Skip to content
2000
image of Advances in Liposome-based Approaches for Drug Delivery: Preparation, Characterization, and Applications

Abstract

Liposomes have emerged as flexible and effective nanocarriers for drug delivery, gene therapy, and diagnostics due to their biocompatibility, ability to encapsulate both hydrophilic and hydrophobic compounds, and controlled release properties. Recent advances in liposome production have significantly increased their therapeutic potential, leading to higher drug-loading efficiency, improved targeting capabilities, and greater stability. Traditional technologies, such as thin-film hydration and reverse-phase evaporation, are widely used but suffer from batch-to-batch variability and limited scalability. Microfluidics, freeze-drying methods, and ethanol injection have overcome these restrictions by providing more control over liposome size, polydispersity, and encapsulation efficiency. Microfluidic technology, in particular, enables the precise, repeatable manufacturing of liposomes with narrow size distributions, which is crucial for targeted delivery in nanomedicine.

Furthermore, surface modification approaches such as PEGylation and ligand conjugation have enhanced liposome stability, enabled tissue-specific targeting, minimized off-target effects, and improved therapeutic efficacy. In addition, advances in stimuli-responsive liposomes, which release their payload in response to environmental cues like as pH, temperature, or enzymes, have created new opportunities for site-specific drug administration. Despite these advances, challenges remain in large-scale manufacture, long-term stability, and regulatory approval for therapeutic uses. Ongoing research focused on optimizing preparation methods and enhancing liposome biocompatibility and targeting efficiency holds considerable promise for their future use in precision medicine and tailored treatments.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031373684251026222255
2025-11-18
2026-01-31
Loading full text...

Full text loading...

References

  1. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  2. Shailesh S. Neelam S. Sandeep K. Gupta G.D. Liposomes: A review. J. Pharm. Res. 2009 2 7 1163 1167
    [Google Scholar]
  3. Schaeffer H.E. Krohn D.L. Liposomes in topical drug delivery. Invest. Ophthalmol. Vis. Sci. 1982 22 2 220 227 7056633
    [Google Scholar]
  4. Bragagni M. Mennini N. Maestrelli F. Cirri M. Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv. 2012 19 7 354 361 10.3109/10717544.2012.724472 23043648
    [Google Scholar]
  5. Schlich M. Musazzi U.M. Campani V. Biondi M. Franzé S. Lai F. De Rosa G. Sinico C. Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv. Transl. Res. 2022 12 8 1811 1828 10.1007/s13346‑021‑01089‑z 34755281
    [Google Scholar]
  6. Prajapati B.G. Patel N.K. Panchal M.M. Patel R.P. Topical liposomes in drug delivery: a review. Ijprt 2012 4 1 39 44
    [Google Scholar]
  7. Has C. Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020 30 4 336 365 10.1080/08982104.2019.1668010 31558079
    [Google Scholar]
  8. Massing U. Cicko S. Ziroli V. Dual asymmetric centrifugation (DAC)—A new technique for liposome preparation. J. Control. Release 2008 125 1 16 24 10.1016/j.jconrel.2007.09.010 18023907
    [Google Scholar]
  9. Wang J. He W. Cheng L. Zhang H. Wang Y. Liu C. Dong S. Zha W. Kong X. Yao C. Li X. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm. 2022 619 121714 10.1016/j.ijpharm.2022.121714 35367585
    [Google Scholar]
  10. Azumah J. Vasilic D. Smistad G. Hiorth M. Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability. J. Liposome Res. 2025 35 2 159 172 10.1080/08982104.2025.2456194 39862424
    [Google Scholar]
  11. De Leo V. Maurelli A.M. Giotta L. Catucci L. Liposomes containing nanoparticles: preparation and applications. Colloids Surf. B Biointerfaces 2022 218 112737 10.1016/j.colsurfb.2022.112737 35933888
    [Google Scholar]
  12. Cazzolla A. Mondala J.R.M. Wanigasekara J. Carroll J. Daly N. Tiwari B. Synthesis of cationic liposome nanoparticles using a thin film dispersed hydration and extrusion method. PLoS ONE 2024 19 4 e0300467 10.1371/journal.pone.0300467
    [Google Scholar]
  13. Umbarkar M. Thakare S. Surushe T. Giri A. Chopade V. Formulation and evaluation of liposome by thin film hydration method. J. Drug Deliv. Ther. 2021 11 1 72 76 10.22270/jddt.v11i1.4677
    [Google Scholar]
  14. Šturm L. Poklar Ulrih N. Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols. Int. J. Mol. Sci. 2021 22 12 6547 10.3390/ijms22126547 34207189
    [Google Scholar]
  15. Handali S. Moghimipour E. Utilization of thin film method for preparation of celecoxib loaded liposomes 2012 http://journals. tbzmed.ac.ir/PDF/APB/Manuscript/APB-2-93.pdf
    [Google Scholar]
  16. Szoka F. Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978 75 9 4194 4198 10.1073/pnas.75.9.4194 279908
    [Google Scholar]
  17. Cortesi R. Esposito E. Gambarin S. Telloli P. Menegatti E. Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J. Microencapsul. 1999 16 2 251 256 10.1080/026520499289220 10080118
    [Google Scholar]
  18. Köthe T. Martin S. Reich G. Fricker G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int. J. Pharm. 2020 579 119087 10.1016/j.ijpharm.2020.119087 32213299
    [Google Scholar]
  19. Peralta M.F. Guzmán M.L. Pérez A.P. Apezteguia G.A. Fórmica M.L. Romero E.L. Olivera M.E. Carrer D.C. Liposomes can both enhance or reduce drugs penetration through the skin. Sci. Rep. 2018 8 1 13253 10.1038/s41598‑018‑31693‑y 30185887
    [Google Scholar]
  20. Rukavina Z. Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 2016 8 2 18 10.3390/pharmaceutics8020018 27231933
    [Google Scholar]
  21. Uhumwangho M.U. Okor R.S. Current trends in the production and biomedical applications of liposomes: a review. J. Med. Biomed. Res. 2005 4 1 9 21
    [Google Scholar]
  22. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  23. Koehler J.K. Schmager S. Bender V. Steiner D. Massing U. Preparation of nanosized pharmaceutical formulations by dual centrifugation. Pharmaceuticals 2023 16 11 1519 10.3390/ph16111519 38004385
    [Google Scholar]
  24. Dua J.S. Rana A.C. Bhandari A.K. Liposome: Methods of preparation and applications. Int. J. Pharm. Stud Res. 2012 3 2 14 20
    [Google Scholar]
  25. Huang Z. Li X. Zhang T. Song Y. She Z. Li J. Deng Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014 9 4 176 182 10.1016/j.ajps.2014.06.001
    [Google Scholar]
  26. Ivan S. Jack R. Surfactant-mediated assembly of precision-size liposomesclick to copy article link. Chem. Mater. 2024 36 15 7263 7273 39156714
    [Google Scholar]
  27. Mohammed A.R. Weston N. Coombes A.G.A. Fitzgerald M. Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004 285 1-2 23 34 10.1016/j.ijpharm.2004.07.010 15488676
    [Google Scholar]
  28. Oussoren C. Eling W.M.C. Crommelin D.J.A. Storm G. Zuidema J. The influence of the route of administration and liposome composition on the potential of liposomes to protect tissue against local toxicity of two antitumor drugs. Biochim. Biophys. Acta Biomembr. 1998 1369 1 159 172 10.1016/S0005‑2736(97)00221‑6 9528684
    [Google Scholar]
  29. Barenholz Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy. J. Liposome Res. 2003 13 1 1 8 10.1081/LPR‑120017482 12725720
    [Google Scholar]
  30. Sessa G. Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res. 1968 9 3 310 318 10.1016/S0022‑2275(20)43097‑4 5646182
    [Google Scholar]
  31. Hwang K.J. Chang Y.C. The use of cross-flow microfiltration in purification of liposomes. Sep. Sci. Technol. 2004 39 11 2557 2576 10.1081/SS‑200026709
    [Google Scholar]
  32. Zumbuehl O. Weder H.G. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim. Biophys. Acta Biomembr. 1981 640 1 252 262 10.1016/0005‑2736(81)90550‑2 7194112
    [Google Scholar]
  33. Andar A.U. Hood R.R. Vreeland W.N. DeVoe D.L. Swaan P.W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res. 2014 31 2 401 413 10.1007/s11095‑013‑1171‑8 24092051
    [Google Scholar]
  34. Delama A. Teixeira M.I. Dorati R. Genta I. Conti B. Lamprou D.A. Microfluidic encapsulation method to produce stable liposomes containing iohexol. J. Drug Deliv. Sci. Technol. 2019 54 101340 10.1016/j.jddst.2019.101340
    [Google Scholar]
  35. van Swaay D. deMello A. Microfluidic methods for forming liposomes. Lab Chip 2013 13 5 752 767 10.1039/c2lc41121k 23291662
    [Google Scholar]
  36. Dong Y.D. Tchung E. Nowell C. Kaga S. Leong N. Mehta D. Kaminskas L.M. Boyd B.J. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res. 2019 29 1 1 9 10.1080/08982104.2017.1391285 29020849
    [Google Scholar]
  37. Lozano Vigario F. Nagy N.A. The M.H. Sparrius R. Bouwstra J.A. Kros A. Jiskoot W. de Jong E.C. Slütter B. The Use of a staggered herringbone micromixer for the preparation of rigid liposomal formulations allows efficient encapsulation of antigen and adjuvant. J. Pharm. Sci. 2022 111 4 1050 1057 10.1016/j.xphs.2022.01.029 35114210
    [Google Scholar]
  38. Agha A. Waheed W. Stiharu I. Nerguizian V. Destgeer G. Abu-Nada E. Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discov Nano 2023 18 1 18 10.1186/s11671‑023‑03792‑x 36800044
    [Google Scholar]
  39. Shashi K. Satinder K. Bharat P. A complete review on. Liposomes. Int. Res. J. Pharm. 2012 3 7 10
    [Google Scholar]
  40. Zylberberg C. Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016 23 9 3319 3329 10.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  41. Alavi S.E. Alharthi S. Alavi S.F. Alavi S.Z. Zahra G.E. Raza A. Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov. Today 2024 29 4 103936 10.1016/j.drudis.2024.103936 38428803
    [Google Scholar]
  42. Lin H. Leng J. Fan P. Xu Z. Ruan G. Scalable production of microscopic particles for biological delivery. Mater. Adv. 2023 4 14 2885 2908 10.1039/D3MA00021D
    [Google Scholar]
  43. Jaafar-Maalej C. Charcosset C. Fessi H. A new method for liposome preparation using a membrane contactor. J. Liposome Res. 2011 21 3 213 220 10.3109/08982104.2010.517537 20860451
    [Google Scholar]
  44. Laouini A. Jaafar-Maalej C. Sfar S. Charcosset C. Fessi H. Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation. Int. J. Pharm. 2011 415 1-2 53 61 10.1016/j.ijpharm.2011.05.034 21641982
    [Google Scholar]
  45. Blanken D. Foschepoth D. Serrão A.C. Danelon C. Genetically controlled membrane synthesis in liposomes. Nat. Commun. 2020 11 1 4317 10.1038/s41467‑020‑17863‑5 32859896
    [Google Scholar]
  46. Hope M.J. Bally M.B. Webb G. Cullis P.R. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta Biomembr. 1985 812 1 55 65 10.1016/0005‑2736(85)90521‑8 23008845
    [Google Scholar]
  47. Alavi M. Rai M. Varma R.S. Hamidi M. Mozafari M.R. Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects 2022 1 1 18 29
    [Google Scholar]
  48. Popovska O. An overview: Methods for preparation and characterization of liposomes as drug delivery systems. Int. J. Pharm. Phytopharm Res. 2014 3 3
    [Google Scholar]
  49. Maja L. Željko K. Mateja P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020 165 104984 10.1016/j.supflu.2020.104984
    [Google Scholar]
  50. Chaves M.A. Ferreira L.S. Baldino L. Pinho S.C. Reverchon E. Current applications of liposomes for the delivery of vitamins: A systematic review. Nanomaterials 2023 13 9 1557 10.3390/nano13091557 37177102
    [Google Scholar]
  51. Uzun H.D. Tiris Z. Czarnetzki M. López-Marqués R.L. Günther Pomorski T. Electroformation of giant unilamellar vesicles from large liposomes. Eur. Phys. J. Spec. Top. 2024 233 21-22 2931 2940 10.1140/epjs/s11734‑024‑01104‑7
    [Google Scholar]
  52. Boban Z. Mardešić I. Subczynski W.K. Raguz M. Giant unilamellar vesicle electroformation: what to use, what to avoid, and how to quantify the results. Membranes 2021 11 11 860 10.3390/membranes11110860 34832088
    [Google Scholar]
  53. Boban Z. Puljas A. Kovač D. Subczynski W.K. Raguz M. Effect of electrical parameters and cholesterol concentration on giant unilamellar vesicles electroformation. Cell Biochem. Biophys. 2020 78 2 157 164 10.1007/s12013‑020‑00910‑9 32319021
    [Google Scholar]
  54. Angelova M.I. Dimitrov D.S. Liposome electroformation. Faraday Discuss. 1986 81 303 311 10.1039/dc9868100303
    [Google Scholar]
  55. Verma S. Current and future prospective of liposomes as drug delivery vehicles for the effective treatment of cancer. Int. J. Green Pharm. 2017 11 03
    [Google Scholar]
  56. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  57. Ghellab S.E. Mu W. Li Q. Han X. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology. Biophys. Chem. 2019 253 106217 10.1016/j.bpc.2019.106217 31306917
    [Google Scholar]
  58. Saraf S. Jain A. Tiwari A. Verma A. Panda P.K. Jain S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol. 2020 56 101549 10.1016/j.jddst.2020.101549
    [Google Scholar]
  59. Zhao L. Temelli F. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. J. Supercrit. Fluids 2015 100 110 120 10.1016/j.supflu.2015.02.022
    [Google Scholar]
  60. William B. Noémie P. Brigitte E. Géraldine P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. J. 2020 383 123106 10.1016/j.cej.2019.123106
    [Google Scholar]
  61. Santo I.E. Campardelli R. Albuquerque E.C. de Melo S.V. Della Porta G. Reverchon E. Liposomes preparation using a supercritical fluid assisted continuous process. Chem. Eng. J. 2014 249 153 159 10.1016/j.cej.2014.03.099
    [Google Scholar]
  62. Zhong J. Dai L.C. Liposomal preparation by supercritical fluids technology. Afr. J. Biotechnol. 2011 10 73 16406 16413 10.5897/AJB11.1394
    [Google Scholar]
  63. Vemuri S. Rhodes C.T. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 1995 70 2 95 111 10.1016/0031‑6865(95)00010‑7 7651973
    [Google Scholar]
  64. Agarwal K. Liposome assisted drug delivery: An updated review. Indian J. Pharm. Sci. 2022 84 4
    [Google Scholar]
  65. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  66. Lasic D.D. Mechanisms of liposome formation. J. Liposome Res. 1995 5 3 431 441 10.3109/08982109509010233
    [Google Scholar]
  67. Franzé S. Selmin F. Samaritani E. Minghetti P. Cilurzo F. Lyophilization of liposomal formulations: Still necessary, still challenging. Pharmaceutics 2018 10 3 139 10.3390/pharmaceutics10030139 30154315
    [Google Scholar]
  68. Li C. Deng Y. A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J. Pharm. Sci. 2004 93 6 1403 1414 10.1002/jps.20055 15124200
    [Google Scholar]
  69. Nugraheni R.W. Mulyadi N. Yusuf H. Freeze-dried liposome formulation for small molecules, nucleic acid, and protein delivery. Syst. Rev. Pharm. 2020 11 143 151
    [Google Scholar]
  70. Chen C. Han D. Cai C. Tang X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010 142 3 299 311 10.1016/j.jconrel.2009.10.024 19874861
    [Google Scholar]
  71. Yen T.T.H. Nho Dan L. Duc L.H. Tung B.T. Hue P.T.M. Preparation and characterization of freeze-dried liposomes loaded with amphotericin B. Curr. Drug Ther. 2019 14 1 65 73 10.2174/1574885514666181217130259
    [Google Scholar]
  72. van Winden E.C. Freeze-drying of liposomes: theory and practice. Methods Enzymol 2003 367 99 110 10.1016/S0076‑6879(03)67008‑4
    [Google Scholar]
  73. Geidobler R. Winter G. Controlled ice nucleation in the field of freeze-drying: Fundamentals and technology review. Eur. J. Pharm. Biopharm. 2013 85 2 214 222 10.1016/j.ejpb.2013.04.014 23643793
    [Google Scholar]
  74. Assegehegn G. Brito-de la Fuente E. Franco J.M. Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J. Pharm. Sci. 2019 108 4 1378 1395 10.1016/j.xphs.2018.11.039 30529167
    [Google Scholar]
  75. Tang X.C. Pikal M.J. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm. Res. 2004 21 2 191 200 10.1023/B:PHAM.0000016234.73023.75 15032301
    [Google Scholar]
  76. Aranda-Lara L. Morales-Avila E. Luna-Gutiérrez M.A. Olivé-Alvarez E. Isaac-Olivé K. Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem. Phys. Lipids 2020 230 104934 10.1016/j.chemphyslip.2020.104934 32562666
    [Google Scholar]
  77. Hasan M.M. Hasan M. Mondal J.C. Al Hasan M. Talukder S. Rashid H.A. Liposomes: An advance tool for novel drug delivery system. Pharma Innovation J. 2017 6 304 311
    [Google Scholar]
  78. Bokrova J. Marova I. Matouskova P. Pavelkova R. Fabrication of novel PHB-liposome nanoparticles and study of their toxicity in vitro. J. Nanopart. Res. 2019 21 3 49 10.1007/s11051‑019‑4484‑7
    [Google Scholar]
  79. Smith M.C. Crist R.M. Clogston J.D. McNeil S.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 2017 409 24 5779 5787 10.1007/s00216‑017‑0527‑z 28762066
    [Google Scholar]
  80. Ong S. Ming L. Lee K. Yuen K. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 2016 8 3 25 10.3390/pharmaceutics8030025 27571096
    [Google Scholar]
  81. Lombardo D. Kiselev M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  82. Nunziata G. Borroni A. Rossi F. Advanced microfluidic strategies for core-shell nanoparticles: the next-generation of polymeric and lipid-based drug nanocarriers. Chem. Eng. J. Adv. 2025 22 100759 10.1016/j.ceja.2025.100759
    [Google Scholar]
  83. Hood R.R. Shao C. Omiatek D.M. Vreeland W.N. DeVoe D.L. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm. Res. 2013 30 6 1597 1607 10.1007/s11095‑013‑0998‑3 23386106
    [Google Scholar]
  84. Feghhi M. Sharif Makhmalzadeh B. Farrahi F. Akmali M. Hasanvand N. Anti-microbial effect and in vivo ocular delivery of ciprofloxacin-loaded liposome through rabbit’s eye. Curr. Eye Res. 2020 45 10 1245 1251 10.1080/02713683.2020.1728777 32045531
    [Google Scholar]
  85. Yi X. Gao S. Gao X. Zhang X. Xia G. Liu Z. Shi H. Shen X. Glycolipids improve the stability of liposomes: The perspective of bilayer membrane structure. Food Chem. 2023 412 135517 10.1016/j.foodchem.2023.135517 36708667
    [Google Scholar]
  86. Jakubek Z.J. Chen S. Zaifman J. Tam Y.Y.C. Zou S. Lipid Nanoparticle and Liposome Reference Materials: Assessment of Size Homogeneity and Long-Term −70 °C and 4 °C Storage Stability. Langmuir 2023 39 7 2509 2519 10.1021/acs.langmuir.2c02657 36748988
    [Google Scholar]
  87. Singh S. Vardhan H. Kotla N.G. Maddiboyina B. Sharma D. Webster T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomedicine 2016 11 1475 1482 27114707
    [Google Scholar]
  88. Gilhotra R. Nagpal K. Mishra D. Azithromycin novel drug delivery system for ocular application. Int. J. Pharm. Investig. 2011 1 1 22 28 10.4103/2230‑973X.76725 23071916
    [Google Scholar]
  89. Gkionis L. Campbell R.A. Aojula H. Harris L.K. Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int. J. Pharm. 2020 590 119926 10.1016/j.ijpharm.2020.119926 33010397
    [Google Scholar]
  90. Ramezani A.R. Iranshahi M.E. Hanafi-Bojd M.Y. Malaekeh-Nikouei B.I. Preparation, characterization and cytotoxic effects of nanoliposomes containing umbelliprenin. Intern J. Pharm. Res. 2014 6 79 84
    [Google Scholar]
  91. Wang N. Chen M. Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019 303 130 150 10.1016/j.jconrel.2019.04.025 31022431
    [Google Scholar]
  92. Chatzikleanthous D. O’Hagan D.T. Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: Toward multicomponent vaccines. Mol. Pharm. 2021 18 8 2867 2888 10.1021/acs.molpharmaceut.1c00447 34264684
    [Google Scholar]
  93. Luo L. Luo Z. Wang L. Hu Y. Zhang J. Yin H. You J. Liposome vaccine for active regulation of cellular and humoral immunity. Mol. Pharm. 2023 20 11 5668 5681 10.1021/acs.molpharmaceut.3c00536 37856874
    [Google Scholar]
  94. Krasnopolsky Y. Pylypenko D. Licensed liposomal vaccines and adjuvants in the antigen delivery system. Biotechnologia (Pozn) 2022 103 4 409 423 10.5114/bta.2022.120709 36685697
    [Google Scholar]
  95. Li L. Hu S. Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018 171 207 218 10.1016/j.biomaterials.2018.04.031 29704747
    [Google Scholar]
  96. Lohchania B. Christopher A.C. Arjunan P. Mahalingam G. Kathirvelu D. Prasannan A. Venkatesan V. Taneja P. Km M.K. Thangavel S. Marepally S. Diosgenin enhances liposome-enabled nucleic acid delivery and CRISPR/Cas9-mediated gene editing by modulating endocytic pathways. Front. Bioeng. Biotechnol. 2023 10 1031049 10.3389/fbioe.2022.1031049 36698628
    [Google Scholar]
  97. Yin X. Harmancey R. McPherson D.D. Kim H. Huang S.L. Liposome-Based Carriers for CRISPR Genome Editing. Int. J. Mol. Sci. 2023 24 16 12844 10.3390/ijms241612844 37629024
    [Google Scholar]
  98. Kushwaha N. Panjwani D. Patel S. Ahlawat P. Yadav M.R. Patel A.S. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: Reducing plaque burden in Alzheimer’s disease. J. Drug Target. 2025 33 2 185 205 10.1080/1061186X.2024.2417012 39403775
    [Google Scholar]
  99. Marsanasco M. Piotrkowski B. Calabró V. del Valle Alonso S. Chiaramoni N.S. Bioactive constituents in liposomes incorporated in orange juice as new functional food: Thermal stability, rheological and organoleptic properties. J. Food Sci. Technol. 2015 52 12 7828 7838 10.1007/s13197‑015‑1924‑y 26604355
    [Google Scholar]
  100. Toniazzo T. Berbel I.F. Cho S. Fávaro-Trindade C.S. Moraes I.C.F. Pinho S.C. β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. Lebensm. Wiss. Technol. 2014 59 2 1265 1273 10.1016/j.lwt.2014.05.021
    [Google Scholar]
  101. Cui H.Y. Wu J. Lin L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016 99 8 6097 6104 10.3168/jds.2016‑11133 27265173
    [Google Scholar]
  102. 2018 https://www.fda.gov/media/70837/download
  103. Reflection Paper on Data Requirements for Intravenous Liposomal Products Developed with Reference to an Innovator Liposomal Product 2013 https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-data-requirements-intravenous-liposomal-products-developed-reference-innovator_en.pdf
  104. Wang Y. Grainger D.W. Regulatory considerations specific to liposome drug development as complex drug products. Front Drug Deliv 2022 2 901281 10.3389/fddev.2022.901281
    [Google Scholar]
  105. Lee S.H. Kim J.K. Jee J.P. Jang D.J. Park Y.J. Kim J.E. Quality by Design (QbD) application for the pharmaceutical development process. J. Pharm. Investig. 2022 52 6 649 682 10.1007/s40005‑022‑00575‑x
    [Google Scholar]
  106. Tri B.D. Shashni B. Matsui H. Nagasaki Y. Designing poly(gamma-aminobutyric acid)-based nanoparticles for the treatment of major depressive disorders. J. Control. Release 2023 360 110 121 10.1016/j.jconrel.2023.06.021 37336293
    [Google Scholar]
  107. Li Y.N. Shi X. Sun D. Han S. Zou Y. Wang L. Yang L. Li Y. Shi Y. Guo J. O’Driscoll C.M. Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. Int. J. Pharm. 2023 636 122791 10.1016/j.ijpharm.2023.122791 36863541
    [Google Scholar]
  108. Peschka R. Purmann T. Schubert R. Cross-flow filtration—an improved detergent removal technique for the preparation of liposomes. Int. J. Pharm. 1998 162 1-2 177 183 10.1016/S0378‑5173(97)00424‑9
    [Google Scholar]
  109. Yilmaz Usta D. Olgac S. Timur B. Teksin Z.S. Development and pharmacokinetic evaluation of Neusilin® US2-based S-SNEDDS tablets for bosentan: Fasted and fed states bioavailability, IVIS® real-time biodistribution, and ex-vivo imaging. Int. J. Pharm. 2023 643 123219 10.1016/j.ijpharm.2023.123219 37433349
    [Google Scholar]
  110. Otake Katsuto Imura Tomohiro Sakai Hideki Abe, Masahiko Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 2001 17 13 3898 3901 10.1021/la001626m
    [Google Scholar]
  111. Wang T. Deng Y. Geng Y. Gao Z. Zou J. Wang Z. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim. Biophys. Acta Biomembr. 2006 1758 2 222 231 10.1016/j.bbamem.2006.01.023 16563340
    [Google Scholar]
  112. Gatto M.S. Johnson M.P. Najahi-Missaoui W. Targeted liposomal drug delivery: Overview of the current applications and challenges. Life 2024 14 6 672 10.3390/life14060672 38929656
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031373684251026222255
Loading
/content/journals/ddl/10.2174/0122103031373684251026222255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test