Skip to content
2000
image of Research Progress on the Intervention of Traditional Chinese Medicine Monomers on Signaling Pathways Related to Sarcopenia and Osteoporosis

Abstract

Sarcopenia and osteoporosis are conditions characterized by the synergistic effects of sarcopenia and osteoporosis, leading to the loss of muscle mass, muscle strength, bone density, and bone quality. This condition is marked by a high disability rate, limited diagnostic and therapeutic options, and significant clinical harm. The pathogenesis of sarcopenia and osteoporosis involves diminished differentiation of osteoblasts and myoblasts, as well as enhanced proliferation of osteoclasts. Signaling pathways such as Wnt/β-catenin, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and nuclear factor-κB (NF-κB) play crucial roles in promoting the differentiation of osteoblasts and myoblasts while inhibiting osteoclast differentiation, thereby contributing to the treatment of sarcopenia and osteoporosis. Traditional Chinese medicine (TCM) has demonstrated significant efficacy in addressing “muscle atrophy” and “bone depletion.” Both single herbs and compound formulas can achieve therapeutic effects on sarcopenia and osteoporosis by modulating the expression of these signaling pathways. By summarizing the current research on these signaling pathways and TCM interventions, we aim to provide new insights for the clinical prevention and treatment of sarcopenia and osteoporosis using TCM and offer a foundation for further in-depth studies.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037388848251013135335
2026-01-19
2026-01-29
Loading full text...

Full text loading...

References

  1. LeRoith D. Foreword. Endocrinol. Metab. Clin. North Am. 2012 41 3 ix xi 10.1016/j.ecl.2012.05.007 22877436
    [Google Scholar]
  2. Papadopoulou S. Sarcopenia: A contemporary health problem among older adult populations. Nutrients 2020 12 5 1293 10.3390/nu12051293 32370051
    [Google Scholar]
  3. Sepúlveda-Loyola W. Phu S. Bani Hassan E. Brennan-Olsen S.L. Zanker J. Vogrin S. Conzade R. Kirk B. Al Saedi A. Probst V. Duque G. The joint occurrence of osteoporosis and sarcopenia (osteosarcopenia): Definitions and characteristics. J. Am. Med. Dir. Assoc. 2020 21 2 220 225 10.1016/j.jamda.2019.09.005 31669290
    [Google Scholar]
  4. Bruyère O. Beaudart C. Ethgen O. Reginster J.Y. Locquet M. The health economics burden of sarcopenia: A systematic review. Maturitas 2019 119 61 69 10.1016/j.maturitas.2018.11.003 30502752
    [Google Scholar]
  5. Kirk B. Phu S. Brennan-Olsen S.L. Bani Hassan E. Duque G. Associations between osteoporosis, the severity of sarcopenia and fragility fractures in community-dwelling older adults. Eur. Geriatr. Med. 2020 11 3 443 450 10.1007/s41999‑020‑00301‑6 32297263
    [Google Scholar]
  6. Shuai X. The biological mechanism of musculoskeletal syndrome under the perspective of musculoskeletal comorbidity. Zhongguo Guzhi Shusong Zazhi 2021 27 03 446 449
    [Google Scholar]
  7. Jin Zexu. The role of Wnt signaling pathway inhibitor sclerostin in osteoporosis. Rheumatol. Arthritis 2020 9 04 45
    [Google Scholar]
  8. Huang H. Expert consensus on sarcopenia-osteoporosis J. Zhongguo Guzhi Shusong Zazhi 2022 28 11 1561 1570
    [Google Scholar]
  9. Li Jialing; Mingli, G. Research progress on the effect of kidney-tonifying herbs and prescriptions on the OPG / RANK / RANKL system in osteoporosis. Rheumatism Arthritis 2019 8 02 72 76
    [Google Scholar]
  10. Jun, Yang Research progress on the mechanism of targeted treatment of osteoporosis with kidney-tonifying Chinese medicine based on Hedgehog signaling pathway. Rheumatol. Arthritis 2023 12 04 62 66
    [Google Scholar]
  11. Kirk B. Zanker J. Duque G. Osteosarcopenia: Epidemiology, diagnosis, and treatment—facts and numbers. J. Cachexia Sarcopenia Muscle 2020 11 3 609 618 10.1002/jcsm.12567 32202056
    [Google Scholar]
  12. Zdzieblik D. Oesser S. König D. Specific bioactive collagen peptides in osteopenia and osteoporosis: Long-term observation in postmenopausal women. J. Bone Metab. 2021 28 3 207 213 10.11005/jbm.2021.28.3.207 34520654
    [Google Scholar]
  13. Locquet M. Beaudart C. Durieux N. Reginster J.Y. Bruyère O. Relationship between the changes over time of bone mass and muscle health in children and adults: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2019 20 1 429 10.1186/s12891‑019‑2752‑4 31521141
    [Google Scholar]
  14. Hars M. Biver E. Chevalley T. Herrmann F. Rizzoli R. Ferrari S. Trombetti A. Low lean mass predicts incident fractures independently from FRAX: A prospective cohort study of recent retirees. J. Bone Miner. Res. 2016 31 11 2048 2056 10.1002/jbmr.2878 27253633
    [Google Scholar]
  15. Coelho-Junior H. Calvani R. Azzolino D. Picca A. Tosato M. Landi F. Cesari M. Marzetti E. Protein intake and sarcopenia in older adults: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022 19 14 8718 10.3390/ijerph19148718 35886571
    [Google Scholar]
  16. Pointke M. Pawelzik E. Plant-based alternative products: Are they healthy alternatives? micro- and macronutrients and nutritional scoring. Nutrients 2022 14 3 601 10.3390/nu14030601 35276960
    [Google Scholar]
  17. Girgis C.M. Brennan-Speranza T.C. Vitamin D and skeletal muscle: Current concepts from preclinical studies. JBMR Plus 2021 5 12 10575 10.1002/jbm4.10575 34950830
    [Google Scholar]
  18. Cai F. Liu Y. Liu K. Zhao R. Chen W. Yusufu A. Liu Y. Diabetes mellitus impairs bone regeneration and biomechanics. J. Orthop. Surg. Res. 2023 18 1 169 10.1186/s13018‑023‑03644‑5 36872328
    [Google Scholar]
  19. Nakano Y. Mandai S. Naito S. Fujiki T. Mori Y. Ando F. Mori T. Susa K. Iimori S. Sohara E. Uchida S. Effect of osteosarcopenia on longitudinal mortality risk and chronic kidney disease progression in older adults. Bone 2024 179 116975 10.1016/j.bone.2023.116975 37993037
    [Google Scholar]
  20. Anagnostis P. Gkekas N.K. Achilla C. Pananastasiou G. Taouxidou P. Mitsiou M. Kenanidis E. Potoupnis M. Tsiridis E. Goulis D.G. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: A systematic review and meta-analysis. Calcif. Tissue Int. 2020 107 5 453 463 10.1007/s00223‑020‑00742‑y 32772138
    [Google Scholar]
  21. Kirk B. Miller S. Zanker J. Duque G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas 2020 140 27 33 10.1016/j.maturitas.2020.05.012 32972632
    [Google Scholar]
  22. Hirschfeld H.P. Kinsella R. Duque G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017 28 10 2781 2790 10.1007/s00198‑017‑4151‑8 28733716
    [Google Scholar]
  23. Chen S. Xu X. Gong H. Chen R. Guan L. Yan X. Zhou L. Yang Y. Wang J. Zhou J. Zou C. Huang P. Global epidemiological features and impact of osteosarcopenia: A comprehensive meta‐analysis and systematic review. J. Cachexia Sarcopenia Muscle 2024 15 1 8 20 10.1002/jcsm.13392 38086772
    [Google Scholar]
  24. Dent E. Morley J.E. Cruz-Jentoft A.J. Arai H. Kritchevsky S.B. Guralnik J. Bauer J.M. Pahor M. Clark B.C. Cesari M. Ruiz J. Sieber C.C. Aubertin-Leheudre M. Waters D.L. Visvanathan R. Landi F. Villareal D.T. Fielding R. Won C.W. Theou O. Martin F.C. Dong B. Woo J. Flicker L. Ferrucci L. Merchant R.A. Cao L. Cederholm T. Ribeiro S.M.L. Rodríguez-Mañas L. Anker S.D. Lundy J. Gutiérrez Robledo L.M. Bautmans I. Aprahamian I. Schols J.M.G.A. Izquierdo M. Vellas B. International clinical practice guidelines for sarcopenia (icfsr): Screening, diagnosis and management. J. Nutr. Health Aging 2018 22 10 1148 1161 10.1007/s12603‑018‑1139‑9 30498820
    [Google Scholar]
  25. Wang X. Tang P. Yang K. Guo S. Tang Y. Zhang H. Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. J. Ethnopharmacol. 2024 329 118141 10.1016/j.jep.2024.118141 38570149
    [Google Scholar]
  26. Polito A. Barnaba L. Ciarapica D. Azzini E. Osteosarcopenia: A narrative review on clinical studies. Int. J. Mol. Sci. 2022 23 10 5591 10.3390/ijms23105591 35628399
    [Google Scholar]
  27. Hughes J.M. Castellani C.M. Popp K.L. Guerriere K.I. Matheny R.W. Nindl B.C. Bouxsein M.L. The central role of osteocytes in the four adaptive pathways of bone’s mechanostat. Exerc. Sport Sci. Rev. 2020 48 3 140 148 10.1249/JES.0000000000000225 32568926
    [Google Scholar]
  28. Pasco J.A. Holloway K.L. Brennan-Olsen S.L. Moloney D.J. Kotowicz M.A. Muscle strength and areal bone mineral density at the hip in women: A cross-sectional study. BMC Musculoskelet. Disord. 2015 16 1 124 10.1186/s12891‑015‑0586‑2 26003407
    [Google Scholar]
  29. Hackl M. Heilmeier U. Weilner S. Grillari J. Circulating microRNAs as novel biomarkers for bone diseases – Complex signatures for multifactorial diseases? Mol. Cell. Endocrinol. 2016 432 83 95 10.1016/j.mce.2015.10.015 26525415
    [Google Scholar]
  30. Liu C. Liang T. Zhang Z. Chen J. Xue J. Zhan X. Ren L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis 2023 28 3-4 498 513 10.1007/s10495‑022‑01804‑2 36587050
    [Google Scholar]
  31. Rudnicki M.A. Williams B.O. Wnt signaling in bone and muscle. Bone 2015 80 60 66 10.1016/j.bone.2015.02.009 26453496
    [Google Scholar]
  32. Chen X.J. Shen Y.S. He M.C. Yang F. Yang P. Pang F.X. He W. Cao Y. Wei Q.S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed. Pharmacother. 2019 112 108746 10.1016/j.biopha.2019.108746 30970530
    [Google Scholar]
  33. Dan L. The effect of Drynaria decoction on adipogenic differentiation of bone marrow mesenchymal stem cells in ovariectomized osteoporosis rats through Wnt / β-catenin pathway. Chin J. Tradit. Chin. Med. 2019 37 02 279 284
    [Google Scholar]
  34. Duan J. Effect of Sanhua Jiegu Powder on Wnt / β-Catenin signaling pathway in osteoblasts. China Tissue Eng. Res. 2023 27 20 3230 3235
    [Google Scholar]
  35. Ling J. Effect of Bushen Tongluo Recipe on Wnt signaling pathway and sclerostin in ovariectomized rat osteoporosis model. Med-Rep. 2022 41 10 1429 1434
    [Google Scholar]
  36. Zhou Z. Experimental study on the treatment of steroid-induced osteonecrosis of the femoral head by regulating Wnt / β-catenin pathway. J. Tradit. Chin. Med. 2023 41 01 21 24
    [Google Scholar]
  37. Luo W. Glycogen synthase kinase 3β inhibitor Tideglusib interferes with the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells in high glucose microenvironment. China Tissue Eng. Res. 2023 27 19 2968 2974
    [Google Scholar]
  38. Ge C. Xiao G. Jiang D. Franceschi R.T. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007 176 5 709 718 10.1083/jcb.200610046 17325210
    [Google Scholar]
  39. Chal J. Pourquié O. Making muscle: Skeletal myogenesis in vivo and in vitro. Development 2017 144 12 2104 2122 10.1242/dev.151035 28634270
    [Google Scholar]
  40. Broome D.T. Datta N.S. Mitogen-activated protein kinase phosphatase-1: Function and regulation in bone and related tissues. Connect. Tissue Res. 2016 57 3 175 189 10.3109/03008207.2015.1125480 27031422
    [Google Scholar]
  41. Tomida T. Adachi-Akahane S. Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology. Nippon Yakurigaku Zasshi 2020 155 4 241 247 10.1254/fpj20030 32612037
    [Google Scholar]
  42. Shang G.K. Han L. Wang Z.H. Liu Y.P. Yan S.B. Sai W.W. Wang D. Li Y.H. Zhang W. Zhong M. Sarcopenia is attenuated by TRB3 knockout in aging mice via the alleviation of atrophy and fibrosis of skeletal muscles. J. Cachexia Sarcopenia Muscle 2020 11 4 1104 1120 10.1002/jcsm.12560 32096609
    [Google Scholar]
  43. Le N.H. Kim C.S. Park T. Park J.H.Y. Sung M.K. Lee D.G. Hong S.M. Choe S.Y. Goto T. Kawada T. Yu R. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm. 2014 2014 1 10 10.1155/2014/834294 25614714
    [Google Scholar]
  44. Wu Y. Xia L. Zhou Y. Xu Y. Jiang X. Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK ‐dependent manner. Cell Prolif. 2015 48 3 375 384 10.1111/cpr.12185 25867119
    [Google Scholar]
  45. Yang X. Yang Y. Zhou S. Gong X. Dai Q. Zhang P. Jiang L. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Curr. Mol. Med. 2018 17 7 488 496 10.2174/1566524018666171219101142 29256352
    [Google Scholar]
  46. Shanshan G.U.O. Study on the improvement mechanism of Guben Anshen Decoction on menopausal syndrome model rats. China Pharmacy 2022 33 19 2364 2368
    [Google Scholar]
  47. Sun K. Luo J. Guo J. Yao X. Jing X. Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage 2020 28 4 400 409 10.1016/j.joca.2020.02.027 32081707
    [Google Scholar]
  48. Xie X. Shu R. Yu C. Fu Z. Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022 13 1 157 174 10.14336/AD.2021.0729 35111368
    [Google Scholar]
  49. Yang H. Wang L. Shigley C. Yang W. Protein tyrosine phosphatases in skeletal development and diseases. Bone Res. 2022 10 1 10 10.1038/s41413‑021‑00181‑x 35091552
    [Google Scholar]
  50. Zhang L. Chen D. Peng M. Ma H. Effects of yixintai pills on myocardial cell apoptosis in rats with adriamycin-induced heart failure. Heart Surg. Forum 2020 23 2 E234 E238 10.1532/hsf.2941 32364921
    [Google Scholar]
  51. Weinan G. Ginsenoside Rb1 activates PI3K / AKT / PGC1α signaling pathway to improve skeletal muscle endurance in mice. 2022
  52. Hossain M.A. Alam M.J. Kim B. Kang C.W. Kim J.H. Ginsenoside-Rb1 prevents bone cartilage destruction through down-regulation of p-Akt, p-P38, and p-P65 signaling in rabbit. Phytomedicine 2022 100 154039 10.1016/j.phymed.2022.154039 35344713
    [Google Scholar]
  53. Chai S. Yang Y. Wei L. Cao Y. Ma J. Zheng X. Teng J. Qin N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine 2024 128 155516 10.1016/j.phymed.2024.155516 38547625
    [Google Scholar]
  54. Ma J. Ye M. Li Y. Chai S. Huang H. Lian X. Huang H. Zhuanggu Zhitong Capsule alleviates osteosarcopenia in rats by up-regulating PI3K/Akt/Bcl2 signaling pathway. Biomed. Pharmacother. 2021 142 111939 10.1016/j.biopha.2021.111939 34311171
    [Google Scholar]
  55. Ma Y. Hu J. Song C. Li P. Cheng Y. Wang Y. Liu H. Chen Y. Zhang Z. Er-Xian decoction attenuates ovariectomy-induced osteoporosis by modulating fatty acid metabolism and IGF1/PI3K/AKT signaling pathway. J. Ethnopharmacol. 2023 301 115835 10.1016/j.jep.2022.115835 36252878
    [Google Scholar]
  56. Zhang B. Yang L.L. Ding S.Q. Liu J.J. Dong Y.H. Li Y.T. Li N. Zhao X.J. Hu C.L. Jiang Y. Ma X.Q. Anti-Osteoporotic activity of an edible traditional chinese medicine Cistanche deserticola on bone metabolism of ovariectomized rats through RANKL/RANK/TRAF6-mediated signaling pathways. Front. Pharmacol. 2019 10 1412 10.3389/fphar.2019.01412 31849666
    [Google Scholar]
  57. Tan E.M. Li L. Indran I.R. Chew N. Yong E.L. TRAF6 mediates suppression of osteoclastogenesis and prevention of ovariectomy-induced bone loss by a novel prenylflavonoid. J. Bone Miner. Res. 2017 32 4 846 860 10.1002/jbmr.3031 27813153
    [Google Scholar]
  58. Takatsuna H. Asagiri M. Kubota T. Oka K. Osada T. Sugiyama C. Saito H. Aoki K. Ohya K. Takayanagi H. Umezawa K. Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J. Bone Miner. Res. 2005 20 4 653 662 10.1359/JBMR.041213 15765185
    [Google Scholar]
  59. Salvadori L. Paiella M. Castiglioni B. Belladonna M.L. Manenti T. Ercolani C. Cornioli L. Clemente N. Scircoli A. Sardella R. Tensi L. Astolfi A. Barreca M.L. Chiappalupi S. Gentili G. Bosetti M. Sorci G. Filigheddu N. Riuzzi F. Equisetum arvense standardized dried extract hinders age-related osteosarcopenia. Biomed. Pharmacother. 2024 174 116517 10.1016/j.biopha.2024.116517 38574619
    [Google Scholar]
  60. Li Y. Zhuang Q. Tao L. Zheng K. Chen S. Yang Y. Feng C. Wang Z. Shi H. Shi J. Fang Y. Xiao L. Geng D. Wang Z. Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK / NF‐κB pathway. Cell Prolif. 2022 55 10 13291 10.1111/cpr.13291 35708050
    [Google Scholar]
  61. Xue C. Luo H. Wang L. Deng Q. Kui W. Da W. Chen L. Liu S. Xue Y. Yang J. Li L. Du W. Shi Q. Li X. Aconine attenuates osteoclast-mediated bone resorption and ferroptosis to improve osteoporosis via inhibiting NF-κB signaling. Front. Endocrinol. 2023 14 1234563 10.3389/fendo.2023.1234563 38034017
    [Google Scholar]
  62. Wiedmer P. Jung T. Castro J.P. Pomatto L.C.D. Sun P.Y. Davies K.J.A. Grune T. Sarcopenia – Molecular mechanisms and open questions. Ageing Res. Rev. 2021 65 101200 10.1016/j.arr.2020.101200 33130247
    [Google Scholar]
  63. Khosla S. Hofbauer L.C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017 5 11 898 907 10.1016/S2213‑8587(17)30188‑2 28689769
    [Google Scholar]
  64. Harper S.A. Bassler J.R. Peramsetty S. Yang Y. Roberts L.M. Drummer D. Mankowski R.T. Leeuwenburgh C. Ricart K. Patel R.P. Bamman M.M. Anton S.D. Jaeger B.C. Buford T.W. Resveratrol and exercise combined to treat functional limitations in late life: A pilot randomized controlled trial. Exp. Gerontol. 2021 143 111111 10.1016/j.exger.2020.111111 33068691
    [Google Scholar]
  65. Kim H. Suzuki T. Saito K. Yoshida H. Kojima N. Kim M. Sudo M. Yamashiro Y. Tokimitsu I. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community‐dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Geriatr. Gerontol. Int. 2013 13 2 458 465 10.1111/j.1447‑0594.2012.00923.x 22935006
    [Google Scholar]
  66. Song H.B. Jiang Y. Liu J.X. Wang G.Q. Zhang D.P. Jiang Y.C. Ren S.J. Liu H.P. Jiang X.Y. Stimulation of osteogenic differentiation in bone marrow stromal cells via Wnt/β-catenin pathway by Qili Jiegu-containing serum. Biomed. Pharmacother. 2018 103 1664 1668 10.1016/j.biopha.2018.04.138 29864956
    [Google Scholar]
  67. Zhang L. Xu L.Y. Tang F. Liu D. Zhao X.L. Zhang J.N. Xia J. Wu J.J. Yang Y. Peng C. Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J. Pharm. Anal. 2024 14 6 100930 10.1016/j.jpha.2023.12.020 39005843
    [Google Scholar]
  68. Yuan H. Xiao L. Min W. Yuan W. Lu S. Huang G. Bu-Shen-Tong-Luo decoction prevents bone loss via inhibition of bone resorption and enhancement of angiogenesis in ovariectomy-induced osteoporosis of rats. J. Ethnopharmacol. 2018 220 228 238 10.1016/j.jep.2018.01.007 29317302
    [Google Scholar]
  69. Zhang S.J. Zhang Y.G. Li D.H. Wu H.W. Niu J.T. Si X.L. Li Y.F. Prediction of Q-markers of Astragali Radix based on network pharmacology and fingerprint. Zhongguo Zhongyao Zazhi 2021 46 11 2691 2698 [PMID: 34296565
    [Google Scholar]
  70. Wei Z. Zhongbing C. Xiuqin Y. Luying S. Huan M. Sixi Z. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J. Hazard. Mater. 2023 452 131214 10.1016/j.jhazmat.2023.131214 36989786
    [Google Scholar]
  71. Zhao W. Wang B. Li S. Network pharmacology for traditional Chinese medicine in era of artificial intelligence. Chin. Herb. Med. 2024 16 4 558 560 10.1016/j.chmed.2024.08.004 39606265
    [Google Scholar]
  72. Fatima M. Brennan-Olsen S.L. Duque G. Therapeutic approaches to osteosarcopenia: Insights for the clinician. Ther. Adv.Musculoskelet. Dis., 2019 11 1759720x1986700
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037388848251013135335
Loading
/content/journals/cpps/10.2174/0113892037388848251013135335
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test