in regenerative medicine. Bioengineering 2022 9 5 190 10.3390/bioengineering9050190 35621468
    [Google Scholar]
  65. Mashel T.V. Tarakanchikova Y.V. Muslimov A.R. Zyuzin M.V. Timin A.S. Lepik K.V. Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020 258 120282 10.1016/j.biomaterials.2020.120282 32798742
    [Google Scholar]
  66. Heydari S. Masoumi N. Esmaeeli E. Ayyoubzadeh S.M. Ghorbani-Bidkorpeh F. Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J. Drug Target. 2024 32 10 1247 1266 10.1080/1061186X.2024.2393417 39155708
    [Google Scholar]
  67. Xu X. Liu C. Wang Y. Koivisto O. Zhou J. Shu Y. Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv. Drug Deliv. Rev. 2021 176 113891 10.1016/j.addr.2021.113891 34324887
    [Google Scholar]
  68. Mirza Z. Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol. 2021 69 226 237 10.1016/j.semcancer.2019.10.020 31704145
    [Google Scholar]
  69. Yu L. Liu S. Jia S. Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed. Pharmacother. 2023 165 115049 10.1016/j.biopha.2023.115049 37364480
    [Google Scholar]
  70. Zhang Y. Wu Z.Y. Gene therapy for monogenic disorders: Challenges, strategies, and perspectives. J. Genet. Genomics 2024 51 2 133 143 10.1016/j.jgg.2023.08.001 37586590
    [Google Scholar]
  71. Kirschner J. Cathomen T. Gene therapy for monogenic inherited disorders: Opportunities and challenges. Dtsch. Arztebl. Int. 2020 117 51-52 878 885 10.3238/arztebl.2020.0878 33637169
    [Google Scholar]
  72. Wang Y. Hu L.F. Zhou T.J. Qi L.Y. Xing L. Lee J. Wang F.Z. Oh Y.K. Jiang H.L. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021 277 121108 10.1016/j.biomaterials.2021.121108 34478929
    [Google Scholar]
  73. Alizadeh S. Esmaeili A. Barzegari A. Rafi M.A. Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J. Drug Target. 2020 28 7-8 700 713 10.1080/1061186X.2020.1737087 32116051
    [Google Scholar]
  74. Xu Z. Wang Q. Zhong H. Jiang Y. Shi X. Yuan B. Yu N. Zhang S. Yuan X. Guo S. Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration 2022 2 2 20210081 10.1002/EXP.20210081 37323878
    [Google Scholar]
  75. Mirkhani N. Gwisai T. Schuerle S. Engineering cell‐based systems for smart cancer therapy. Adv. Intell. Syst. 2022 4 1 2100134 10.1002/aisy.202100134
    [Google Scholar]
  76. Huerta C.T. Voza F.A. Ortiz Y.Y. Liu Z.J. Velazquez O.C. Targeted cell delivery of mesenchymal stem cell therapy for cardiovascular disease applications: A review of preclinical advancements. Front. Cardiovasc. Med. 2023 10 1236345 10.3389/fcvm.2023.1236345 37600026
    [Google Scholar]
  77. Wang Y. Shen J. Handschuh-Wang S. Qiu M. Du S. Wang B. Microrobots for targeted delivery and therapy in digestive system. ACS Nano 2023 17 1 27 50 10.1021/acsnano.2c04716 36534488
    [Google Scholar]
  78. Wang T. Wu Y. Yildiz E. Kanyas S. Sitti M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024 2 6 470 485 10.1038/s44222‑024‑00156‑7
    [Google Scholar]
  79. Chao C.J. Zhang E. Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv. Drug Deliv. Rev. 2023 197 114840 10.1016/j.addr.2023.114840 37088403
    [Google Scholar]
  80. Song Z. Tao Y. Liu Y. Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: A focus on viral vectors and extracellular vesicles. Front. Immunol. 2024 15 1444437 10.3389/fimmu.2024.1444437 39281673
    [Google Scholar]
  81. Elemento O. The future of precision medicine: Towards a more predictive personalized medicine. Emerg. Top. Life Sci. 2020 4 2 175 177 10.1042/ETLS20190197 32856697
    [Google Scholar]
  82. Afzal M. Riazul Islam S.M. Hussain M. Lee S. Precision medicine informatics: Principles, prospects, and challenges. IEEE Access 2020 8 13593 13612 10.1109/ACCESS.2020.2965955
    [Google Scholar]
  83. Naithani N. Sinha S. Misra P. Vasudevan B. Sahu R. Precision medicine: Concept and tools. Med. J. Armed Forces India 2021 77 3 249 257 10.1016/j.mjafi.2020.11.011 34305289
    [Google Scholar]
  84. Mustachio L.M. Roszik J. Single-cell sequencing: Current applications in precision onco-genomics and cancer therapeutics. Cancers 2022 14 3 657 10.3390/cancers14030657 35158925
    [Google Scholar]
  85. Ahmed Z. Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum. Genomics 2020 14 1 35 10.1186/s40246‑020‑00287‑z 33008459
    [Google Scholar]
  86. Xing H. Meng L. CRISPR-cas9: A powerful tool towards precision medicine in cancer treatment. Acta Pharmacol. Sin. 2020 41 5 583 587 10.1038/s41401‑019‑0322‑9 31792341
    [Google Scholar]
  87. Soto F. Wang J. Ahmed R. Demirci U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020 7 21 2002203 10.1002/advs.202002203 33173743
    [Google Scholar]
  88. Michels A. Ho N. Buchholz C.J. Precision medicine: In vivo CAR therapy as a showcase for receptor-targeted vector platforms. Mol. Ther. 2022 30 7 2401 2415 10.1016/j.ymthe.2022.05.018 35598048
    [Google Scholar]
  89. Hong M. Clubb J.D. Chen Y.Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 2020 38 4 473 488 10.1016/j.ccell.2020.07.005 32735779
    [Google Scholar]
  90. Strianese O. Rizzo F. Ciccarelli M. Galasso G. D’Agostino Y. Salvati A. Del Giudice C. Tesorio P. Rusciano M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes 2020 11 7 747 10.3390/genes11070747 32640513
    [Google Scholar]
  91. Schiano C. Benincasa G. Franzese M. Della Mura N. Pane K. Salvatore M. Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol. Ther. 2020 210 107514 10.1016/j.pharmthera.2020.107514 32105674
    [Google Scholar]
  92. Griñán-Ferré C. Bellver-Sanchis A. Guerrero A. Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024 205 107247 10.1016/j.phrs.2024.107247 38834164
    [Google Scholar]
  93. Hampel H. Caraci F. Cuello A.C. Caruso G. Nisticò R. Corbo M. Baldacci F. Toschi N. Garaci F. Chiesa P.A. Verdooner S.R. Akman-Anderson L. Hernández F. Ávila J. Emanuele E. Valenzuela P.L. Lucía A. Watling M. Imbimbo B.P. Vergallo A. Lista S. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front. Immunol. 2020 11 456 10.3389/fimmu.2020.00456 32296418
    [Google Scholar]
  94. Hoffman R. Benz E.J. Silberstein L.E. Heslop H. Weitz J. Salama M.E. Abutalib S.A. Hematology E-Book: Basic Principles and Practice. Elsevier Health Sciences 2022
    [Google Scholar]
  95. Valent P. Akin C. Hartmann K. Nilsson G. Reiter A. Hermine O. Sotlar K. Sperr W.R. Escribano L. George T.I. Kluin-Nelemans H.C. Ustun C. Triggiani M. Brockow K. Gotlib J. Orfao A. Kovanen P.T. Hadzijusufovic E. Sadovnik I. Horny H.P. Arock M. Schwartz L.B. Austen K.F. Metcalfe D.D. Galli S.J. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich’s visions to precision medicine concepts. Theranostics 2020 10 23 10743 10768 10.7150/thno.46719 32929378
    [Google Scholar]
  96. Ahmed Z. Zeeshan S. Mendhe D. Dong X. Human gene and disease associations for clinical‐genomics and precision medicine research. Clin. Transl. Med. 2020 10 1 297 318 10.1002/ctm2.28 32508008
    [Google Scholar]
  97. Micera A. Balzamino B.O. Di Zazzo A. Dinice L. Bonini S. Coassin M. Biomarkers of neurodegeneration and precision therapy in retinal disease. Front. Pharmacol. 2021 11 601647 10.3389/fphar.2020.601647 33584278
    [Google Scholar]
  98. Giacomelli R. Afeltra A. Bartoloni E. Berardicurti O. Bombardieri M. Bortoluzzi A. Carubbi F. Caso F. Cervera R. Ciccia F. Cipriani P. Coloma-Bazán E. Conti F. Costa L. D’Angelo S. Distler O. Feist E. Foulquier N. Gabini M. Gerber V. Gerli R. Grembiale R.D. Guggino G. Hoxha A. Iagnocco A. Jordan S. Kahaleh B. Lauper K. Liakouli V. Lubrano E. Margiotta D. Naty S. Navarini L. Perosa F. Perricone C. Perricone R. Prete M. Pers J.O. Pitzalis C. Priori R. Rivellese F. Ruffatti A. Ruscitti P. Scarpa R. Shoenfeld Y. Triolo G. Tzioufas A. The growing role of precision medicine for the treatment of autoimmune diseases; results of a systematic review of literature and Experts’ Consensus. Autoimmun. Rev. 2021 20 2 102738 10.1016/j.autrev.2020.102738 33326854
    [Google Scholar]
  99. Conrad K. Shoenfeld Y. Fritzler M.J. Precision health: A pragmatic approach to understanding and addressing key factors in autoimmune diseases. Autoimmun. Rev. 2020 19 5 102508 10.1016/j.autrev.2020.102508 32173518
    [Google Scholar]
  100. Raparthi M. Gayam S.R. Kasaraneni B.P. Kondapaka K.K. Pattyam S.P. Putha S. AI-driven decision support systems for precision medicine: Examining the development and implementation of AI-driven decision support systems in precision medicine. J. Artif. Intell. Res. 2021 1 1 11 20
    [Google Scholar]
  101. Manchia M. Pisanu C. Squassina A. Carpiniello B. Challenges and future prospects of precision medicine in psychiatry. Pharm. Genomics Pers. Med. 2020 13 127 140 10.2147/PGPM.S198225 32425581
    [Google Scholar]
  102. Peirlinck M. Costabal F.S. Yao J. Guccione J.M. Tripathy S. Wang Y. Ozturk D. Segars P. Morrison T.M. Levine S. Kuhl E. Precision medicine in human heart modeling. Biomech. Model. Mechanobiol. 2021 20 3 803 831 10.1007/s10237‑021‑01421‑z 33580313
    [Google Scholar]
  103. Kamel Boulos M.N. Zhang P. Digital twins: From personalised medicine to precision public health. J. Pers. Med. 2021 11 8 745 10.3390/jpm11080745 34442389
    [Google Scholar]
  104. Yang S.R. Schultheis A.M. Yu H. Mandelker D. Ladanyi M. Büttner R. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin. Cancer Biol. 2022 84 184 198 10.1016/j.semcancer.2020.07.009 32730814
    [Google Scholar]
  105. Sisodiya S.M. Precision medicine and therapies of the future. Epilepsia 2021 62 Suppl 2 Suppl 2 S90 S105 10.1111/epi.16539 32776321
    [Google Scholar]
  106. Johnson K.B. Wei W.Q. Weeraratne D. Frisse M.E. Misulis K. Rhee K. Zhao J. Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021 14 1 86 93 10.1111/cts.12884 32961010
    [Google Scholar]
  107. Duan X.P. Qin B.D. Jiao X.D. Liu K. Wang Z. Zang Y.S. New clinical trial design in precision medicine: Discovery, development and direction. Signal Transduct. Target. Ther. 2024 9 1 57 10.1038/s41392‑024‑01760‑0 38438349
    [Google Scholar]
  108. Nabbout R. Kuchenbuch M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat. Rev. Neurol. 2020 16 12 674 688 10.1038/s41582‑020‑0409‑4 33077944
    [Google Scholar]
  109. Ashina M. Terwindt G.M. Al-Karagholi M.A.M. de Boer I. Lee M.J. Hay D.L. Schulte L.H. Hadjikhani N. Sinclair A.J. Ashina H. Schwedt T.J. Goadsby P.J. Migraine: Disease characterisation, biomarkers, and precision medicine. Lancet 2021 397 10283 1496 1504 10.1016/S0140‑6736(20)32162‑0 33773610
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031393987251006103531
Loading
/content/journals/ddl/10.2174/0122103031393987251006103531
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: CRISPR-Cas9 ; targeted drug delivery ; gene editing ; Precision medicine ; cancer ; gene therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test