Skip to content
2000
image of The Role of Mitochondrial Ion Channels in the Evolution of Anticancer Drug Resistance

Abstract

Apoptosis, drug resistance, and cellular metabolism are all crucially regulated by mitochondria, especially through ion channels and translocases embedded in their membranes. The outer mitochondrial membrane (OMM) contains the voltage dependent anion channel (VDAC), which acts with proteins such as hexokinase II and BAX to regulate apoptosis and metabolic reprogramming in cancer while facilitating the flow of important metabolites and ions. Anti apoptotic proteins like Bcl2 and Mcl1 closely regulate the mitochondrial apoptosis induced channel (MAC), which is created by pro-apoptotic Bcl2 family members BAX and BAK and controls cytochrome c release when overexpressed, leading to drug resistance. Furthermore, the translocase of the outer membrane (TOM) complex, which regulates mitochondrial protein import, is frequently dysregulated in cancers. Numerous ion channels, such as potassium channels, the mitochondrial calcium uniporter (MCU), and the mitochondrial permeability transition pore (m-PTP), are found within the inner mitochondrial membrane (IMM) and regulate important functions like ATP synthesis, the control of reactive oxygen species (ROS), and apoptotic signaling. Cancer cells can avoid apoptosis, adapt to environmental stress, and become resistant to treatments like doxorubicin and cisplatin when these channels are dysregulated. Metabolic flexibility and antioxidant defense are improved by overexpressing or functionally modifying IMM potassium channels and calcium transporters. Additionally, drug resistance is facilitated by increased mitophagy and anti-apoptotic proteins that inhibit m-PTP opening. This review discusses the functions of mitochondrial ion channels.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037410334251021155546
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Kakde M. Drug resistance and current challenges to overcome. International journal of therapeutic innovation 2023 1 1 31 37 10.55522/ijti.V1I1.0011
    [Google Scholar]
  2. Garg P. Malhotra J. Kulkarni P. Horne D. Salgia R. Singhal S.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers (Basel) 2024 16 13 2478 10.3390/cancers16132478 39001539
    [Google Scholar]
  3. Capatina AL Lagos D Brackenbury WJ Targeting Ion channels for cancer treatment: Current progress and future challenges. Rev. Physiol. Biochem. Pharmacol. 2022 183 1 43 10.1007/112_2020_46 32865696
    [Google Scholar]
  4. Szabo I. Szewczyk A. Mitochondrial ion channels. Annu. Rev. Biophys. 2023 52 1 229 254 10.1146/annurev‑biophys‑092622‑094853 37159294
    [Google Scholar]
  5. Staruschenko A. Ma R. Palygin O. Dryer S.E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 2023 103 1 787 854 10.1152/physrev.00013.2022 36007181
    [Google Scholar]
  6. Altamura C. Gavazzo P. Pusch M. Desaphy J.F. Ion channel involvement in tumor drug resistance. J. Pers. Med. 2022 12 2 210 10.3390/jpm12020210 35207698
    [Google Scholar]
  7. Shi Q. Yang Z. Yang H. Xu L. Xia J. Gu J. Chen M. Wang Y. Zhao X. Liao Z. Mou Y. Gu X. Xie T. Sui X. Targeting ion channels: Innovative approaches to combat cancer drug resistance. Theranostics 2025 15 2 521 545 10.7150/thno.103384 39744692
    [Google Scholar]
  8. Sharma P. Singh N. Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021 22 18 1211 1235 10.2217/pgs‑2021‑0116 34783261
    [Google Scholar]
  9. Singh A.K. Yadav D. Malviya R. Splicing DNA damage adaptations for the management of cancer cells. Curr. Gene Ther. 2024 24 2 135 146 10.2174/0115665232258528231018113410 38282448
    [Google Scholar]
  10. Ashrafuzzaman M. Mitochondrial ion channels in aging and related diseases. Curr. Aging Sci. 2022 15 2 97 109 10.2174/1874609815666220119094324 35043775
    [Google Scholar]
  11. Zhou Z. Arroum T. Luo X. Kang R. Lee Y.J. Tang D. Hüttemann M. Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ. 2024 31 4 387 404 10.1038/s41418‑024‑01284‑8 38521844
    [Google Scholar]
  12. Haastrup M.O. Vikramdeo K.S. Singh S. Singh A.P. Dasgupta S. The journey of mitochondrial protein import and the roadmap to follow. Int. J. Mol. Sci. 2023 24 3 2479 10.3390/ijms24032479 36768800
    [Google Scholar]
  13. Varughese J.T. Buchanan S.K. Pitt A.S. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells 2021 10 7 1737 10.3390/cells10071737 34359907
    [Google Scholar]
  14. Cao R. Tian H. Zhang Y. Liu G. Xu H. Rao G. Tian Y. Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm 2023 4 3 e283 10.1002/mco2.283 37303813
    [Google Scholar]
  15. Zaib S. Khan I. Hayyat A. Ali N. Gul A. Naveed M. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis. Anticancer. Agents Med. Chem. 2022 22 11 2048 2062 10.2174/1871520621666211126090906 34825878
    [Google Scholar]
  16. Shoshan-Barmatz V. Shteinfer-Kuzmine A. Verma A. VDAC1 at the intersection of cell metabolism, apoptosis, and diseases. Biomolecules 2020 10 11 1485 10.3390/biom10111485 33114780
    [Google Scholar]
  17. Heslop K.A. Milesi V. Maldonado E.N. VDAC modulation of cancer metabolism: Advances and therapeutic challenges. Front. Physiol. 2021 12 742839 10.3389/fphys.2021.742839 34658929
    [Google Scholar]
  18. da Mata L.R.S. dos Santos L.D. de Cerqueira Cesar M. Hexokinase and glycolysis: Between brain cells life and death. Curr. Chem. Biol. 2023 17 2 91 123 10.2174/2212796817666230510095530
    [Google Scholar]
  19. Zinghirino F. Pappalardo X.G. Messina A. Nicosia G. De Pinto V. Guarino F. VDAC Genes expression and regulation in mammals. Front. Physiol. 2021 12 708695 10.3389/fphys.2021.708695 34421651
    [Google Scholar]
  20. De Pinto V. Renaissance of VDAC: New insights on a protein family at the interface between mitochondria and cytosol. Biomolecules 2021 11 1 107 10.3390/biom11010107 33467485
    [Google Scholar]
  21. Feng J. Li J. Wu L. Yu Q. Ji J. Wu J. Dai W. Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2020 39 1 126 10.1186/s13046‑020‑01629‑4 32631382
    [Google Scholar]
  22. Yapryntseva M.A. Zhivotovsky B. Gogvadze V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 7 167317 10.1016/j.bbadis.2024.167317 38909847
    [Google Scholar]
  23. Reina S. Nibali S.C. Tomasello M.F. Magrì A. Messina A. De Pinto V. Voltage dependent anion channel 3 (VDAC3) protects mitochondria from oxidative stress. Redox Biol. 2022 51 102264 10.1016/j.redox.2022.102264 35180474
    [Google Scholar]
  24. Mazur M. Kmita H. Wojtkowska M. The diversity of the mitochondrial outer membrane protein import channels: Emerging targets for modulation. Molecules 2021 26 13 4087 10.3390/molecules26134087 34279427
    [Google Scholar]
  25. Czabotar P.E. Garcia-Saez A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 2023 24 10 732 748 10.1038/s41580‑023‑00629‑4 37438560
    [Google Scholar]
  26. Qian S. Wei Z. Yang W. Huang J. Yang Y. Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022 12 985363 10.3389/fonc.2022.985363 36313628
    [Google Scholar]
  27. Klanova M. Klener P. BCL-2 Proteins in pathogenesis and therapy of b-cell non-hodgkin lymphomas. Cancers 2020 12 4 938 10.3390/cancers12040938 32290241
    [Google Scholar]
  28. Ghafouri-Fard S. Abak A. Tondro Anamag F. Shoorei H. Fattahi F. Javadinia S.A. Basiri A. Taheri M. 5-Fluorouracil: A narrative review on the role of regulatory mechanisms in driving resistance to this chemotherapeutic agent. Front. Oncol. 2021 11 658636 10.3389/fonc.2021.658636 33954114
    [Google Scholar]
  29. Obeng E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol. 2021 81 4 1133 1143 10.1590/1519‑6984.228437 33111928
    [Google Scholar]
  30. Chota A. George B.P. Abrahamse H. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget 2021 12 16 1615 1626 10.18632/oncotarget.28031 34381566
    [Google Scholar]
  31. Yue X. Chen Q. He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int. 2020 20 1 524 10.1186/s12935‑020‑01614‑z 33292251
    [Google Scholar]
  32. Shankaranarayana A.H. Meduri B. Pujar G.V. Hariharapura R.C. Sethu A.K. Singh M. Bidye D. Restoration of p53 functions by suppression of mortalin-p53 sequestration: An emerging target in cancer therapy. Future Med. Chem. 2023 15 22 2087 2112 10.4155/fmc‑2023‑0061 37877348
    [Google Scholar]
  33. Sayyed U.M.H. Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J. Biol. Chem. 2022 298 5 101870 10.1016/j.jbc.2022.101870 35346689
    [Google Scholar]
  34. Araiso Y. Imai K. Endo T. Role of the TOM complex in protein import into mitochondria: Structural views. Annu. Rev. Biochem. 2022 91 1 679 703 10.1146/annurev‑biochem‑032620‑104527 35287471
    [Google Scholar]
  35. Ford H.C. Allen W.J. Pereira G.C. Liu X. Dillingham M.S. Collinson I. Towards a molecular mechanism underlying mitochondrial protein import through the TOM and TIM23 complexes. eLife 2022 11 e75426 10.7554/eLife.75426 35674314
    [Google Scholar]
  36. Palmer C.S. Anderson A.J. Stojanovski D. Mitochondrial protein import dysfunction: Mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett. 2021 595 8 1107 1131 10.1002/1873‑3468.14022 33314127
    [Google Scholar]
  37. Pitt A.S. Buchanan S.K. A biochemical and structural understanding of TOM complex interactions and implications for human health and disease. Cells 2021 10 5 1164 10.3390/cells10051164 34064787
    [Google Scholar]
  38. Lalier L. Vallette F. Manon S. Bcl-2 Family members and the mitochondrial import machineries: The roads to death. Biomolecules 2022 12 2 162 10.3390/biom12020162 35204663
    [Google Scholar]
  39. Kotrasová V. Keresztesová B. Ondrovičová G. Bauer J.A. Havalová H. Pevala V. Kutejová E. Kunová N. Mitochondrial kinases and the role of mitochondrial protein phosphorylation in health and disease. Life 2021 11 2 82 10.3390/life11020082 33498615
    [Google Scholar]
  40. Brianna Lee S.H. Chemotherapy: How to reduce its adverse effects while maintaining the potency? Med. Oncol. 2023 40 3 88 10.1007/s12032‑023‑01954‑6 36735206
    [Google Scholar]
  41. Wang G. Cui Z. Tian J. Li X. Tang W. Jing W. Li A. Zhang Y. Paucatalinone a from paulownia catalpifolia gong tong elicits mitochondrial-mediated cancer cell death to combat osteosarcoma. Front. Pharmacol. 2024 15 1367316 10.3389/fphar.2024.1367316 38590635
    [Google Scholar]
  42. Urbani A. Prosdocimi E. Carrer A. Checchetto V. Szabò I. Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling. Front. Cell Dev. Biol. 2021 8 620081 10.3389/fcell.2020.620081 33585458
    [Google Scholar]
  43. Bauer T.M. Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 2020 126 2 280 293 10.1161/CIRCRESAHA.119.316306 31944918
    [Google Scholar]
  44. Baev A.Y. Vinokurov A.Y. Novikova I.N. Dremin V.V. Potapova E.V. Abramov A.Y. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells 2022 11 4 706 10.3390/cells11040706 35203354
    [Google Scholar]
  45. Bahar E. Han S.Y. Kim J.Y. Yoon H. Chemotherapy resistance: Role of mitochondrial and autophagic components. Cancers 2022 14 6 1462 10.3390/cancers14061462 35326612
    [Google Scholar]
  46. Zúñiga L. Cayo A. González W. Vilos C. Zúñiga R. Potassium channels as a target for cancer therapy: Current perspectives. Onco. Targets Ther. 2022 15 783 797 10.2147/OTT.S326614 35899081 PMC9309325
    [Google Scholar]
  47. Lewandowska J. Kalenik B. Wrzosek A. Szewczyk A. Redox regulation of mitochondrial potassium channels activity. Antioxidants 2024 13 4 434 10.3390/antiox13040434 38671882
    [Google Scholar]
  48. Checchetto V. Leanza L. De Stefani D. Rizzuto R. Gulbins E. Szabo I. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol. Ther. 2021 227 107874 10.1016/j.pharmthera.2021.107874 33930454
    [Google Scholar]
  49. Moon D.O. Exploring the role of surface and mitochondrial ATP-sensitive potassium channels in cancer: From cellular functions to therapeutic potentials. Int. J. Mol. Sci. 2024 25 4 2129 10.3390/ijms25042129 38396807
    [Google Scholar]
  50. Ochoa S.V. Otero L. Aristizabal-Pachon A.F. Hinostroza F. Carvacho I. Torres Y.P. Hypoxic regulation of the large-conductance, calcium and voltage-activated potassium channel, BK. Front. Physiol. 2021 12 780206 10.3389/fphys.2021.780206 35002762
    [Google Scholar]
  51. Fan X. Lu Y. Du G. Liu J. Advances in the understanding of two-pore domain task potassium channels and their potential as therapeutic targets. Molecules 2022 27 23 8296 10.3390/molecules27238296 36500386
    [Google Scholar]
  52. Rodrigues T. Ferraz L.S. Therapeutic potential of targeting mitochondrial dynamics in cancer. Biochem. Pharmacol. 2020 182 114282 10.1016/j.bcp.2020.114282 33058754
    [Google Scholar]
  53. Griffin M. Khan R. Basu S. Smith S. Ion channels as therapeutic targets in high grade gliomas. Cancers (Basel) 2020 12 10 3068 10.3390/cancers12103068 33096667
    [Google Scholar]
  54. Wrzosek A. Augustynek B. Żochowska M. Szewczyk A. Mitochondrial potassium channels as druggable targets. Biomolecules 2020 10 8 1200 10.3390/biom10081200 32824877
    [Google Scholar]
  55. Behera R. Sharma V. Grewal A.K. Kumar A. Arora B. Najda A. Albadrani G.M. Altyar A.E. Abdel-Daim M.M. Singh T.G. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion. Biomed. Pharmacother. 2023 162 114599 10.1016/j.biopha.2023.114599 37004326
    [Google Scholar]
  56. George S. Abrahamse H. Redox potential of antioxidants in cancer progression and prevention. Antioxidants 2020 9 11 1156 10.3390/antiox9111156 33233630
    [Google Scholar]
  57. Luis E. Anaya-Hernández A. León-Sánchez P. Durán-Pastén M.L. The Kv10.1 channel: A promising target in cancer. Int. J. Mol. Sci. 2022 23 15 8458 10.3390/ijms23158458 35955591
    [Google Scholar]
  58. Tian Y. Lei Y. Wang Y. Lai J. Wang J. Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P-glycoprotein. Int. J. Oncol. 2023 63 5 119 10.3892/ijo.2023.5567 37654171
    [Google Scholar]
  59. Rout S.K. Priya V. Setia A. Mehata A.K. Mohan S. Albratty M. Najmi A. Meraya A.M. Makeen H.A. Tambuwala M.M. Muthu M.S. Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed. Pharmacother. 2022 153 113451 10.1016/j.biopha.2022.113451 36076564
    [Google Scholar]
  60. Patergnani S. Danese A. Bouhamida E. Aguiari G. Previati M. Pinton P. Giorgi C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 2020 21 21 8323 10.3390/ijms21218323 33171939
    [Google Scholar]
  61. Alevriadou B.R. Patel A. Noble M. Ghosh S. Gohil V.M. Stathopulos P.B. Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am. J. Physiol. Cell Physiol. 2021 320 4 C465 C482 10.1152/ajpcell.00502.2020 33296287
    [Google Scholar]
  62. Peruzzo R. Costa R. Bachmann M. Leanza L. Szabò I. Mitochondrial metabolism, contact sites and cellular calcium signaling: implications for tumorigenesis. Cancers 2020 12 9 2574 10.3390/cancers12092574 32927611
    [Google Scholar]
  63. Dhaouadi N. Vitto V.A.M. Pinton P. Galluzzi L. Marchi S. Ca2+ signaling and cell death. Cell Calcium 2023 113 102759 10.1016/j.ceca.2023.102759 37210868
    [Google Scholar]
  64. Colussi D.M. Stathopulos P.B. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J. Physiol. 2024 602 14 3315 3339 10.1113/JP285515 38857425
    [Google Scholar]
  65. Delierneux C. Kouba S. Shanmughapriya S. Potier-Cartereau M. Trebak M. Hempel N. Mitochondrial calcium regulation of redox signaling in cancer. Cells 2020 9 2 432 10.3390/cells9020432 32059571
    [Google Scholar]
  66. Wang Y. Li X. Zhao F. MCU-dependent mros generation regulates cell metabolism and cell death modulated by the AMPK/PGC-1α/SIRT3 signaling pathway. Front. Med. (Lausanne) 2021 8 674986 10.3389/fmed.2021.674986 34307407
    [Google Scholar]
  67. Xiao P. Li C. Liu Y. Gao Y. Liang X. Liu C. Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front. Pharmacol. 2024 15 1333543 10.3389/fphar.2024.1333543 38370477
    [Google Scholar]
  68. Coronas V. Terrié E. Déliot N. Arnault P. Constantin B. Calcium channels in adult brain neural stem cells and in glioblastoma stem cells. Front. Cell. Neurosci. 2020 14 600018 10.3389/fncel.2020.600018 33281564
    [Google Scholar]
  69. Tosatto A. Sommaggio R. Kummerow C. Bentham R.B. Blacker T.S. Berecz T. Duchen M.R. Rosato A. Bogeski I. Szabadkai G. Rizzuto R. Mammucari C. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol. Med. 2016 8 5 569 585 10.15252/emmm.201606255 27138568
    [Google Scholar]
  70. Brustovetsky N. The role of adenine nucleotide translocase in the mitochondrial permeability transition. Cells 2020 9 12 2686 10.3390/cells9122686 33333766
    [Google Scholar]
  71. Endlicher R. Drahota Z. Štefková K. Červinková Z. Kučera O. The mitochondrial permeability transition pore—current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells 2023 12 9 1273 10.3390/cells12091273 37174672
    [Google Scholar]
  72. Baev A.Y. Vinokurov A.Y. Potapova E.V. Dunaev A.V. Angelova P.R. Abramov A.Y. Mitochondrial permeability transition, cell death and neurodegeneration. Cells 2024 13 7 648 10.3390/cells13070648 38607087
    [Google Scholar]
  73. Bonora M. Giorgi C. Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol. 2022 23 4 266 285 10.1038/s41580‑021‑00433‑y 34880425
    [Google Scholar]
  74. Morciano G. Naumova N. Koprowski P. Valente S. Sardão V.A. Potes Y. Rimessi A. Wieckowski M.R. Oliveira P.J. The mitochondrial permeability transition pore: An evolving concept critical for cell life and death. Biol. Rev. Camb. Philos. Soc. 2021 96 6 2489 2521 10.1111/brv.12764 34155777
    [Google Scholar]
  75. Waseem M. Wang B.D. Promising strategy of mPTP modulation in cancer therapy: An emerging progress and future insight. Int. J. Mol. Sci. 2023 24 6 5564 10.3390/ijms24065564 36982637
    [Google Scholar]
  76. Belosludtsev K.N. Ilzorkina A.I. Matveeva L.A. Chulkov A.V. Semenova A.A. Dubinin M.V. Belosludtseva N.V. Effect of VBIT-4 on the functional activity of isolated mitochondria and cell viability. Biochim. Biophys. Acta Biomembr. 2024 1866 5 184329 10.1016/j.bbamem.2024.184329 38679309
    [Google Scholar]
  77. Mohamad Anuar N.N. Nor Hisam N.S. Liew S.L. Ugusman A. Clinical review: Navitoclax as a Pro-Apoptotic and anti-fibrotic agent. Front. Pharmacol. 2020 11 564108 10.3389/fphar.2020.564108 33381025
    [Google Scholar]
  78. Bøtker H.E. Cabrera-Fuentes H.A. Ruiz-Meana M. Heusch G. Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J. Cell. Mol. Med. 2020 24 5 2717 2729 10.1111/jcmm.14953 31967733
    [Google Scholar]
  79. Yu X. Dai C. Zhao X. Huang Q. He X. Zhang R. Lin Z. Shen Y. Ruthenium red attenuates acute pancreatitis by inhibiting MCU and improving mitochondrial function. Biochem. Biophys. Res. Commun. 2022 635 236 243 10.1016/j.bbrc.2022.10.044 36283336
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037410334251021155546
Loading
/content/journals/cpps/10.2174/0113892037410334251021155546
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mitochondria ; ion channels ; cancer ; drug resistance ; Apoptosis ; cellular metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test