Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Alzheimer's disease (AD) is a progressive condition that causes the degeneration of nerve cells, leading to a decline in cognitive abilities and memory impairment, significantly affecting millions around the globe. The primary pathological feature of AD is the buildup of amyloid-β (Aβ) plaques in the brain, which has become a major target for therapeutic strategies. This thorough review examines the progress made in next-generation therapies that concentrate on monoclonal antibodies (mAbs) aimed at Aβ. We explore how these antibodies function, their effectiveness in clinical settings, and their safety profiles, specifically discussing notable mAbs, such as aducanumab, donanemab, lecanemab, This review also addresses the difficulties related to Aβ- targeted treatments. Furthermore, it examines the advancing field of biomarker development and tailored medicine strategies designed to improve the accuracy of AD treatment. By integrating the latest findings from clinical trials and new research, this review offers an in-depth evaluation of the possibilities and challenges associated with mAbs in modifying the progression of AD. Future considerations regarding combination therapies and novel drug delivery methods are also examined, emphasizing the necessity for ongoing research to achieve significant advancements in managing AD. Through this review, we seek to provide clinicians, researchers, and policymakers with insights into the current landscape and future directions of Aβ-targeted therapies, promoting a deeper understanding of their role in addressing AD.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037362037250205143911
2025-02-20
2025-09-01
Loading full text...

Full text loading...

References

  1. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  2. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  3. ScheltensP. BlennowK. BretelerM.M.B. Strooperd.B. FrisoniG.B. SallowayS. Flierd.v.W.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  4. BraakH. TrediciD.K. Alzheimer’s pathogenesis: Is there neuron-to-neuron propagation?Acta Neuropathol.2011121558959510.1007/s00401‑011‑0825‑z21516512
    [Google Scholar]
  5. ZhuoY. LiW.S. LuW. LiX. GeL.T. HuangY. GaoQ.T. DengY.J. JiangX.C. LanZ.W. DengQ. ChenY.H. XiaoY. LuS. JiangF. LiuZ. HuL. LiuY. DingY. HeZ.W. TanD.A. DuanD. LuM. TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson’s disease models and patients.Mil. Med. Res.20241114810.1186/s40779‑024‑00550‑739034405
    [Google Scholar]
  6. BraakH. ThalD.R. GhebremedhinE. TrediciD.K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years.J. Neuropathol. Exp. Neurol.2011701196096910.1097/NEN.0b013e318232a37922002422
    [Google Scholar]
  7. WangH. ShangY. WangE. XuX. ZhangQ. QianC. YangZ. WuS. ZhangT. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer’s disease.Prog. Neurobiol.202221410228010.1016/j.pneurobio.2022.10228035525373
    [Google Scholar]
  8. Høilund-CarlsenP.F. AlaviA. CastellaniR.J. NeveR.L. PerryG. RevheimM.E. BarrioJ.R. Alzheimer’s amyloid hypothesis and antibody therapy: Melting glaciers?Int. J. Mol. Sci.2024257389210.3390/ijms2507389238612701
    [Google Scholar]
  9. HussainM.S. MogladE. AfzalM. SharmaS. GuptaG. SivaprasadG.V. DeorariM. AlmalkiW.H. KazmiI. AlzareaS.I. ShahwanM. PantK. AliH. SinghS.K. DuaK. SubramaniyanV. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson’s disease pathogenesis.CNS Neurosci. Ther.2024305e1476310.1111/cns.1476338790149
    [Google Scholar]
  10. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  11. Perez-GarmendiaR. GevorkianG. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer s disease immunotherapy.Curr. Neuropharmacol.201311549149810.2174/1570159X1131105000424403873
    [Google Scholar]
  12. WirthsO. ZamparS. WeggenS. N-terminally truncated Aβ peptide variants in Alzheimer’s Disease.Brisbane, AustraliaExon Publications2019107122
    [Google Scholar]
  13. SkaperS.D. Alzheimer’s disease and amyloid: Culprit or coincidence?Int. Rev. Neurobiol.201210227731610.1016/B978‑0‑12‑386986‑9.00011‑922748834
    [Google Scholar]
  14. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  15. NICE Dementia: Assessment, management and support for people living with dementia and their carers.LondonNational Institute for Health and Care Excellence201816
    [Google Scholar]
  16. ThapaR. GoyalA. GuptaG. BhatA.A. SinghS.K. SubramaniyanV. SharmaS. PrasherP. JakhmolaV. SinghS.K. DuaK. Recent developments in the role of protocatechuic acid in neurodegenerative disorders.EXCLI J.20232259559937636028
    [Google Scholar]
  17. GuptaM. HussainM.S. ThapaR. BhatA.A. KumarN. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis.PharmaNutrition20242910040610.1016/j.phanu.2024.100406
    [Google Scholar]
  18. KarranE. StrooperD.B. The amyloid cascade hypothesis: Are we poised for success or failure?J. Neurochem.2016139S2Suppl. 223725210.1111/jnc.1363227255958
    [Google Scholar]
  19. ChenL. MaY. MaX. LiuL. JvX. LiA. ShenQ. JiaW. QuL. ShiL. XieJ. TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner.Free Radic. Biol. Med.202320844545710.1016/j.freeradbiomed.2023.09.00437683766
    [Google Scholar]
  20. McShaneR. SastreA.A. MinakaranN. Memantine for dementia.Cochrane Database Syst. Rev.20062CD00315416625572
    [Google Scholar]
  21. WeiX. ZhangJ. Patterns and mechanisms of diminishing returns from beneficial mutations.Mol. Biol. Evol.20193651008102110.1093/molbev/msz03530903691
    [Google Scholar]
  22. MalveH. Management of Alzheimer’s disease: Role of existing therapies, Traditional medicines and new treatment targets.Indian J. Pharm. Sci.2017791215http://dx.doi.org/10.4172/pharmaceutical-sciences.1000195.
    [Google Scholar]
  23. BhardwajS. KesariK.K. RachamallaM. ManiS. AshrafG.M. JhaS.K. KumarP. AmbastaR.K. DurejaH. DevkotaH.P. GuptaG. ChellappanD.K. SinghS.K. DuaK. RuokolainenJ. KamalM.A. OjhaS. JhaN.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.00136100328
    [Google Scholar]
  24. AmeenT.B. KashifS.N. AbbasS.M.I. BabarK. AliS.M.S. RaheemA. Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. The Egyptian Journal of Neurology, Psychiatry.Neurosurg. Clin. N. Am.20246072
    [Google Scholar]
  25. IshijimaT. NakajimaK. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades.Sci. Prog.202110440036850421105498510.1177/0036850421105498534821182
    [Google Scholar]
  26. YeungY.T. AzizF. Guerrero-CastillaA. ArguellesS. Signaling pathways in inflammation and anti-inflammatory therapies.Curr. Pharm. Des.201824141449148410.2174/138161282466618032716560429589535
    [Google Scholar]
  27. Mané-DamasM. MolenaarP.C. UlrichtsP. MarcuseF. BaetsD.M.H. Martinez-MartinezP. LosenM. Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders.Autoimmun. Rev.202221710310410.1016/j.autrev.2022.10310435452851
    [Google Scholar]
  28. AlmagroJ.C. Daniels-WellsT.R. Perez-TapiaS.M. PenichetM.L. Progress and challenges in the design and clinical development of antibodies for cancer therapy.Front. Immunol.20188175110.3389/fimmu.2017.0175129379493
    [Google Scholar]
  29. StockwinL.H. HolmesS. Antibodies as therapeutic agents: Vive la renaissance!Expert Opin. Biol. Ther.2003371133115210.1517/14712598.3.7.113314519077
    [Google Scholar]
  30. LuoH. XiangY. QuX. LiuH. LiuC. LiG. HanL. QinX. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of bdnf-trkb signaling pathway.Front. Pharmacol.20191039510.3389/fphar.2019.0039531040784
    [Google Scholar]
  31. LeeH.G. CasadesusG. ZhuX. TakedaA. PerryG. SmithM.A. Challenging the amyloid cascade hypothesis: Senile plaques and amyloid-β as protective adaptations to Alzheimer disease.Ann. N. Y. Acad. Sci.2004101911410.1196/annals.1297.00115246983
    [Google Scholar]
  32. HussainM.S. SharmaS. KumariA. KamranA. BahlG. BishtA.S. SultanaA. AshiqueS. RamalingamP.S. ArumugamS. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: Pathogenesis and therapeutic potential.Epigenomics20241623-241453146410.1080/17501911.2024.243017039601046
    [Google Scholar]
  33. KumarR. SinghA. KapoorB. HussainM.S. SinghS.K. DuaK. Nose to brain drug delivery through advanced drug delivery systems. Novel Drug Delivery Systems in the management of CNS Disorders.Elsevier2025105119
    [Google Scholar]
  34. TiwariM.K. KeppK.P. β-Amyloid pathogenesis: Chemical properties versus cellular levels.Alzheimers Dement.201612218419410.1016/j.jalz.2015.06.189526225732
    [Google Scholar]
  35. WisniewskiT. GoñiF. Immunotherapy for Alzheimer’s disease.Biochem. Pharmacol.201488449950710.1016/j.bcp.2013.12.02024412277
    [Google Scholar]
  36. HussainM.S. ChaturvediV. GoyalS. SinghS. MirR.H. An update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases.Curr. Bioact. Compd.2024205e25102322264810.2174/0115734072258656231013085318
    [Google Scholar]
  37. WangH. YanZ. YangW. LiuR. FanG. GuZ. TangZ. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from Uncaria for Alzheimer’s disease therapy based on near-infrared fluorescence probe.Sens. Actuators B Chem.202542413689510.1016/j.snb.2024.136895
    [Google Scholar]
  38. TakahashiR.H. NagaoT. GourasG.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease.Pathol. Int.201767418519310.1111/pin.1252028261941
    [Google Scholar]
  39. AbeysingheA.A.D.T. DeshapriyaR.D.U.S. UdawatteC. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions.Life Sci.202025611799610.1016/j.lfs.2020.11799632585249
    [Google Scholar]
  40. LiuY. YinH. LiuX. ZhangL. WuD. ShiY. ChenY. ZhouX. Alcohol use disorder and time perception: The mediating role of attention and working memory.Addict. Biol.2024292e1336710.1111/adb.1336738380757
    [Google Scholar]
  41. LiH. TanY. ChengX. ZhangZ. HuangJ. HuiS. ZhuL. LiuY. ZhaoD. LiuZ. PengW. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease.Front. Pharmacol.20221399030710.3389/fphar.2022.99030736339577
    [Google Scholar]
  42. MattsonM.P. Pathways towards and away from Alzheimer's disease.Nature.20044307000631639
    [Google Scholar]
  43. GlabeC.C. Amyloid accumulation and pathogensis of Alzheimer’s disease: Significance of monomeric, oligomeric and fibrillar Aβ.Subcell Biochem.20053816717710.1007/0‑387‑23226‑5_8
    [Google Scholar]
  44. HussainM.S. GuptaG. SamuelV.P. AlmalkiW.H. KazmiI. AlzareaS.I. SaleemS. KhanR. AltwaijryN. PatelS. PatelA. SinghS.K. DuaK. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries.Rev. Med. Virol.2024341e249110.1002/rmv.249137985599
    [Google Scholar]
  45. UppalJ. ChawlaA. RehmanR. HussainM.S. MaqboolM. ChawlaP.A. Novel drug delivery systems in treating epilepsy: An update.New YorkAcademic Press202510.1016/B978‑0‑443‑13474‑6.00019‑6
    [Google Scholar]
  46. ChenG. XuT. YanY. ZhouY. JiangY. MelcherK. XuH.E. Amyloid beta: Structure, biology and structure-based therapeutic development.Acta Pharmacol. Sin.20173891205123510.1038/aps.2017.2828713158
    [Google Scholar]
  47. PenkeB. BogárF. FülöpL. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view.Molecules20172210169210.3390/molecules2210169228994715
    [Google Scholar]
  48. MadhuP. MukhopadhyayS. Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer’s disease.J. Cell. Biochem.2021122111594160810.1002/jcb.3014134494298
    [Google Scholar]
  49. ZhangC. GeH. ZhangS. LiuD. JiangZ. LanC. LiL. FengH. HuR. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage.Neurol. Ther.20211021001101310.1007/s40120‑021‑00279‑834515953
    [Google Scholar]
  50. KentS.A. Spires-JonesT.L. DurrantC.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics.Acta Neuropathol.2020140441744710.1007/s00401‑020‑02196‑w32728795
    [Google Scholar]
  51. LuQ.Q. ChenY.M. LiuH.R. YanJ.Y. CuiP.W. ZhangQ.F. GaoX.H. FengX. LiuY.Z. Nitrogen-containing flavonoid and their analogs with diverse B-ring in acetylcholinesterase and butyrylcholinesterase inhibition.Drug Dev. Res.20208181037104710.1002/ddr.2172632754990
    [Google Scholar]
  52. ZhangH. WangL. WangX. DengL. HeB. YiX. LiJ. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats.Eur. J. Pharmacol.202497717672410.1016/j.ejphar.2024.17672438851559
    [Google Scholar]
  53. KarranE. MerckenM. StrooperB.D. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics.Nat. Rev. Drug Discov.201110969871210.1038/nrd350521852788
    [Google Scholar]
  54. DuanW.W. YangL.T. LiuJ. DaiZ.Y. WangZ.Y. ZhangH. ZhangX. LiangX.S. LuoP. ZhangJ. LiuZ.Q. ZhangN. MoH.Y. QuC.R. XiaZ.W. ChengQ. A TGF-β signaling-related lncRNA signature for prediction of glioma prognosis, immune microenvironment, and immunotherapy response.CNS Neurosci. Ther.2024304e1448910.1111/cns.1448937850692
    [Google Scholar]
  55. RisacherS.L. SaykinA.J. Neuroimaging and other biomarkers for Alzheimer’s disease: The changing landscape of early detection.Annu. Rev. Clin. Psychol.20139162164810.1146/annurev‑clinpsy‑050212‑18553523297785
    [Google Scholar]
  56. KamenetzF. TomitaT. HsiehH. SeabrookG. BorcheltD. IwatsuboT. SisodiaS. MalinowR. APP processing and synaptic function.Neuron200337692593710.1016/S0896‑6273(03)00124‑712670422
    [Google Scholar]
  57. MastersC.L. CappaiR. BarnhamK.J. VillemagneV.L. Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics.J. Neurochem.20069761700172510.1111/j.1471‑4159.2006.03989.x16805778
    [Google Scholar]
  58. AlbrechtS. BourdeauM. BennettD. MufsonE.J. BhattacharjeeM. LeBlancA.C. Activation of caspase-6 in aging and mild cognitive impairment.Am. J. Pathol.200717041200120910.2353/ajpath.2007.06097417392160
    [Google Scholar]
  59. LanZ. TanF. HeJ. LiuJ. LuM. HuZ. ZhuoY. LiuJ. TangX. JiangZ. LianA. ChenY. HuangY. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization.Phytomedicine202412915563510.1016/j.phymed.2024.15563538701541
    [Google Scholar]
  60. MooreK.J. KhouryE.J. MedeirosL.A. TeradaK. GeulaC. LusterA.D. FreemanM.W. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid.J. Biol. Chem.200227749473734737910.1074/jbc.M20878820012239221
    [Google Scholar]
  61. Wyss-CorayT. MuckeL. Inflammation in neurodegenerative disease--a double-edged sword.Neuron200235341943210.1016/S0896‑6273(02)00794‑812165466
    [Google Scholar]
  62. CappaiR. WhiteA.R. Amyloid β.Int. J. Biochem. Cell. Biol.199931988588910.1016/S1357‑2725(99)00027‑8
    [Google Scholar]
  63. ZhuX. YuG. LvY. YangN. ZhaoY. LiF. ZhaoJ. ChenZ. LaiY. ChenL. WangX. XiaoJ. CaiY. FengY. DingJ. GaoW. ZhouK. XuH. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps.Burns Trauma202412tkae03510.1093/burnst/tkae03538855574
    [Google Scholar]
  64. ShiM. ChuF. ZhuF. ZhuJ. Impact of anti-amyloid-β Monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab.Front. Aging Neurosci.20221487051710.3389/fnagi.2022.87051735493943
    [Google Scholar]
  65. RygielK. Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies.Indian J. Pharmacol.201648662963610.4103/0253‑7613.19486728066098
    [Google Scholar]
  66. DyckV.C.H. Anti-Amyloid-β monoclonal antibodies for alzheimer’s disease: Pitfalls and promise.Biol. Psychiatry201883431131910.1016/j.biopsych.2017.08.01028967385
    [Google Scholar]
  67. LaoK. ZhangR. LuanJ. ZhangY. GouX. Therapeutic strategies targeting amyloid-β receptors and transporters in Alzheimer’s disease.J. Alzheimers Dis.20217941429144210.3233/JAD‑20085133459712
    [Google Scholar]
  68. PinheiroL. FaustinoC. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease.Curr. Alzheimer Res.201916541845210.2174/156720501666619032116343830907320
    [Google Scholar]
  69. CummingsJ. Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics.Drugs202383756957610.1007/s40265‑023‑01858‑937060386
    [Google Scholar]
  70. SöderbergL. JohannessonM. NygrenP. LaudonH. ErikssonF. OsswaldG. MöllerC. LannfeltL. Lecanemab, aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease.Neurotherapeutics202320119520610.1007/s13311‑022‑01308‑636253511
    [Google Scholar]
  71. WeinbergM.S. PrincipeJ.L. ChenA. ChungS.Y. ArnoldS.E. SternT.A. Screening, assessment, and pharmacologic treatment of mild cognitive impairment and early Alzheimer’s disease.Prim. Care Companion CNS Disord.20232562510.4088/PCC.23f0354438055874
    [Google Scholar]
  72. WangL. LiX. DengZ. CaiQ. LeiP. XuH. ZhuS. ZhouT. LuoR. ZhangC. YinY. ZhangS. WuN. FengH. HuR. Neuroendoscopic parafascicular evacuation of spontaneous intracerebral hemorrhage (nesich technique): A multicenter technical experience with preliminary findings.Neurol. Ther.20241341259127110.1007/s40120‑024‑00642‑538914793
    [Google Scholar]
  73. LoefflerD.A. Antibody-mediated clearance of brain amyloid-β: Mechanisms of action, effects of natural and monoclonal anti-aβ antibodies, and downstream effects.J. Alzheimers Dis. Rep.20237187389910.3233/ADR‑23002537662616
    [Google Scholar]
  74. RossE.L. WeinbergM.S. ArnoldS.E. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US.JAMA Neurol.202279547848710.1001/jamaneurol.2022.031535344024
    [Google Scholar]
  75. HaeberleinB.S. AisenP.S. BarkhofF. ChalkiasS. ChenT. CohenS. DentG. HanssonO. HarrisonK. Hehnv.C. IwatsuboT. MallinckrodtC. MummeryC.J. MuralidharanK.K. NestorovI. NisenbaumL. RajagovindanR. SkordosL. TianY. Dyckv.C.H. VellasB. WuS. ZhuY. SandrockA. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease.J. Prev. Alzheimers Dis.20229219721035542991
    [Google Scholar]
  76. DhillonS. Aducanumab: First approval.Drugs202181121437144310.1007/s40265‑021‑01569‑z34324167
    [Google Scholar]
  77. SongZ. JiangZ. ZhangZ. WangY. ChenY. TangX. LiH. Evolving brain network dynamics in early childhood: Insights from modular graph metrics.Neuroimage202429712074010.1016/j.neuroimage.2024.12074039047590
    [Google Scholar]
  78. SongC. ShiJ. ZhangP. ZhangY. XuJ. ZhaoL. ZhangR. WangH. ChenH. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑335300725
    [Google Scholar]
  79. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  80. Cartwright, H. Biogen idec expands its neurology pipeline by acquiring three programmes from neurimmune. Pharm. Deals Rev., 2011, 2011(1). https://doi.org/10.3833/pdr.v2011i1.1421.
  81. FrostC.V. ZachariasM. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation.Proteins202088121592160610.1002/prot.2597832666627
    [Google Scholar]
  82. ArndtJ.W. QianF. SmithB.A. QuanC. KilambiK.P. BushM.W. WalzT. PepinskyR.B. BussièreT. HamannS. CameronT.O. WeinrebP.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β.Sci. Rep.201881641210.1038/s41598‑018‑24501‑029686315
    [Google Scholar]
  83. XiX. LiJ. WangZ. TianH. YangT. The effect of high-order interactions on the functional brain networks of boys with ADHD.Europ. Phy. J. Spec. Top.202423381782910.1140/epjs/s11734‑024‑01161‑y
    [Google Scholar]
  84. HaddadH.W. MaloneG.W. ComardelleN.J. DegueureA.E. KayeA.M. KayeA.D. Aducanumab, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s disease: A comprehensive review.Health Psychol. Res.20221013192510.52965/001c.3192535928986
    [Google Scholar]
  85. BastrupJ. HansenK.H. PoulsenT.B.G. KastaniegaardK. AsuniA.A. ChristensenS. BellingD. HelboeL. StensballeA. VolbrachtC. Anti-Aβ antibody aducanumab regulates the proteome of senile plaques and closely surrounding tissue in a transgenic mouse model of Alzheimer’s disease.J. Alzheimers Dis.202179124926510.3233/JAD‑20071533252074
    [Google Scholar]
  86. VazM. SilvaV. MonteiroC. SilvestreS. Role of aducanumab in the treatment of Alzheimer’s disease: Challenges and opportunities.Clin. Interv. Aging20221779781010.2147/CIA.S32502635611326
    [Google Scholar]
  87. BrockmannR. NixonJ. LoveB.L. YunusaI. Impacts of FDA approval and Medicare restriction on antiamyloid therapies for Alzheimer’s disease: Patient outcomes, healthcare costs, and drug development.Lancet Reg. Health Am.20232010046710.1016/j.lana.2023.10046736908502
    [Google Scholar]
  88. RashadA. RasoolA. ShaheryarM. SarfrazA. SarfrazZ. Robles-VelascoK. Donanemab for Alzheimer’s Disease: A Systematic Review of Clinical Trials.Basel, SwitzerlandHealthcare202211
    [Google Scholar]
  89. BayerT.A. Pyroglutamate Aβ cascade as drug target in Alzheimer’s disease.Mol. Psychiatry20222741880188510.1038/s41380‑021‑01409‑234880449
    [Google Scholar]
  90. FrostJ.L. LiuB. KleinschmidtM. SchillingS. DemuthH.U. LemereC.A. Passive immunization against pyroglutamate-3 amyloid-β reduces plaque burden in Alzheimer-like transgenic mice: A pilot study.Neurodegener. Dis.2012101-426527010.1159/00033591322343072
    [Google Scholar]
  91. VillainN. PlancheV. LevyR. High-clearance anti-amyloid immunotherapies in Alzheimer’s disease. Part 1: Meta-analysis and review of efficacy and safety data, and medico-economical aspects.Rev. Neurol.2022178101011103010.1016/j.neurol.2022.06.01236184326
    [Google Scholar]
  92. DeMattosR.B. LuJ. TangY. RackeM.M. DeLongC.A. TzaferisJ.A. HoleJ.T. ForsterB.M. McDonnellP.C. LiuF. KinleyR.D. JordanW.H. HuttonM.L. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice.Neuron201276590892010.1016/j.neuron.2012.10.02923217740
    [Google Scholar]
  93. BouterY. LiekefeldH. PichloS. WesthoffA.C. FennL. BakraniaP. BayerT.A. Donanemab detects a minor fraction of amyloid-β plaques in post-mortem brain tissue of patients with Alzheimer’s disease and Down syndrome.Acta Neuropathol.2022143560160310.1007/s00401‑022‑02418‑335429251
    [Google Scholar]
  94. MeglioM. Donanemab Shows Greater Ability to Clear Amyloid Plaque Than Aducanumab. Neurology Live.Neurology LiveNA- NA2022
    [Google Scholar]
  95. LoweS.L. WillisB.A. HawdonA. NatanegaraF. ChuaL. FosterJ. Donanemab (LY3002813) dose-escalation study in Alzheimer's disease.Alzheimer's & dementia(New York, N Y).2021e12112
    [Google Scholar]
  96. LoweS.L. EvansD.C. ShcherbininS. ChengY.J. WillisB.A. GueorguievaI. LoA.C. FleisherA.S. DageJ.L. ArdayfioP. AguiarG. IshibaiM. TakaichiG. ChuaL. MullinsG. SimsJ.R. Donanemab (LY3002813) phase 1b study in alzheimer’s disease: Rapid and sustained reduction of brain amyloid measured by florbetapir f18 imaging.J. Prev. Alzheimers Dis.20218441442434585215
    [Google Scholar]
  97. SimsJ.R. ZimmerJ.A. EvansC.D. LuM. ArdayfioP. SparksJ. WesselsA.M. ShcherbininS. WangH. NeryN.E.S. CollinsE.C. SolomonP. SallowayS. ApostolovaL.G. HanssonO. RitchieC. BrooksD.A. MintunM. SkovronskyD.M. AbreuR. AgarwalP. AggarwalP. AgroninM. AllenA. AltamiranoD. AlvaG. AndersenJ. AndersonA. AndersonD. ArnoldJ. AsadaT. AsoY. AtitV. AyalaR. BadruddojaM. Badzio-jagielloH. BajacekM. BartonD. BearD. BenjaminS. BergeronR. BhatiaP. BlackS. BlockA. BolouriM. BondW. BouthillierJ. BrangmanS. BrewB. BrisbinS. BriskenT. BrodtmannA. BrodyM. BroschJ. BrownC. BrownstoneP. BukowczanS. BurnsJ. CabreraA. CapoteH. CarrascoA. YepezC.J. ChavezE. ChertkowH. Chyrchel-paszkiewiczU. CiabarraA. ClemmonsE. CohenD. CohenR. CohenI. ConchaM. CostellB. CrimminsD. Cruz-paganY. CueliA. CupeloR. CzarneckiM. DarbyD. DautzenbergP. DeynD.P. GandaraL.D.J. DeckK. DibenedettoD. DibuonoM. DinnersteinE. DiricanA. DixitS. DobryniewskiJ. DrakeR. DrysdaleP. DuaraR. DuffyJ. EllenbogenA. FaradjiV. FeinbergM. FeldmanR. FishmanS. FlitmanS. ForchettiC. FragaI. FrankA. FrishbergB. FujigasakiH. FukaseH. FumeroI. FurihataK. GallowayC. GandhiR. GeorgeK. GermainM. GitelmanD. GoetschN. GoldfarbD. GoldsteinM. GoldstickL. RojasG.Y. GoodmanI. GreeleyD. GriffinC. GrigsbyE. GroszD. HafnerK. HartD. HeneinS. HerskowitzB. HigashiS. HigashiY. HoG. HodgsonJ. HohenbergM. HollenbeckL. HolubR. HoriT. HortJ. IlkowskiJ. IngramK.J. IsaacM. IshikawaM. JanuL. JohnstonM. JulioW. JustizW. KagaT. KakigiT. KalaferM. KamijoM. KaplanJ. KarathanosM. KatayamaS. KaulS. KeeganA. KerwinD. KhanU. KhanA. KimuraN. KirkG. KlodowskaG. KowaH. KutzC. KwentusJ. LaiR. LallA. LawrenceM. LeeE. LeonR. LinkerG. LisewskiP. LissJ. LiuC. LoskS. LukaszykE. LynchJ. MacfarlaneS. MacsweeneyJ. ManneringN. MarkovicO. MarksD. MasdeuJ. MatsuiY. MatsuishiK. McallisterP. McconneheyB. McelveenA. McgillL. MeccaA. MegaM. MensahJ. MickielewiczA. MinaeianA. MocherlaB. MurphyC. MurphyP. NagashimaH. NairA. NairM. NardandreaJ. NashM. NasreddineZ. NishidaY. NortonJ. NunezL. OchiaiJ. OhkuboT. OkamuraY. OkorieE. OliveraE. O’mahonyJ. OmidvarO. Ortiz-CruzD. OsowaA. PapkaM. ParkerA. PatelP. PatelA. PatelM. PatryC. PeckhamE. PfefferM. PietrasA. PlopperM. PorsteinssonA. RobitailleP.R. PrinsN. PuenteO. RatajczakM. RheeM. RitterA. RodriguezR. AblesR.L. RojasJ. RossJ. RoyerP. RubinJ. RussellD. RutgersS.M. RutrickS. SadowskiM. SafirsteinB. SagisakaT. ScharreD. SchneiderL. SchreiberC. SchriftM. SchulzP. SchwartzH. SchwartzbardJ. ScottJ. SelemL. SethiP. ShaS. SharlinK. SharmaS. ShiovitzT. ShiwachR. SladekM. SloanB. SmithA. SolomonP. SorialE. SosaE. StedmanM. SteenS. SteinL. StolyarA. StoukidesJ. SudohS. SuttonJ. SyedJ. SzigetiK. TachibanaH. TakahashiY. TatenoA. TaylorJ.D. TaylorK. TcheremissineO. ThebaudA. TheinS. ThurmanL. ToenjesS. TojiH. TomaM. TranD. TruebaP. TsujimotoM. TurnerR. UchiyamaA. UssorowskaD. VaishnaviS. ValorE. VandersluisJ. VasquezA. VelezJ. VergheseC. Vodickova-borzovaK. WatsonD. WeidmanD. WeismanD. WhiteA. WillinghamK. WinkelI. WinnerP. WinstonJ. WolffA. YagiH. YamamotoH. YathirajS. YoshiyamaY. ZbochM. TRAILBLAZER-ALZ 2 Investigators Donanemab in early symptomatic Alzheimer disease.JAMA2023330651252710.1001/jama.2023.1323937459141
    [Google Scholar]
  98. GueorguievaI. WillisB.A. ChuaL. ChowK. ErnestC.S. ShcherbininS. ArdayfioP. MullinsG.R. SimsJ.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimer’s disease.Clin. Pharmacol. Ther.202311361258126710.1002/cpt.287536805552
    [Google Scholar]
  99. NilsberthC. Westlind-DanielssonA. EckmanC.B. CondronM.M. AxelmanK. ForsellC. StenhC. LuthmanJ. TeplowD.B. YounkinS.G. NäslundJ. LannfeltL. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation.Nat. Neurosci.20014988789310.1038/nn0901‑88711528419
    [Google Scholar]
  100. LordA. GumucioA. EnglundH. SehlinD. SundquistV.S. SöderbergL. MöllerC. GellerforsP. LannfeltL. PetterssonF.E. NilssonL.N.G. An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease.Neurobiol. Dis.200936342543410.1016/j.nbd.2009.08.00719703562
    [Google Scholar]
  101. TuckerS. MöllerC. TegerstedtK. LordA. LaudonH. SjödahlJ. SöderbergL. SpensE. SahlinC. WaaraE.R. SatlinA. GellerforsP. OsswaldG. LannfeltL. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice.J. Alzheimers Dis.201443257558810.3233/JAD‑14074125096615
    [Google Scholar]
  102. CohenS. Dyckv.C.H. GeeM. DohertyT. KanekiyoM. DhaddaS. LiD. HerschS. IrizarryM. KramerL.D. Lecanemab clarity ad: Quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease.J. Prev. Alzheimers Dis.202310477177737874099
    [Google Scholar]
  103. SöllvanderS. NikitidouE. GallaschL. ZyśkM. SöderbergL. SehlinD. LannfeltL. ErlandssonA. The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death.J. Neuroinflammation20181519810.1186/s12974‑018‑1134‑429592816
    [Google Scholar]
  104. TamS. ZhangG. LiL. ElmaaroufA. SkovM. DolanP. KinneyG.G. CampbellB. ZagoW.M. PRX012 induces microglia-mediated clearance of pyroglutamate-modified Aβ in Alzheimer’s disease brain tissue.Alzheimers Dement.202117S9e05777310.1002/alz.057773
    [Google Scholar]
  105. LogovinskyV. SatlinA. LaiR. SwansonC. KaplowJ. OsswaldG. BasunH. LannfeltL. Safety and tolerability of BAN2401 - a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody.Alzheimers Res. Ther.2016811410.1186/s13195‑016‑0181‑227048170
    [Google Scholar]
  106. SwansonC.J. ZhangY. DhaddaS. WangJ. KaplowJ. LaiR.Y.K. LannfeltL. BradleyH. RabeM. KoyamaA. ReydermanL. BerryD.A. BerryS. GordonR. KramerL.D. CummingsJ.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑833865446
    [Google Scholar]
  107. Dyckv.C.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  108. RafiiM.S. SperlingR.A. DonohueM.C. ZhouJ. RobertsC. IrizarryM.C. DhaddaS. SethuramanG. KramerL.D. SwansonC.J. LiD. KrauseS. RissmanR.A. WalterS. RamanR. JohnsonK.A. AisenP.S. The AHEAD 3-45 study: Design of a prevention trial for Alzheimer’s disease.Alzheimers Dement.20231941227123310.1002/alz.1274835971310
    [Google Scholar]
  109. RofoF. BuijsJ. FalkR. HonekK. LannfeltL. LiljaA.M. MetzendorfN.G. GustavssonT. SehlinD. SöderbergL. HultqvistG. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta.Transl. Neurodegener.20211013810.1186/s40035‑021‑00258‑x34579778
    [Google Scholar]
  110. KnappikA. GeL. HoneggerA. PackP. FischerM. WellnhoferG. HoessA. WölleJ. PlückthunA. VirnekäsB. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides.J. Mol. Biol.20002961578610.1006/jmbi.1999.344410656818
    [Google Scholar]
  111. SteidlS. RatschO. BrocksB. DürrM. Thomassen-WolfE. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification.Mol. Immunol.200846113514410.1016/j.molimm.2008.07.01318722015
    [Google Scholar]
  112. BohrmannB. BaumannK. BenzJ. GerberF. HuberW. KnoflachF. MesserJ. OroszlanK. RauchenbergerR. RichterW.F. RotheC. UrbanM. BardroffM. WinterM. NordstedtC. LoetscherH. Gantenerumab: A novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β.J. Alzheimers Dis.2012281496910.3233/JAD‑2011‑11097721955818
    [Google Scholar]
  113. XiaoQ. YanP. MaX. LiuH. PerezR. ZhuA. GonzalesE. BurchettJ.M. SchulerD.R. CirritoJ.R. DiwanA. LeeJ.M. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis.J. Neurosci.201434299607962010.1523/JNEUROSCI.3788‑13.201425031402
    [Google Scholar]
  114. Gabandé-RodríguezE. KeaneL. CapassoM. Microglial phagocytosis in aging and Alzheimer’s disease.J. Neurosci. Res.202098228429810.1002/jnr.2441930942936
    [Google Scholar]
  115. KleinG. DelmarP. VoyleN. RehalS. HofmannC. Abi-SaabD. AndjelkovicM. RisticS. WangG. BatemanR. KerchnerG.A. BaudlerM. FontouraP. DoodyR. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis.Alzheimers Res. Ther.201911110110.1186/s13195‑019‑0559‑z31831056
    [Google Scholar]
  116. KleinG. DelmarP. KerchnerG.A. HofmannC. Abi-SaabD. DavisA. VoyleN. BaudlerM. FontouraP. DoodyR. Thirty-six-month amyloid positron emission tomography results show continued reduction in amyloid burden with subcutaneous gantenerumab.J. Prev. Alzheimers Dis.2021813633336218
    [Google Scholar]
  117. OstrowitzkiS. LasserR.A. DorflingerE. ScheltensP. BarkhofF. NikolchevaT. AshfordE. RetoutS. HofmannC. DelmarP. KleinG. AndjelkovicM. DuboisB. BoadaM. BlennowK. SantarelliL. FontouraP. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease.Alzheimers Res. Ther.2017919510.1186/s13195‑017‑0318‑y29221491
    [Google Scholar]
  118. SallowayS. FarlowM. McDadeE. CliffordD.B. WangG. Llibre-GuerraJ.J. HitchcockJ.M. MillsS.L. SantacruzA.M. AschenbrennerA.J. HassenstabJ. BenzingerT.L.S. GordonB.A. FaganA.M. CoalierK.A. CruchagaC. GoateA.A. PerrinR.J. XiongC. LiY. MorrisJ.C. SniderB.J. MummeryC. SurtiG.M. HannequinD. WallonD. BermanS.B. LahJ.J. Jimenez-VelazquezI.Z. RobersonE.D. Dyckv.C.H. HonigL.S. Sánchez-ValleR. BrooksW.S. GauthierS. GalaskoD.R. MastersC.L. BroschJ.R. HsiungG.Y.R. JayadevS. FormaglioM. MasellisM. ClarnetteR. ParienteJ. DuboisB. PasquierF. JackC.R.Jr KoeppeR. SnyderP.J. AisenP.S. ThomasR.G. BerryS.M. WendelbergerB.A. AndersenS.W. HoldridgeK.C. MintunM.A. YaariR. SimsJ.R. BaudlerM. DelmarP. DoodyR.S. FontouraP. GiacobinoC. KerchnerG.A. BatemanR.J. FormaglioM. MillsS.L. ParienteJ. Dyckv.C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease.Nat. Med.20212771187119610.1038/s41591‑021‑01369‑834155411
    [Google Scholar]
  119. Lane, C.; Bullain, S.; Thanasopoulou, A.; Delmar, P.; Boada, M.; Grimmer, T.; Kerwin, D.; Fontoura, P.; Baudler-Klein, M.; Kerchner, G.A.; Doody, R.S. Baseline characteristics of the GRADUATE studies: Phase III randomized, placebo-controlled studies investigating subcutaneous gantenerumab in participants with early Alzheimer’s disease. Neurology, 2022, 98(18_supplement), 1596. https://doi.org/10.1212/WNL.98.18_supplement.1596.
  120. BatemanR.J. CummingsJ. SchobelS. SallowayS. VellasB. BoadaM. BlackS.E. BlennowK. FontouraP. KleinG. AssunçãoS.S. SmithJ. DoodyR.S. Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease.Alzheimers Res. Ther.202214117810.1186/s13195‑022‑01110‑836447240
    [Google Scholar]
  121. SmithJ. DonohueM.C. GruendlE. GrimmerT. PerryR.J. BlackS.E. SallowayS. LyonsM. Rutten-JacobsL. BittnerT. BlennowK. PelentridesC. BarkhofF. ToniettoM. Baudler-KleinM. FontouraP. DoodyR.S. GRADUATE I AND II: Findings of two phase III randomized placebo-controlled studies assessing the efficacy and safety of subcutaneous gantenerumab in early Alzheimer’s disease (AD)(S26. 010).Neurology202310017_supplement_2428510.1212/WNL.0000000000203868
    [Google Scholar]
  122. WeberF. BohrmannB. NiewoehnerJ. FischerJ.A.A. RuegerP. TiefenthalerG. MoellekenJ. BujotzekA. BradyK. SingerT. EbelingM. IglesiasA. FreskgårdP.O. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode.Cell Rep.201822114916210.1016/j.celrep.2017.12.01929298417
    [Google Scholar]
  123. Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer's disease drug development pipeline: Alzheimer’s Dement. Transl. Res. Clin. Interv., 2023, 9(2), e12385. https://doi.org/10.1002/trc2.12385.
  124. DelnomdedieuM. DuvvuriS. LiD.J. AtassiN. LuM. BrashearH.R. LiuE. NessS. KupiecJ.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease.Alzheimers Res. Ther.2016811210.1186/s13195‑016‑0177‑y26925577
    [Google Scholar]
  125. BlackR.S. SperlingR.A. SafirsteinB. MotterR.N. PallayA. NicholsA. GrundmanM. A single ascending dose study of bapineuzumab in patients with Alzheimer disease.Alzheimer Dis. Assoc. Disord.201024219820310.1097/WAD.0b013e3181c53b0020505438
    [Google Scholar]
  126. SperlingR.A. JackC.R.Jr BlackS.E. FroschM.P. GreenbergS.M. HymanB.T. ScheltensP. CarrilloM.C. ThiesW. BednarM.M. BlackR.S. BrashearH.R. GrundmanM. SiemersE.R. FeldmanH.H. SchindlerR.J. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup.Alzheimers Dement.20117436738510.1016/j.jalz.2011.05.235121784348
    [Google Scholar]
  127. LaskowitzD.T. KollsB.J. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease.Neurology.20107424202610.1212/WNL.0b013e3181e03844
    [Google Scholar]
  128. MohsR.C. KnopmanD. PetersenR.C. FerrisS.H. ErnestoC. GrundmanM. SanoM. BieliauskasL. GeldmacherD. ClarkC. ThaiL.J. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study.Alzheimer Dis. Assoc. Disord.199711Suppl. 2132110.1097/00002093‑199700112‑000039236948
    [Google Scholar]
  129. RosenW.G. MohsR.C. DavisK.L. A new rating scale for Alzheimer’s disease.Am. J. Psychiatry1984141111356136410.1176/ajp.141.11.13566496779
    [Google Scholar]
  130. ArrighiH.M. GélinasI. McLaughlinT.P. BuchananJ. GauthierS. Longitudinal changes in functional disability in Alzheimer’s disease patients.Int. Psychogeriatr.201325692993710.1017/S104161021200236023406898
    [Google Scholar]
  131. RinneJ.O. BrooksD.J. RossorM.N. FoxN.C. BullockR. KlunkW.E. MathisC.A. BlennowK. BarakosJ. OkelloA.A. LIanod.S.R.M. LiuE. KollerM. GreggK.M. SchenkD. BlackR. GrundmanM. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study.Lancet Neurol.20109436337210.1016/S1474‑4422(10)70043‑020189881
    [Google Scholar]
  132. ZetterbergH. ZetterbergH. RinneJ.O. SallowayS. WeiJ. BlackR. GrundmanM. LiuE. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease.Arch. Neurol.20126981002101010.1001/archneurol.2012.9022473769
    [Google Scholar]
  133. SallowayS. MarshallG.A. LuM. BrashearH.R. Long-term safety and efficacy of bapineuzumab in patients with mild-to-moderate Alzheimer’s disease: A phase 2, open-label extension study.Curr. Alzheimer Res.201815131231124310.2174/156720501566618082111481330129411
    [Google Scholar]
  134. GaoY. GuoJ. ZhangF. LiY. Safety analysis of bapineuzumab in the treatment of mild to moderate alzheimer’s disease: A systematic review and meta-analysis.Comb. Chem. High Throughput Screen.2024271404710.2174/138620732666623041909581337076966
    [Google Scholar]
  135. HaoY. DongM. SunY. DuanX. NiuW. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease.Front. Neurol.202314114775710.3389/fneur.2023.114775737006475
    [Google Scholar]
  136. SiemersE.R. SundellK.L. CarlsonC. CaseM. SethuramanG. Liu-SeifertH. DowsettS.A. PontecorvoM.J. DeanR.A. DemattosR. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients.Alzheimers Dement.201612211012010.1016/j.jalz.2015.06.189326238576
    [Google Scholar]
  137. DeMattosR.B. BalesK.R. CumminsD.J. DodartJ.C. PaulS.M. HoltzmanD.M. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200198158850885510.1073/pnas.15126139811438712
    [Google Scholar]
  138. DeMattosR.B. BalesK.R. CumminsD.J. PaulS.M. HoltzmanD.M. Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease.Science200229555632264226710.1126/science.106756811910111
    [Google Scholar]
  139. BursteinA.H. ZhaoQ. RossJ. StyrenS. LandenJ.W. MaW.W. McCushF. AlveyC. KupiecJ.W. BednarM.M. Safety and pharmacology of ponezumab (PF-04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease.Clin. Neuropharmacol.201336181310.1097/WNF.0b013e318279bcfa23334069
    [Google Scholar]
  140. FarlowM. ArnoldS.E. Dyckv.C.H. AisenP.S. SniderB.J. PorsteinssonA.P. FriedrichS. DeanR.A. GonzalesC. SethuramanG. DeMattosR.B. MohsR. PaulS.M. SiemersE.R. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease.Alzheimers Dement.20128426127110.1016/j.jalz.2011.09.22422672770
    [Google Scholar]
  141. DoodyR.S. ThomasR.G. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. RamanR. SunX. AisenP.S. SiemersE. Liu-SeifertH. MohsR. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa131288924450890
    [Google Scholar]
  142. LancetN. Solanezumab: Too late in mild Alzheimer’s disease?Lancet Neurol.20171629710.1016/S1474‑4422(16)30395‑728102152
    [Google Scholar]
  143. DoggrellS.A. Grasping at straws: The failure of solanezumab to modify mild Alzheimer’s disease.Expert Opin. Biol. Ther.201818121189119210.1080/14712598.2018.154339730376649
    [Google Scholar]
  144. HoldridgeK.C. YaariR. HobanD.B. AndersenS. SimsJ.R. Targeting amyloid β in Alzheimer’s disease: Meta-analysis of low-dose solanezumab in Alzheimer’s disease with mild dementia studies.Alzheimers Dement.202319104619462810.1002/alz.1303136946603
    [Google Scholar]
  145. AdolfssonO. PihlgrenM. ToniN. VariscoY. BuccarelloA.L. AntonielloK. LohmannS. PiorkowskaK. GafnerV. AtwalJ.K. MaloneyJ. ChenM. GogineniA. WeimerR.M. MortensenD.L. FriesenhahnM. HoC. PaulR. PfeiferA. MuhsA. WattsR.J. An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ.J. Neurosci.201232289677968910.1523/JNEUROSCI.4742‑11.201222787053
    [Google Scholar]
  146. UltschM. LiB. MaurerT. MathieuM. AdolfssonO. MuhsA. PfeiferA. PihlgrenM. BainbridgeT.W. ReicheltM. ErnstJ.A. EigenbrotC. FuhG. AtwalJ.K. WattsR.J. WangW. Structure of crenezumab complex with aβ shows loss of β-hairpin.Sci. Rep.2016613937410.1038/srep3937427996029
    [Google Scholar]
  147. SallowayS. HonigbergL.A. ChoW. WardM. FriesenhahnM. BrunsteinF. QuartinoA. ClaytonD. MortensenD. BittnerT. HoC. RabeC. SchauerS.P. WildsmithK.R. FujiR.N. SulimanS. ReimanE.M. ChenK. PaulR. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE).Alzheimers Res. Ther.20181019610.1186/s13195‑018‑0424‑530231896
    [Google Scholar]
  148. CrespiG.A.N. HermansS.J. ParkerM.W. MilesL.A. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies.Sci. Rep.201551964910.1038/srep0964925880481
    [Google Scholar]
  149. OstrowitzkiS. BittnerT. SinkK.M. MackeyH. RabeC. HonigL.S. CassettaE. WoodwardM. BoadaM. Dyckv.C.H. GrimmerT. SelkoeD.J. SchneiderA. BlondeauK. HuN. QuartinoA. ClaytonD. DoltonM. DangY. OstaszewskiB. Sanabria-BohórquezS.M. RabbiaM. TothB. EichenlaubU. SmithJ. HonigbergL.A. DoodyR.S. Evaluating the safety and efficacy of crenezumab vs. placebo in adults with early Alzheimer disease.JAMA Neurol.202279111113112110.1001/jamaneurol.2022.290936121669
    [Google Scholar]
  150. SallowayS. ChoW. ClaytonD. HonigbergL. RabeC. FriesenhahnM. Amyloid PET imaging results from a study to evaluate the impact of crenezumab on fibrillar amyloid in patients with mild-to-moderate Alzheimer’s disease.J Prev Alz.20141214296
    [Google Scholar]
  151. HonigbergL. ClaytonD. ChoW. RabeC. FriesenhahnM. WardM. Biomarker results from the crenezumab anti-Aβ phase 2 biomarker trial.Clinical Trials on Alzheimer’s Disease20142022
    [Google Scholar]
  152. LandenJ.W. ZhaoQ. CohenS. BorrieM. WoodwardM. BillingC.B.Jr BalesK. AlveyC. McCushF. YangJ. KupiecJ.W. BednarM.M. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study.Clin. Neuropharmacol.2013361142310.1097/WNF.0b013e31827db49b23334070
    [Google Scholar]
  153. LandenJW CohenS BillingCBJr CronenbergerC StyrenS BursteinAH Multiple-dose ponezumab for mild-to-moderate Alzheimer's disease: Safety and efficacy.Alzheimer's & dementia(New York, N Y).20173339347
    [Google Scholar]
  154. LandenJW AndreasenN CronenbergerCL SchwartzPF Börjesson-HansonA ÖstlundH Ponezumab in mild-to-moderate Alzheimer's disease: Randomized phase II PET-PIB study.Alzheimer's & dementia(New York, N Y).20173393401
    [Google Scholar]
  155. LeurentC. GoodmanJ.A. ZhangY. HeP. PolimeniJ.R. GurolM.E. LindsayM. FratturaL. SohurU.S. ViswanathanA. BednarM.M. SmithE.E. GreenbergS.M. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy.Ann. Clin. Transl. Neurol.20196479580610.1002/acn3.76131020004
    [Google Scholar]
  156. PradierL. Blanchard-BrégeonV. BohmeA. DebeirT. MenagerJ. BenoitP. BarneoudP. TaupinV. BertrandP. DugayP. CameronB. ShiY. NaimiS. DuchesneM. GagnaireM. WeedenT. TravalineT. ReczekD. KhirougL. SlaouiM. BrunelP. FukuyamaH. RavetchJ. CantonT. CohenC. SAR228810: An antibody for protofibrillar amyloid β peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA).Alzheimers Res. Ther.201810111710.1186/s13195‑018‑0447‑y30486882
    [Google Scholar]
  157. Akasaka-ManyaK. ManyaH. The role of APP O-glycosylation in Alzheimer’s disease.Biomolecules20201011156910.3390/biom1011156933218200
    [Google Scholar]
  158. WangX. ZhouX. LiG. ZhangY. WuY. SongW. Modifications and trafficking of app in the pathogenesis of alzheimer’s disease.Front. Mol. Neurosci.20171029410.3389/fnmol.2017.0029428966576
    [Google Scholar]
  159. GötzJ. IttnerA. IttnerL.M. Tau-targeted treatment strategies in Alzheimer’s disease.Br. J. Pharmacol.201216551246125910.1111/j.1476‑5381.2011.01713.x22044248
    [Google Scholar]
  160. LeeH.E. LimD. LeeJ.Y. LimS.M. PaeA.N. Recent tau-targeted clinical strategies for the treatment of Alzheimer’s disease.Future Med. Chem.201911151845184810.4155/fmc‑2019‑015131517533
    [Google Scholar]
  161. Mietelska-PorowskaA. WasikU. GorasM. FilipekA. NiewiadomskaG. Tau protein modifications and interactions: Their role in function and dysfunction.Int. J. Mol. Sci.20141534671471310.3390/ijms1503467124646911
    [Google Scholar]
  162. ClavagueraF. BolmontT. CrowtherR.A. AbramowskiD. FrankS. ProbstA. FraserG. StalderA.K. BeibelM. StaufenbielM. JuckerM. GoedertM. TolnayM. Transmission and spreading of tauopathy in transgenic mouse brain.Nat. Cell Biol.200911790991310.1038/ncb190119503072
    [Google Scholar]
  163. ŠimićG. LekoB.M. WrayS. HarringtonC. DelalleI. Jovanov-MiloševićN. BažadonaD. BuéeL. SilvaD.R. GiovanniD.G. WischikC. HofP. Tau protein hyperphosphorylation and aggregation in alzheimer’s disease and other tauopathies, and possible neuroprotective strategies.Biomolecules201661610.3390/biom601000626751493
    [Google Scholar]
  164. KumarP. JhaN.K. JhaS.K. RamaniK. AmbastaR.K. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: Clinical relevance in Alzheimer’s disease.J. Alzheimers Dis.201443234136110.3233/JAD‑14093325096626
    [Google Scholar]
  165. ReyesJ.F. ReynoldsM.R. HorowitzP.M. FuY. Guillozet-BongaartsA.L. BerryR. BinderL.I. A possible link between astrocyte activation and tau nitration in Alzheimer’s disease.Neurobiol. Dis.200831219820810.1016/j.nbd.2008.04.00518562203
    [Google Scholar]
  166. HuK.W. FanH.F. LinH.C. HuangJ.W. ChenY.C. ShenC.L. ShihY.H. TuL.H. Exploring the impact of glyoxal glycation on β-amyloid peptide (aβ) aggregation in alzheimer’s disease.J. Phys. Chem. B2021125215559557110.1021/acs.jpcb.1c0279734019761
    [Google Scholar]
  167. NeațuM. CovaliuA. IonițăI. JugurtA. DavidescuE.I. PopescuB.O. Monoclonal antibody therapy in Alzheimer’s disease.Pharmaceutics20231616010.3390/pharmaceutics1601006038258071
    [Google Scholar]
  168. RamananV.K. ArmstrongM.J. ChoudhuryP. CoerverK.A. HamiltonR.H. KleinB.C. WolkD.A. WesselsS.R. JonesL.K., Jr. Antiamyloid monoclonal antibody therapy for Alzheimer disease: Emerging issues in neurology.Neurology20231011984285210.1212/WNL.000000000020775737495380
    [Google Scholar]
  169. SinghA. HasanA. TiwariS. PandeyL.M. Therapeutic advancement in Alzheimer disease: New hopes on the horizon?CNS Neurol. Disord. Drug Targets201817857158910.2174/187152731766618062712244829952273
    [Google Scholar]
  170. SalemmeS. AncidoniA. LocuratoloN. PiscopoP. LacorteE. CanevelliM. VanacoreN. Advances in amyloid-targeting monoclonal antibodies for Alzheimer’s disease: Clinical and public health issues.Expert Rev. Neurother.202323121113112910.1080/14737175.2023.228430537975226
    [Google Scholar]
  171. Chowdhury, S. Monoclonal antibody treatments for Alzheimer's disease: Aducanumab and lecanemab. Discoveries, 2023, 11(3), e173. https://doi.org/10.15190/d.2023.12.
  172. KhanT. WaseemR. ShahidM. AnsariJ. AhangerI.A. HassanI. IslamA. Recent advancement in therapeutic strategies for Alzheimer’s disease: Insights from clinical trials.Ageing Res. Rev.20239210211310.1016/j.arr.2023.10211337918760
    [Google Scholar]
  173. ChowdhuryS. ChowdhuryN.S. Novel anti-amyloid-beta (Aβ) monoclonal antibody lecanemab for Alzheimer’s disease: A systematic review. nternational journal of immunopathology pharmacology & Therapeutics Part B.Gen. Syst. Pharmacol.20233703946320231209839
    [Google Scholar]
  174. GautamS.A. PandeyS.K. LasureV. DubeyS. SinghR.K. Monoclonal antibodies for the management of central nervous system diseases: Clinical success and future strategies.Expert Opin. Biol. Ther.202323760361810.1080/14712598.2023.222737837334564
    [Google Scholar]
  175. Hussain, S.; Khan, M.A.; Rajan, R.; Jyoti, J.; Sharma, S.; Sahu, S.K. Nanorobots: The future of healthcare. AIP conference proceedings, 2023, 2800(1), 020171. https://doi.org/10.1063/5.0162904.
  176. TeraoI. KodamaW. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis.Ageing Res. Rev.20249410220310.1016/j.arr.2024.10220338253184
    [Google Scholar]
  177. PerneczkyR. DomG. ChanA. FalkaiP. BassettiC. Anti-amyloid antibody treatments for Alzheimer’s disease.Eur. J. Neurol.2024312e1604910.1111/ene.1604937697714
    [Google Scholar]
  178. MarsoolM.D.M. PrajjwalP. ReddyY.B. MarsoolA.D.M. LamJ.R. NandwanaV. Newer modalities in the management of Alzheimer’s dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases.Dis. Mon.202369510154710.1016/j.disamonth.2023.10154736931947
    [Google Scholar]
  179. WuW. JiY. WangZ. WuX. LiJ. GuF. ChenZ. WangZ. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials.Eur. J. Med. Res.202328154410.1186/s40001‑023‑01512‑w38017568
    [Google Scholar]
  180. ImbimboB.P. IppatiS. WatlingM. ImbimboC. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies.Pharmacol. Res.202318710663110.1016/j.phrs.2022.10663136586644
    [Google Scholar]
  181. WithingtonC.G. TurnerR.S. Amyloid-related imaging abnormalities with anti-amyloid antibodies for the treatment of dementia due to Alzheimer’s disease.Front. Neurol.20221386236910.3389/fneur.2022.86236935401412
    [Google Scholar]
  182. ScottI.A. Monoclonal antibodies for treating early Alzheimer disease—a commentary on recent ‘positive’ trials.Age Ageing2024532afae02310.1093/ageing/afae02338411409
    [Google Scholar]
  183. ÇulcuEA DemiryürekŞ DemiryürekAT Recent treatment approaches for Alzheimer’s disease with monoclonal antibodies targeting amyloid-β.Rec. Trends Pharma.13150166
    [Google Scholar]
  184. SuzukiN. HattaT. ItoM. KusakabeK. Anti-amyloid-β antibodies and anti-tau therapies for Alzheimer’s disease: Recent advances and perspectives.Chem. Pharm. Bull.202472760260910.1248/cpb.c24‑0006938945936
    [Google Scholar]
  185. JeremicD. Navarro-LopezJ.D. Jimenez-DiazL. Donanemab outperformed aducanumab and lecanemab on cognitive, but not on biomarker and safety outcomes: Systematic review, frequentist and bayesian network meta-analyses.medRxiv20242024.0310.1101/2024.03.31.24305134
    [Google Scholar]
  186. TousiB. SabbaghM.N. A Time of Transition of Alzheimer's Disease in the Advent of Anti-Amyloid Monoclonal Antibodies.Neurology, editor.Springer202115
    [Google Scholar]
  187. TousiB. SabbaghM.N. Therapy. a time of transition of Alzheimer’s disease in the advent of anti-amyloid monoclonal antibodies. neurology.Neurol. Ther.2021102409413
    [Google Scholar]
  188. ArmansyahN.A. PutriA.M. AzizahW.N. MaryatiI. Potential of monoclonal antibody (mab) as alternative treatment of alzheimer: A sytematic scoping review.J. Pendidikan Keperawatan Indonesia202391798210.17509/jpki.v9i1.52874
    [Google Scholar]
  189. PardridgeW.M. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies.Expert Opin. Biol. Ther.201616121455146810.1080/14712598.2016.123019527572805
    [Google Scholar]
  190. RofoF. MeierS.R. MetzendorfN.G. MorrisonJ.I. PetrovicA. SyvänenS. SehlinD. HultqvistG. A brain-targeting bispecific-multivalent antibody clears soluble amyloid-beta aggregates in Alzheimer’s disease mice.Neurotherapeutics20221951588160210.1007/s13311‑022‑01283‑y35939261
    [Google Scholar]
  191. SumbriaR.K. HuiE.K.W. LuJ.Z. BoadoR.J. PardridgeW.M. Disaggregation of amyloid plaque in brain of Alzheimer’s disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the A beta amyloid peptide.Mol. Pharm.20131093507351310.1021/mp400348n23924247
    [Google Scholar]
  192. HeP. XinW. SchulzP. SierksM.R. Bispecific antibody fragment targeting APP and inducing α-site cleavage restores neuronal health in an Alzheimer’s mouse model.Mol. Neurobiol.201956117420743210.1007/s12035‑019‑1597‑z31041656
    [Google Scholar]
  193. StanimirovicD. KemmerichK. HaqqaniA.S. FarringtonG.K. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies.Adv. Pharmacol.20147130133510.1016/bs.apha.2014.06.00525307221
    [Google Scholar]
  194. RobertR. WarkK.L. Engineered antibody approaches for Alzheimer’s disease immunotherapy.Arch. Biochem. Biophys.2012526213213810.1016/j.abb.2012.02.02222475448
    [Google Scholar]
  195. ShiraiwaH. NaritaA. Kamata-SakuraiM. IshiguroT. SanoY. HironiwaN. TsushimaT. SegawaH. TsunenariT. IkedaY. KayukawaY. NoguchiM. WakabayashiT. SakamotoA. KonishiH. KuramochiT. EndoM. HattoriK. NezuJ. IgawaT. Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974.Methods2019154102010.1016/j.ymeth.2018.10.00530326272
    [Google Scholar]
  196. MaJ. MoY. TangM. ShenJ. QiY. ZhaoW. HuangY. XuY. QianC. Bispecific antibodies: From research to clinical application.Front. Immunol.20211262661610.3389/fimmu.2021.62661634025638
    [Google Scholar]
  197. FarhangniaP. DelbandiA-A. SadriM. AkbarpourM. Bispecific antibodies in targeted cancer immunotherapy. handbook of cancer and immunology. RezaeiN. Handbook of Cancer and ImmunologySpringer2023146
    [Google Scholar]
  198. ZhangJ. YiJ. ZhouP. Development of bispecific antibodies in China: Overview and prospects.Antib. Ther.20203212614510.1093/abt/tbaa01133928227
    [Google Scholar]
  199. RegisterA.C. TarighatS.S. LeeH.Y. Bioassay development for bispecific antibodies—challenges and opportunities.Int. J. Mol. Sci.20212210535010.3390/ijms2210535034069573
    [Google Scholar]
  200. LabrijnA.F. JanmaatM.L. ReichertJ.M. ParrenP.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline.Nat. Rev. Drug Discov.201918858560810.1038/s41573‑019‑0028‑131175342
    [Google Scholar]
  201. KeamS.J. Ozoralizumab: First approval.Drugs2023831879210.1007/s40265‑022‑01821‑036509938
    [Google Scholar]
  202. SedykhS. PrinzV. BunevaV. NevinskyG. Bispecific antibodies: Design, therapy, perspectives.Drug Des. Devel. Ther.20181219520810.2147/DDDT.S15128229403265
    [Google Scholar]
  203. LiuJ. YangB. KeJ. LiW. SuenW.C. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy.Drugs Aging2016331068569710.1007/s40266‑016‑0406‑x27699633
    [Google Scholar]
  204. KontermannR.E. BrinkmannU. Bispecific antibodies.Drug Discov. Today201520783884710.1016/j.drudis.2015.02.00825728220
    [Google Scholar]
  205. YangF. WenW. QinW. Bispecific antibodies as a development platform for new concepts and treatment strategies.Int. J. Mol. Sci.20161814810.3390/ijms1801004828036020
    [Google Scholar]
  206. BrinkmannU. KontermannR.E. Bispecific antibodies.Science2021372654591691710.1126/science.abg120934045345
    [Google Scholar]
  207. NiaziS.K. MariamZ. MagoolaM. Engineered antibodies to improve efficacy against neurodegenerative disorders.Int. J. Mol. Sci.20242512668310.3390/ijms2512668338928395
    [Google Scholar]
  208. ReginaA. DemeuleM. TripathyS. Lord-DufourS. CurrieJ.C. IddirM. AnnabiB. CastaigneJ.P. LachowiczJ.E. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice.Mol. Cancer Ther.201514112914010.1158/1535‑7163.MCT‑14‑039925492620
    [Google Scholar]
  209. ParakhS. GanH.K. ParslowA.C. BurvenichI.J.G. BurgessA.W. ScottA.M. Evolution of anti-HER2 therapies for cancer treatment.Cancer Treat. Rev.20175912110.1016/j.ctrv.2017.06.00528715775
    [Google Scholar]
  210. PunyakotiP. BehlT. SehgalA. YadavS. SachdevaM. AnwerM.K. Vargas-De-La-CruzC. VenkatachalamT. NaqviM. VermaR. TuliH.S. Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer’s disease.Cell. Signal.202310211053910.1016/j.cellsig.2022.11053936455831
    [Google Scholar]
  211. GuptaG. HussainM.S. PantK. AliH. ThapaR. BhattA.A. Antibody-drug conjugates (ADCs): A novel therapy for triple-negative breast cancer (TNBC).Curr. Cancer Drug Targets202425210811239248064
    [Google Scholar]
  212. PapageorgiouL. PapakonstantinouE. SalisC. PolychronidouE. HagidimitriouM. MaroulisD. Drugena: A fully automated immunoinformatics platform for the design of antibody-drug conjugates against neurodegenerative diseases. GeNeDis 2018: Computational Biology and Bioinformatics.Springer2020203215
    [Google Scholar]
  213. PoblockaM. BasseyA.L. SmithV.M. FalcicchioM. MansoA.S. AlthubitiM. ShengX. KyleA. BarberR. FrigerioM. MacipS. Targeted clearance of senescent cells using an antibody- drug conjugate against a specific membrane marker.Sci. Rep.20211112035810.1038/s41598‑021‑99852‑234645909
    [Google Scholar]
  214. TashimaT. Delivery of drugs into cancer cells using antibody–drug conjugates based on receptor-mediated endocytosis and the enhanced permeability and retention effect.Antibodies20221147810.3390/antib1104007836546903
    [Google Scholar]
  215. SassoJ.M. TenchovR. BirdR. IyerK.A. RalhanK. RodriguezY. ZhouQ.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress.Bioconjug. Chem.202334111951200010.1021/acs.bioconjchem.3c0037437821099
    [Google Scholar]
  216. NervigC.S. OwenS.C. Antibody Drug Conjugates.Encyclopedia of Molecular PharmacologyCham: Springer International Publishing.2022118125
    [Google Scholar]
  217. McGowanJ.W.D. BidwellG.L., III. VigP.J.S. Challenges and new strategies for therapeutic peptide delivery to the CNS.Ther. Deliv.20156784185310.4155/tde.15.3026228775
    [Google Scholar]
  218. DeanT.T. Jelú-ReyesJ. AllenA.L.C. MooreT.W. Peptide–drug conjugates: An emerging direction for the next generation of peptide therapeutics.J. Med. Chem.20246731641166110.1021/acs.jmedchem.3c0183538277480
    [Google Scholar]
  219. WangS. YaoH. XuY. HaoR. ZhangW. LiuH. HuangY. GuoW. LuB. Therapeutic potential of a TrkB agonistic antibody for Alzheimer’s disease.Theranostics202010156854687410.7150/thno.4416532550908
    [Google Scholar]
  220. AkıncıoğluH. Gülçinİ. Potent acetylcholinesterase inhibitors: Potential drugs for Alzheimer’s disease.Mini Rev. Med. Chem.202020870371510.2174/138955752066620010310052131902355
    [Google Scholar]
  221. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.20192021479148731257471
    [Google Scholar]
  222. LiQ. HeS. ChenY. FengF. QuW. SunH. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease.Eur. J. Med. Chem.201815846347710.1016/j.ejmech.2018.09.03130243151
    [Google Scholar]
  223. TsaiS.-J. Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease.J. Chin. Med. Assoc. LWW.20198210750751
    [Google Scholar]
  224. HampelH. VassarR. StrooperD.B. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. VosD.A. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. MonfaredT.A.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-secretase BACE1 in Alzheimer’s disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.00132223911
    [Google Scholar]
  225. Moussa-PachaN.M. AbdinS.M. OmarH.A. AlnissH. Al-TelT.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease.Med. Res. Rev.202040133938410.1002/med.2162231347728
    [Google Scholar]
  226. WenW. LiP. LiuP. XuS. WangF. HuangJ.H. Post-translational modifications of BACE1 in Alzheimer’s disease.Curr. Neuropharmacol.202220121122210.2174/1570159X1966621012116322433475074
    [Google Scholar]
  227. KushwahaP. SinghV. SomvanshiP. BhardwajT. BarretoG.E. AshrafG.M. MishraB.N. ChundawatR.S. HaqueS. Identification of new BACE1 inhibitors for treating Alzheimer’s disease.J. Mol. Model.20212725810.1007/s00894‑021‑04679‑333517514
    [Google Scholar]
  228. OliverD.M.A. ReddyP.H. Small molecules as therapeutic drugs for Alzheimer’s disease.Mol. Cell. Neurosci.201996476210.1016/j.mcn.2019.03.00130877034
    [Google Scholar]
  229. LeeD. AntonsdottirI.M. ClarkE.D. PorsteinssonA.P. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer’s disease: A novel small molecule with disease modifying potential.Expert Opin. Pharmacother.202425779179910.1080/14656566.2024.236006938814590
    [Google Scholar]
  230. SongJ.X. MalampatiS. ZengY. DurairajanS.S.K. YangC.B. TongB.C.K. IyaswamyA. ShangW.B. SreenivasmurthyS.G. ZhuZ. CheungK.H. LuJ.H. TangC. XuN. LiM. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models.Aging Cell2020192e1306910.1111/acel.1306931858697
    [Google Scholar]
  231. AndújarT.B. MaryA. Can small molecules provide clues on disease progression in cerebrospinal fluid from mild cognitive impairment and alzheimer’s disease patients? environmental science technology and health care.Envir. Sci. Tech.202458941814192
    [Google Scholar]
  232. ToupsK. HathawayA. GordonD. ChungH. RajiC. BoydA. HillB.D. Hausman-CohenS. AttarhaM. ChwaW.J. JarrettM. BredesenD.E. Precision medicine approach to Alzheimer’s disease: Successful pilot project.J. Alzheimers Dis.20228841411142110.3233/JAD‑21570735811518
    [Google Scholar]
  233. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. BaldacciF. ToschiN. GaraciF. ChiesaP.A. VerdoonerS.R. Akman-AndersonL. HernándezF. ÁvilaJ. EmanueleE. ValenzuelaP.L. LucíaA. WatlingM. ImbimboB.P. VergalloA. ListaS. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.0045632296418
    [Google Scholar]
  234. Griñán-FerréC. Bellver-SanchisA. GuerreroA. PallàsM. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy.Pharmacol. Res.202420510724710.1016/j.phrs.2024.10724738834164
    [Google Scholar]
  235. StrianeseO. RizzoF. CiccarelliM. GalassoG. D’AgostinoY. SalvatiA. GiudiceD.C. TesorioP. RuscianoM.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease.Genes (Basel)202011774710.3390/genes1107074732640513
    [Google Scholar]
  236. HampelH. WilliamsC. EtchetoA. GoodsaidF. ParmentierF. SallantinJ. KaufmannW.E. MisslingC.U. AfsharM. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study.Alzheimers Dement. (N. Y.)202061e1201310.1002/trc2.1201332318621
    [Google Scholar]
  237. HampelH. GaoP. CummingsJ. ToschiN. ThompsonP.M. HuY. ChoM. VergalloA. The foundation and architecture of precision medicine in neurology and psychiatry.Trends Neurosci.202346317619810.1016/j.tins.2022.12.00436642626
    [Google Scholar]
  238. YuT.W. LaneH.Y. LinC.H. Novel therapeutic approaches for Alzheimer’s disease: An updated review.Int. J. Mol. Sci.20212215820810.3390/ijms2215820834360973
    [Google Scholar]
  239. MoorthyH. GovindarajuT. Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine.ACS Appl. Bio Mater.2021421115113910.1021/acsabm.0c0131935014470
    [Google Scholar]
  240. HoD. QuakeS.R. McCabeE.R.B. ChngW.J. ChowE.K. DingX. GelbB.D. GinsburgG.S. HassenstabJ. HoC.M. MobleyW.C. NolanG.P. RosenS.T. TanP. YenY. ZarrinparA. Enabling technologies for personalized and precision medicine.Trends Biotechnol.202038549751810.1016/j.tibtech.2019.12.02131980301
    [Google Scholar]
  241. BottaniE. LampertiC. PrigioneA. TirantiV. PersicoN. BrunettiD. Therapeutic approaches to treat mitochondrial diseases:“one-size-fits-all” and “precision medicine” strategies.Pharmaceutics20201211108310.3390/pharmaceutics1211108333187380
    [Google Scholar]
  242. GaoX.H. TangJ.J. LiuH.R. LiuL.B. LiuY.Z. Structure–activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition.Drug Dev. Res.201980443844510.1002/ddr.2151530680760
    [Google Scholar]
  243. ReddyV. GroganD. AhluwaliaM. SallesÉ.L. AhluwaliaP. KhodadadiH. AlversonK. NguyenA. RajuS.P. GaurP. BraunM. ValeF.L. CostigliolaV. DhandapaniK. BabanB. VaibhavK. Targeting the endocannabinoid system: A predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies.EPMA J.202011221725010.1007/s13167‑020‑00203‑432549916
    [Google Scholar]
  244. NiculescuA.B. Le-NiculescuH. RoseberryK. WangS. HartJ. KaurA. RobertsonH. JonesT. StrasburgerA. WilliamsA. KurianS.M. LambB. ShekharA. LahiriD.K. SaykinA.J. Blood biomarkers for memory: Toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs.Mol. Psychiatry20202581651167210.1038/s41380‑019‑0602‑231792364
    [Google Scholar]
  245. DaiY. LeiC. ZhangZ. QiY. LaoK. GouX. Amyloid-beta targeted therapeutic approaches for Alzheimer’s disease: Long road ahead.Curr. Drug Targets202223111040105610.2174/138945012366622042112403035593357
    [Google Scholar]
  246. HuiminC. XiaofengF. ShuiyueQ. ZiyeR. ChangbiaoC. LongfeiJ. Amyloid-β-targeted therapies for Alzheimer’s disease: Currently and in the future.Ageing Neurod. Dis.2023331310.20517/and.2023.16
    [Google Scholar]
  247. HampelH. AuR. MattkeS. Flierd.v.W.M. AisenP. ApostolovaL. ChenC. ChoM. SantiD.S. GaoP. IwataA. KurzmanR. SaykinA.J. TeipelS. VellasB. VergalloA. WangH. CummingsJ. Designing the next-generation clinical care pathway for Alzheimer’s disease.Nat. Aging20222869270310.1038/s43587‑022‑00269‑x37118137
    [Google Scholar]
  248. RuckT. NimmerjahnF. WiendlH. LünemannJ.D. Next-generation antibody-based therapies in neurology.Brain202214541229124110.1093/brain/awab46534928330
    [Google Scholar]
  249. LianY. JiaY.J. WongJ. ZhouX.F. SongW. GuoJ. MastersC.L. WangY.J. Clarity on the blazing trail: Clearing the way for amyloid-removing therapies for Alzheimer’s disease.Mol. Psychiatry202429229730510.1038/s41380‑023‑02324‑438001337
    [Google Scholar]
  250. ZhaoZ. LiuY. RuanS. HuY. Current anti-amyloid-β therapy for Alzheimer’s disease treatment: From clinical research to nanomedicine.Int. J. Nanomedicine2023187825784510.2147/IJN.S44411538144511
    [Google Scholar]
  251. CummingsJ. OsseA.M.L. CammannD. PowellJ. ChenJ. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.BioDrugs202438152210.1007/s40259‑023‑00633‑237955845
    [Google Scholar]
  252. CummingsJ.L. OsseA.M.L. KinneyJ.W. CammannD. ChenJ. Alzheimer’s disease: Combination therapies and clinical trials for combination therapy development.CNS Drugs202438861362410.1007/s40263‑024‑01103‑138937382
    [Google Scholar]
  253. ChenJ. ChenJ-S. LiS. ZhangF. DengJ. ZengL-H. TanJ. Amyloid precursor protein: A regulatory hub in Alzheimer’s disease.Aging Dis.202415120122537307834
    [Google Scholar]
  254. SarazinM. LagardeJ. HaddadE.I. Souzad.L.C. BellierB. PotierM-C. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer’s disease.Nature Aging2024110
    [Google Scholar]
  255. LozuponeM. DibelloV. SardoneR. CastellanaF. ZupoR. LampignanoL. BortoneI. StalloneR. AltamuraM. BellomoA. DanieleA. SolfrizziV. PanzaF. Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer’s disease.Expert Opin. Drug Discov.202419663964710.1080/17460441.2024.234814238685682
    [Google Scholar]
  256. CarraroC. MontgomeryJ.V. KlimmtJ. PaquetD. SchultzeJ.L. BeyerM.D. Tackling neurodegeneration in vitro with omics: A path towards new targets and drugs.Front. Mol. Neurosci.202417141488610.3389/fnmol.2024.141488638952421
    [Google Scholar]
  257. WangL. WangX. DengL. ZhangH. HeB. CaoW. CuiY. Pexidartinib (PLX3397) through restoring hippocampal synaptic plasticity ameliorates social isolation-induced mood disorders.Int. Immunopharmacol.2022113Pt B10943610.1016/j.intimp.2022.10943636395673
    [Google Scholar]
  258. RevanthB. AsrarS.S. SapkotaB. VandanaK. ReddyK.S. KumarB.P. The role of artificial intelligence and machine learning in drug discovery and development.Asian J. Adv. Res.20247133140
    [Google Scholar]
  259. SaikiaS. PrajapatiJ.B. PrajapatiB.G. PadmaV.V. PathakY.V. The Role of Artificial Intelligence.Philadelphia, PARecent Advances in Therapeutic Drug Monitoring Clinical Toxicology202267
    [Google Scholar]
  260. QiuY. ChengF. Artificial intelligence for drug discovery and development in Alzheimer’s disease.Curr. Opin. Struct. Biol.20248510277610.1016/j.sbi.2024.10277638335558
    [Google Scholar]
  261. SayalA. JhaJ. ChaithraN. GangodkarA.R. BanuS.S. Revolutionizing Drug Discovery: The Role of AI and Machine Learning in Accelerating Medicinal Advancements.Artificial Intelligence Machine Learning in Drug Design Development and Psychopathology, Springer202418922110.1002/9781394234196.ch7
    [Google Scholar]
  262. RomanelliV. CerchiaC. LavecchiaA. Unlocking the potential of generative artificial intelligence in drug discovery.App. Gener. AI.2024376310.1007/978‑3‑031‑46238‑2_3
    [Google Scholar]
  263. GsaxnerC. MoriS. SchmalstiegD. EggerJ. PaarG. BailerW. DeepDR: Deep Structure-Aware RGB-D Inpainting for Diminished Reality.International Conference on 3D Vision (3DV)IEEE, 2024 pp. 750-60.
    [Google Scholar]
  264. NagS. BaidyaA.T.K. MandalA. MathewA.T. DasB. DeviB. KumarR. Deep learning tools for advancing drug discovery and development.3 Biotech202212511010.1007/s13205‑022‑03165‑835433167
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037362037250205143911
Loading
/content/journals/cpps/10.2174/0113892037362037250205143911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test