Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

The pharmaceutical industry is witnessing a paradigm shift in drug delivery strategies with the advent of microsponges. These innovative carriers have emerged as a promising solution to address challenges associated with conventional drug delivery systems. Microsponges, characterized by their porous structure and biocompatibility, offer a versatile platform for controlled and targeted drug release. This review explores the multifaceted impact of microsponges in pharmaceutical research, emphasizing their role in enhancing drug stability, solubility, and bioavailability. The unique architecture of microsponges facilitates the efficient encapsulation of diverse drug compounds, promoting enhanced stability and bioavailability. This review explores the engineering principles behind microsponge fabrication, emphasizing the tunable characteristics that enable tailored drug release kinetics. Furthermore, the distinct advantages of microsponges, such as sustained release, reduced side effects, and improved patient compliance, are comprehensively examined. This comprehensive assessment delves into the recent advancements in microsponges technology, highlighting its application in diverse therapeutic areas such as dermatology, oncology, and cardiovascular medicine. As microsponges continue to revolutionize drug delivery, their integration into pharmaceutical formulations holds immense potential for optimizing therapeutic outcomes and ushering in a new era of precision medicine.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031308362240806113226
2024-08-21
2025-12-23
Loading full text...

Full text loading...

References

  1. MantryS. BagchiA. DasS. DasS. Microsponge as a novel strategy of drug delivery system.Universal Journal of Pharmaceutical Sciences and Research.2015113238
    [Google Scholar]
  2. NachtS KatzM. The microsponge: A novel topical programmable delivery system.Int. J. Pharm. Sci. Res199042299325
    [Google Scholar]
  3. ChardeM. GhanawatP. WelankiwarA. KumarJ. ChakoleR. Microsponge: A novel new drug delivery system: A review.International Journal of Advances in Pharmaceutics.2013266370
    [Google Scholar]
  4. DarekarA. PawarP. SaudagarR.B. A review on microsponge as emerging drug delivery system.J. Drug Deliv. Ther.201993-s793801
    [Google Scholar]
  5. ShuklaA. GargA. GargS. Application of microsponge technique in topical drug delivery system.Asian Journal of Biomaterial Research.201624120126
    [Google Scholar]
  6. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  7. VermaR.K. GargS. Drug delivery technologies and future directions.Pharm. Technol.2001252114
    [Google Scholar]
  8. JainA. JainS. Brain targeting using surface functionalized nanocarriers in human solid tumors.Drug Nanocarriers Series Nanobiomedicine2014203255
    [Google Scholar]
  9. WonR. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen.Google Patents1987
    [Google Scholar]
  10. SrivastavaR. KumarD. PathakK. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet.Int. J. Pharm.2012427215316210.1016/j.ijpharm.2012.01.03622306039
    [Google Scholar]
  11. JainA. JainS.K. Colon targeted liposomal systems (CTLS): Theranostic potential.Curr. Mol. Med.201515762163310.2174/156652401566615083113132026321756
    [Google Scholar]
  12. JadhavN. PatelV. MungekarS. BhamareG. KarpeM. KadamsV. Microsponge delivery system: An updated review, current status and future prospects.Journal of Scientific and Innovative Research.20132610971110
    [Google Scholar]
  13. PatelE. OswalR. Nanosponge and micro sponges: A novel drug delivery system.Int. J. Res. Pharm. Chem.20128237244
    [Google Scholar]
  14. Bhanse NajukaD. ShahC. ShahD. Novel and innovative strategy: Microsponges drug delivery system.Pharma Sci. Monitor201672
    [Google Scholar]
  15. NiveditaM. Formulation and Evaluation of Diacerein Loaded Microsponges in CapsuleCollege of Pharmacy Madras Medical CollegeChennai20162016
    [Google Scholar]
  16. SoutoE.B. MacedoA.S. Dias-FerreiraJ. CanoA. ZielińskaA. MatosC.M. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs).Int. J. Mol. Sci.20212218974310.3390/ijms2218974334575907
    [Google Scholar]
  17. KaityS. MaitiS. GhoshA. PalD. GhoshA. BanerjeeS. Microsponges: A novel strategy for drug delivery system.J. Adv. Pharm. Technol. Res.20101328329010.4103/0110‑5558.7241622247859
    [Google Scholar]
  18. SinghviG. ManchandaP. HansN. DubeyS.K. GuptaG. Microsponge: An emerging drug delivery strategy.Drug Dev. Res.201980220020810.1002/ddr.2149230456763
    [Google Scholar]
  19. OsmaniRAM AloorkarNH ThawareBU KulkarniPK MoinA HaniU Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation.AJPS20154054424512015
    [Google Scholar]
  20. Singh MalikD. MitalN. KaurG. Topical drug delivery systems: A patent review.Expert Opin. Ther. Pat.201626221322810.1517/13543776.2016.113126726651499
    [Google Scholar]
  21. OsmaniR.A.M. AloorkarN.H. IngaleD.J. KulkarniP.K. HaniU. BhosaleR.R. Jayachandra DevD. Microsponges based novel drug delivery system for augmented arthritis therapy.Saudi Pharm. J.201523556257210.1016/j.jsps.2015.02.02026594124
    [Google Scholar]
  22. MahajanA JagtapL ChaudhariA SwamiS MaliP Formulation and evaluation of microsponge drug delivery system using indomethacin.Int. Res. J. Pharm20112106469
    [Google Scholar]
  23. RajeswariS. SwapnaV. Microsponges as a neoteric cornucopia for drug delivery systems.Int. J. Curr. Pharm. Res.201911341210.22159/ijcpr.2019v11i3.34099
    [Google Scholar]
  24. KarA.K. KarB. ParyaH. KunduS. HirawatR. A novel approach on microsponge: Multifunctional modern dosage form.Int. J. Pharm. Sci. Rev. Res.20185126472
    [Google Scholar]
  25. BorawakeP.D. KauslyaA. ShindeJ.V. ChavanR.S. Microsponge as an emerging technique in novel drug delivery system.J. Drug Deliv. Ther.202111117118210.22270/jddt.v11i1.4492
    [Google Scholar]
  26. TiwariA. TiwariV. PalariaB. KumarM. KaushikD. Microsponges: A breakthrough tool in pharmaceutical research.FJPS2022813110.1186/s43094‑022‑00421‑9
    [Google Scholar]
  27. SivasankarapillaiV.S. DasS.S. SabirF. SundaramahalingamM.A. ColmenaresJ.C. PrasannakumarS. RajanM. RahdarA. KyzasG.Z. Progress in natural polymer engineered biomaterials for transdermal drug delivery systems.Mater. Today Chem.20211910038210.1016/j.mtchem.2020.100382
    [Google Scholar]
  28. DavoodiP. LeeL.Y. XuQ. SunilV. SunY. SohS. WangC.H. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.00230415656
    [Google Scholar]
  29. TileM.K. PawarA. Microsponges: A novel strategy for drug delivery.International Journal of Pure and Applied Bioscience.201531224235
    [Google Scholar]
  30. ChristensenM.S. HargensC.W.Iii NachtS. GansE.H. Viscoelastic properties of intact human skin: Instrumentation, hydration effects, and the contribution of the stratum corneum.J. Invest. Dermatol.197769328228610.1111/1523‑1747.ep12507500894063
    [Google Scholar]
  31. SatoT. KankeM. SchroederH.G. DeLucaP.P. Porous biodegradable microspheres for controlled drug delivery. I. Assessment of processing conditions and solvent removal techniques.Pharm. Res.198851213010.1023/A:10158552103193244604
    [Google Scholar]
  32. ChandramouliY. FirozS. YasmeenB.R. VikramA. MahithaB. ArunaU. Microsponges: A novel drug delivery system for controlled delivery of topical drugs.Int J Pharm Res Appl.2012227986
    [Google Scholar]
  33. Narendrabhai SC. Formulation and development of few selected drugs loaded microsponges for topical delivery using quality by design.2018
    [Google Scholar]
  34. BihareeA. BhartiyaS. YadavA. TharejaS. JainA.K. Microsponges as drug delivery system: Past, present, and future perspectives.Curr. Pharm. Des.202329131026104510.2174/138161282966623040408274337013425
    [Google Scholar]
  35. MishraP. HandaM. UjjwalR.R. SinghV. KesharwaniP. ShuklaR. Potential of nanoparticulate based delivery systems for effective management of alopecia.Colloids Surf. B Biointerfaces202120811205010.1016/j.colsurfb.2021.11205034418723
    [Google Scholar]
  36. BhatiaM. SainiM. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery.Prog. Biomater.20187323924810.1007/s40204‑018‑0099‑930242738
    [Google Scholar]
  37. ObiedallahM.M. Abdel-MageedA.M. ElfahamT.H. Ocular administration of acetazolamide microsponges in situ gel formulations.Saudi Pharm. J.201826790992010.1016/j.jsps.2018.01.00530416345
    [Google Scholar]
  38. HazarikaN. Acne vulgaris: New evidence in pathogenesis and future modalities of treatment.J. Dermatolog. Treat.202132327728510.1080/09546634.2019.165407531393195
    [Google Scholar]
  39. CastroG.A. FerreiraL.A.M. Novel vesicular and particulate drug delivery systems for topical treatment of acne.Expert Opin. Drug Deliv.20085666567910.1517/17425247.5.6.66518532922
    [Google Scholar]
  40. SsewanyanaD. AbubakarA. MabroukA. KagonyaV.A. NasambuC. DzomboJ.T. AngwenyiV. KabueM. ScerifG. NewtonC.R. The occurrence of sexual risk behaviors and its association with psychological well-being among Kenyan adolescents.Frontiers in Reproductive Health2021365966510.3389/frph.2021.65966536303989
    [Google Scholar]
  41. KanlayavattanakulM. LourithN. Therapeutic agents and herbs in topical application for acne treatment.Int. J. Cosmet. Sci.201133428929710.1111/j.1468‑2494.2011.00647.x21401650
    [Google Scholar]
  42. RahmanM. AlmalkiW.H. PandaS.K. DasA.K. AlghamdiS. SoniK. HafeezA. HandaM. BegS. RahmanZ. Therapeutic application of microsponges-based drug delivery systems.Curr. Pharm. Des.202228859560810.2174/138161282866622011812153635040411
    [Google Scholar]
  43. KrautheimA. GollnickH.P.M. Acne: Topical treatment.Clin. Dermatol.200422539840710.1016/j.clindermatol.2004.03.00915556726
    [Google Scholar]
  44. JelvehgariM. Siahi-ShadbadM.R. AzarmiS. MartinG.P. NokhodchiA. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies.Int. J. Pharm.20063081-212413210.1016/j.ijpharm.2005.11.00116359833
    [Google Scholar]
  45. GollnickH. SchrammM. Topical drug treatment in acne.Dermatology1998196111912510.1159/0000178449557245
    [Google Scholar]
  46. OsmaniR. AloorkarN. KulkarniA. KulkarniP. HaniU. ThirumaleshwarS. BhosaleR. Novel cream containing microsponges of anti-acne agent: Formulation development and evaluation.Curr. Drug Deliv.201512550451610.2174/156720181266615021212242125675339
    [Google Scholar]
  47. NguyenA.V. SoulikaA.M. The dynamics of the skin’s immune system.Int. J. Mol. Sci.2019208181110.3390/ijms2008181131013709
    [Google Scholar]
  48. CarrasquilloO.Y. Pabón-CartagenaG. Falto-AizpuruaL.A. Santiago-VázquezM. Cancel-ArtauK.J. Arias-BerriosG. Martín-GarcíaR.F. Treatment of erythrodermic psoriasis with biologics: A systematic review.J. Am. Acad. Dermatol.202083115115810.1016/j.jaad.2020.03.07332247872
    [Google Scholar]
  49. LowesM.A. Suárez-FariñasM. KruegerJ.G. Immunology of psoriasis.Annu. Rev. Immunol.201432122725510.1146/annurev‑immunol‑032713‑12022524655295
    [Google Scholar]
  50. RahmanM. AkhterS. AhmadJ. AhmadM.Z. BegS. AhmadF.J. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy.Expert Opin. Drug Deliv.201512463565210.1517/17425247.2015.98208825439967
    [Google Scholar]
  51. TorsekarR. GautamM. Topical therapies in psoriasis.Indian Dermatol. Online J.20178423524510.4103/2229‑5178.20962228761838
    [Google Scholar]
  52. FeldmanS.R. HornE.J. BalkrishnanR. BasraM.K. FinlayA.Y. McCoyD. MenterA. van de KerkhofP.C.M. International psoriasis council.Psoriasis: Improving adherence to topical therapy.J. Am. Acad. Dermatol.20085961009101610.1016/j.jaad.2008.08.02818835062
    [Google Scholar]
  53. DeviN. KumarS. PrasadM. RaoR. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management.J. Drug Deliv. Sci. Technol.20205510134710.1016/j.jddst.2019.101347
    [Google Scholar]
  54. D’AuriaE. BanderaliG. BarberiS. GualandriL. PietraB. RivaE. CerriA. Atopic dermatitis: Recent insight on pathogenesis and novel therapeutic target.Asian Pac. J. Allergy Immunol.20163429810827007830
    [Google Scholar]
  55. KatohN. OhyaY. IkedaM. EbiharaT. KatayamaI. SaekiH. ShimojoN. TanakaA. NakaharaT. NagaoM. HideM. FujitaY. FujisawaT. FutamuraM. MasudaK. MurotaH. Yamamoto-HanadaK. Committee for clinical practice guidelines for the management of atopic dermatitis 2018, the japanese society of allergology, the japanese dermatology association. Japanese guidelines for atopic dermatitis 2020.Allergol. Int.202069335636910.1016/j.alit.2020.02.00632265116
    [Google Scholar]
  56. CzarnowickiT. KruegerJ.G. Guttman-YasskyE. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march.J. Allergy Clin. Immunol.201713961723173410.1016/j.jaci.2017.04.00428583445
    [Google Scholar]
  57. FishbeinA.B. SilverbergJ.I. WilsonE.J. OngP.Y. Update on atopic dermatitis: Diagnosis, severity assessment, and treatment selection.J. Allergy Clin. Immunol. Pract.2020819110110.1016/j.jaip.2019.06.04431474543
    [Google Scholar]
  58. SainiS. PansareM. New insights and treatments in atopic dermatitis.Immunol. Allergy Clin. North Am.202141465366510.1016/j.iac.2021.07.00534602235
    [Google Scholar]
  59. LinE. AligeneK. Pharmacology of balance and dizziness.NeuroRehabilitation201332352954210.3233/NRE‑13087523648607
    [Google Scholar]
  60. RizkallaC.M.Z. In vitroandin vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery.AAPS PharmSciTech2011123
    [Google Scholar]
  61. PradhanM. SinghD. MurthyS.N. SinghM.R. Design, characterization and skin permeating potential of fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis.Steroids2015101566310.1016/j.steroids.2015.05.01226049018
    [Google Scholar]
  62. D’souzaJ.I. MoreH.N. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system.Research Journal of Pharmacy and Technology.200814502506
    [Google Scholar]
  63. PrakashA. BenfieldP. Topical mometasone.Drugs199855114516310.2165/00003495‑199855010‑000099463794
    [Google Scholar]
  64. PehardaV. GruberF. PrpicL. KastelanM. BrajacI. Comparison of mometasone furoate 0.1% ointment and betamethasone dipropionate 0.05% ointment in the treatment of psoriasis vulgaris.Acta Derm Venereol Croat.200084223226
    [Google Scholar]
  65. RekhaU. ManjulaB. Formulation and evaluation of microsponges for topical drug delivery of mometasone furoate.Int. J. Pharm. Pharm. Sci.201134133137
    [Google Scholar]
  66. SunQ. LengJ. TangL. WangL. FuC. A comprehensive review of the chemistry, pharmacokinetics, pharmacology, clinical applications, adverse events, and quality control of indigo Naturalis.Front. Pharmacol.20211266402210.3389/fphar.2021.66402234135755
    [Google Scholar]
  67. HuY.S. HanX. YuP.J. JiaoM.M. LiuX.H. ShiJ.B. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitroand in vivo.Bioorg. Chem.20209810373510.1016/j.bioorg.2020.10373532171986
    [Google Scholar]
  68. MahantS KumarS NandaS RaoR Microsponges for dermatological applications: Perspectives and challenges.AJPS2020153273291
    [Google Scholar]
  69. CullenJ.K. SimmonsJ.L. ParsonsP.G. BoyleG.M. Topical treatments for skin cancer.Adv. Drug Deliv. Rev.2020153546410.1016/j.addr.2019.11.00231705912
    [Google Scholar]
  70. HaqueT. RahmanK.M. ThurstonD.E. HadgraftJ. LaneM.E. Topical therapies for skin cancer and actinic keratosis.Eur. J. Pharm. Sci.20157727928910.1016/j.ejps.2015.06.01326091570
    [Google Scholar]
  71. KaurH. KesharwaniP. Advanced nanomedicine approaches applied for treatment of skin carcinoma.J. Control. Release202133758961110.1016/j.jconrel.2021.08.00334364919
    [Google Scholar]
  72. KortingH.C. Schäfer-KortingM. Carriers in the topical treatment of skin disease.Handb. Exp. Pharmacol.201019719743546810.1007/978‑3‑642‑00477‑3_1520217539
    [Google Scholar]
  73. JainS.K. KaurM. KalyaniP. MehraA. KaurN. PanchalN. Microsponges enriched gel for enhanced topical delivery of 5-fluorouracil.J. Microencapsul.201936767769110.1080/02652048.2019.166744731509035
    [Google Scholar]
  74. LevyS. FurstK. ChernW. A pharmacokinetic evaluation of 0.5% and 5% fluorouracil topical cream in patients with actinic keratosis.Clin. Ther.200123690892010.1016/S0149‑2918(01)80078‑311440290
    [Google Scholar]
  75. LochheadR. Basic physical sciences for the formulation of cosmetic products. Cosmetic science and technology: Theoretical Principles and Applications.Amsterdam, The NetherlandsElsevier Inc20173976
    [Google Scholar]
  76. WolfR. A glance into the crystal ball: Winners and losers in cosmetics.Clin. Dermatol.200119451652310.1016/S0738‑081X(01)00185‑711535396
    [Google Scholar]
  77. EffiongD.E. UwahT.O. JumboE.U. AkpabioA.E. Nanotechnology in cosmetics: Basics, current trends and safety concerns—A review.Adv. Nanopart.201991122
    [Google Scholar]
  78. PatelA. UpadhyayP. TrivediJ. ShahS. PatelJ. Microsponges as the versatile tool for Topical route: A review.Int. J. Pharm. Sci. Res.2012392926
    [Google Scholar]
  79. RajamR.P. KannanS. KajendranD. Cosmeceuticals an emerging technology—A review.World J. Pharm. Res.2019812664685
    [Google Scholar]
  80. LionettiN. RiganoL. Labeling of cosmetic products.Cosmetics2018512210.3390/cosmetics5010022
    [Google Scholar]
  81. JunqueiraM.V. BruschiM.L. A review about the drug delivery from microsponges.AAPS PharmSciTech20181941501151110.1208/s12249‑018‑0976‑529484616
    [Google Scholar]
  82. ShuklaR. HandaM. LokeshS.B. RuwaliM. KohliK. KesharwaniP. Conclusion and future prospective of polymeric nanoparticles for cancer therapy. Polymeric nanoparticles as a promising tool for anti-cancer therapeutics.Elsevier201938940810.1016/B978‑0‑12‑816963‑6.00018‑2
    [Google Scholar]
  83. GuptaA. TiwariG. TiwariR. SrivastavaR. RaiA.K. Enteric coated HPMC capsules plugged with 5-FU loaded microsponges: A potential approach for treatment of colon cancer.Braz. J. Pharm. Sci.201551359160510.1590/S1984‑82502015000300011
    [Google Scholar]
  84. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: Design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑926070545
    [Google Scholar]
  85. VassP. DémuthB. HirschE. NagyB. AndersenS.K. VighT. VerreckG. CsontosI. NagyZ.K. MarosiG. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals.J. Control. Release201929616217810.1016/j.jconrel.2019.01.02330677436
    [Google Scholar]
  86. JainV. SinghR. Dicyclomine-loaded Eudragit®-based microsponge with potential for colonic delivery: Preparation and characterization.Trop. J. Pharm. Res.20109110.4314/tjpr.v9i1.52039
    [Google Scholar]
  87. DhawaleS. BankarA. PatroM. Formulation and evaluation porous microspheres of 5-fluorouracil for colon targeting.Int. J. Pharm. Tech. Res.20102211121118
    [Google Scholar]
  88. BadheK.P. SaudagarR.B. A review on microsponge a novel drug delivery system.Asian Journal of Pharmaceutical Research201661515710.5958/2231‑5713.2016.00008.8
    [Google Scholar]
  89. CuiF. YangM. JiangY. CunD. LinW. FanY. KawashimaY. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method.J. Control. Release200391337538410.1016/S0168‑3659(03)00275‑X12932715
    [Google Scholar]
  90. SinghS. NeelamS.A. SinglaY.P. An overview of multifaceted significance of eudragit polymers in drug delivery systems.Asian J. Pharm. Clin. Res.2015851610.22159/ajpcr.2017.v10i5.17665
    [Google Scholar]
  91. ObeidatW.M. Abu ZnaitA.H. SallamA.S.A. Novel combination of anionic and cationic polymethacrylate polymers for sustained release tablet preparation.Drug Dev. Ind. Pharm.200834665066010.1080/0363904070183657818568916
    [Google Scholar]
  92. RekhiG.S. JambhekarS.S. Ethylcellulose-a polymer review.Drug Dev. Ind. Pharm.1995211617710.3109/03639049509048096
    [Google Scholar]
  93. AhmadiP. Jahanban-EsfahlanA. AhmadiA. TabibiazarM. MohammadifarM. Development of ethyl cellulose-based formulations: A perspective on the novel technical methods.Food Rev. Int.202238468573210.1080/87559129.2020.1741007
    [Google Scholar]
  94. LiK. StöverH.D.H. Synthesis of monodisperse poly(divinylbenzene) microspheres.J. Polym. Sci. A Polym. Chem.199331133257326310.1002/pola.1993.080311313
    [Google Scholar]
  95. CongH. XingJ. DingX. ZhangS. ShenY. YuB. Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation.Talanta202021012058610.1016/j.talanta.2019.12058631987199
    [Google Scholar]
  96. ZhuY. ShahN.H. MalickA.W. InfeldM.H. McGinityJ.W. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate.Int. J. Pharm.2002241230131010.1016/S0378‑5173(02)00244‑212100857
    [Google Scholar]
  97. BaeS.E. SonJ.S. ParkK. HanD.K. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine.J. Control. Release20091331374310.1016/j.jconrel.2008.09.00618838089
    [Google Scholar]
  98. RodriguesK. NadafS. RarokarN. GuravN. JagtapP. MaliP. AyyanarM. KalaskarM. GuravS. QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment.OpenNano2022710004510.1016/j.onano.2022.100045
    [Google Scholar]
  99. KumariA JainA HurkatP VermaA JainSK Microsponges: a pioneering tool for biomedical applications.Crit. Rev. Ther. Drug Carrier Syst201633110.1615/CritRevTherDrugCarrierSyst.v33.i1.40
    [Google Scholar]
  100. SchaeferH. WattsF. PapantoniouC. MahieuC. Cosmetic or pharmaceutical composition containing microspheres of polymers or of fatty substances filled with at least one active product.Google Patents1994
    [Google Scholar]
  101. VishwakarmaP. ChoudharyR. Microsponges: A novel strategy to control the delivery rate of active agents with reduced skin irritancy.J. Drug Deliv. Ther.201996-s23824710.22270/jddt.v9i6‑s.3757
    [Google Scholar]
  102. ChakrabortyP. Microsponge based drug delivery systems: A critical update on its preparation, dermatological applications, and patent information.J. Chengdu Univ. Technol.2022261671-972724
    [Google Scholar]
  103. MishraB UpadhyayM BakdeB. pH sensed interpenetrating polymeric network: Application in drug delivery.Interpenetrating Polymer Network: Biomedical ApplicationsSpringerSingapore202011914110.1007/978‑981‑15‑0283‑5_5
    [Google Scholar]
  104. LengyelM. Kállai-SzabóN. AntalV. LakiA.J. AntalI. Microparticles, microspheres, and microcapsules for advanced drug delivery.Sci. Pharm.20198732010.3390/scipharm87030020
    [Google Scholar]
  105. WonR. KatzM.A. ChengC.H. NachtS. Methods and compositions for topical delivery of retinoic acid.Google Patents1999
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031308362240806113226
Loading
/content/journals/ddl/10.2174/0122103031308362240806113226
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): acne; atopic dermatitis; cosmetics; Microsponges; release mechanism; skin; topical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test