Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Objective

The objective of this study was to design and synthesize the ug46 peptide, incorporate its fibrils into composite materials, and evaluate its structural and antimicrobial properties. Another objective was to utilize spectroscopy and molecular simulation, enhanced by Machine Vision methods, to monitor the aggregation process of the ug46 peptide and assess its potential as a scaffold for an antimicrobial peptide.

Methods

The structural analysis of the ug46 peptide reveals its dynamic conformational changes. Initially, the peptide exhibits a disordered structure with minimal α-helix content, but as incubation progresses, it aggregates into fibrils rich in β-sheets. This transformation was validated by CD and ThT assays, which showed decreased molar ellipticity and an increase in ThT fluorescence.

Results

Laser-induced fluorescence and molecular dynamics simulations further revealed the transition from a compact native state to extended “worm-like” filament structures, influenced by peptide concentration and temperature. TEM and AFM confirmed these changes, showing the evolution of protofibrils into mature fibrils with characteristic twists. When incorporated into chitosan-bioglass composites, these fibrils significantly enhanced antimicrobial activity against pathogens such as and .

Conclusion

Overall, ug46 peptide fibrils show promise as a multifunctional scaffold with structural and antimicrobial benefits in composite biomaterials.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037353453241219185311
2025-02-19
2025-11-17
Loading full text...

Full text loading...

References

  1. LiJ. KohJ.J. LiuS. LakshminarayananR. VermaC.S. BeuermanR.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design.Front. Neurosci.201711FEB7310.3389/fnins.2017.0007328261050
    [Google Scholar]
  2. LiL. SunJ. XiaS. TianX. CheserekM.J. LeG. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: Intracellular DNA binding and cell cycle arrest.Appl. Microbiol. Biotechnol.201610073245325310.1007/s00253‑015‑7265‑y26743655
    [Google Scholar]
  3. GrafskaiaE. PavlovaE. BabenkoV.V. LatsisI. MalakhovaM. LavrenovaV. BashkirovP. BelousovD. KlinovD. LazarevV. The Hirudo medicinalis microbiome is a source of new antimicrobial peptides.Int. J. Mol. Sci.20202119714110.3390/ijms2119714132992666
    [Google Scholar]
  4. ZhengM. WangR. ChenS. ZouY. YanL. ZhaoL. LiX. Design, synthesis and antifungal activity of stapled aurein1.2 peptides.Antibiotics202110895610.3390/antibiotics1008095634439006
    [Google Scholar]
  5. SepehriZ. KianiZ. KohanF. AlavianS.M. GhavamiS. Toll like receptor 4 and hepatocellular carcinoma; A systematic review.Life Sci.2017179808710.1016/j.lfs.2017.04.02528472619
    [Google Scholar]
  6. XiaS. LiuM. WangC. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion.Cell Res. 202030434335510.1038/s41422‑020‑0305‑x32231345
    [Google Scholar]
  7. SouzaP.F.N. LopesF.E.S. AmaralJ.L. FreitasC.D.T. OliveiraJ.T.A. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor.Int. J. Biol. Macromol.2020164667610.1016/j.ijbiomac.2020.07.17432693122
    [Google Scholar]
  8. LoffredoM.R. NencioniL. MangoniM.L. CasciaroB. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic.J. Pept. Sci.2024301e353410.1002/psc.353437501572
    [Google Scholar]
  9. GawdeU. ChakrabortyS. WaghuF.H. BaraiR.S. KhanderkarA. IndraguruR. ShirsatT. Idicula-ThomasS. CAMPR4: A database of natural and synthetic antimicrobial peptides.Nucleic Acids Res.202351D1D377D38310.1093/nar/gkac93336370097
    [Google Scholar]
  10. WuD. GaoY. QiY. ChenL. MaY. LiY. Peptide-based cancer therapy: Opportunity and challenge.Cancer Lett.20143511132210.1016/j.canlet.2014.05.00224836189
    [Google Scholar]
  11. MaR. WongS.W. GeL. ShawC. SiuS.W.I. KwokH.F. In vitro and md simulation study to explore physicochemical parameters for antibacterial peptide to become potent anticancer peptide.Mol. Ther. Oncolytics20201671910.1016/j.omto.2019.12.00131909181
    [Google Scholar]
  12. ParkJ. KimH. KangD.D. ParkY. Exploring the therapeutic potential of scorpion-derived Css54 peptide against candida albicans.J. Microbiol.202462210111210.1007/s12275‑024‑00113‑438589765
    [Google Scholar]
  13. ParachinN.S. MulderK.C. VianaA.A.B. DiasS.C. FrancoO.L. Expression systems for heterologous production of antimicrobial peptides.Peptides201238244645610.1016/j.peptides.2012.09.02023022589
    [Google Scholar]
  14. VilcinskasA. Evolutionary plasticity of insect immunity.J. Insect Physiol.201359212312910.1016/j.jinsphys.2012.08.01822985862
    [Google Scholar]
  15. TangS.S. ProdhanZ.H. BiswasS.K. LeC.F. SekaranS.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification.Phytochemistry20181549410510.1016/j.phytochem.2018.07.00230031244
    [Google Scholar]
  16. SoundrarajanN. ParkS. Le Van ChanhQ. Protegrin-1 cytotoxicity towards mammalian cells positively correlates with the magnitude of conformational changes of the unfolded form upon cell interaction.Scient. Rep.20199111210.1038/s41598‑019‑47955‑2
    [Google Scholar]
  17. LeszczyńskaK. NamiotD. ByfieldF.J. CruzK. Zendzian-PiotrowskaM. FeinD.E. SavageP.B. DiamondS. McCullochC.A. JanmeyP.A. BuckiR. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections.J. Antimicrob. Chemother.201368361061810.1093/jac/dks43423134677
    [Google Scholar]
  18. RaheemN. StrausS.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions.Front. Microbiol.201910286610.3389/fmicb.2019.0286631921046
    [Google Scholar]
  19. RahnamaeianM. Antimicrobial peptides.Plant Signal. Behav.2011691325133210.4161/psb.6.9.1631921847025
    [Google Scholar]
  20. KooH. AllanR.N. HowlinR.P. StoodleyP. Hall-StoodleyL. Targeting microbial biofilms: Current and prospective therapeutic strategies.Nat. Rev. Microbiol.2017151274075510.1038/nrmicro.2017.9928944770
    [Google Scholar]
  21. GrootersK.E. KuJ.C. RichterD.M. KrinockM.J. MinorA. LiP. KimA. SawyerR. LiY. Strategies for combating antibiotic resistance in bacterial biofilms.Front. Cell. Infect. Microbiol.202414135227310.3389/fcimb.2024.135227338322672
    [Google Scholar]
  22. SawickaJ. IłowskaE. DeptułaM. SosnowskiP. SassP. CzerwiecK. ChmielewskaK. SzymańskaA. Pietralik-MolińskaZ. KozakM. SachadynP. PikułaM. Rodziewicz-MotowidłoS. Functionalized peptide fibrils as a scaffold for active substances in wound healing.Int. J. Mol. Sci.2021228381810.3390/ijms2208381833917000
    [Google Scholar]
  23. LiuH. DuanZ. TangJ. LvQ. RongM. LaiR. A short peptide from frog skin accelerates diabetic wound healing.FEBS J.2014281204633464310.1111/febs.1296825117795
    [Google Scholar]
  24. KruseH.V. ChakrabortyS. ChenR. Protecting orthopaedic implants from infection: antimicrobial peptide Mel4 is non-toxic to bone cells and reduces bacterial colonisation when bound to plasma ion-implanted 3D-printed PAEK polymers.Cells.202413865610.3390/cells13080656
    [Google Scholar]
  25. GabbianiG. The myofibroblast in wound healing and fibrocontractive diseases.J. Pathol.2003200450050310.1002/path.142712845617
    [Google Scholar]
  26. ParkH.J. SalemM. SemlaliA. LeungK.P. RouabhiaM. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.Peptides201793334310.1016/j.peptides.2017.05.00328499840
    [Google Scholar]
  27. ChristoffersenH.F. AndreasenM. ZhangS. NielsenE.H. ChristiansenG. DongM. SkrydstrupT. OtzenD.E. Scaffolded multimers of hIAPP20–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP20–29 peptide fragment.Biochim. Biophys. Acta. Proteins Proteomics20151854121890189710.1016/j.bbapap.2015.08.00526284878
    [Google Scholar]
  28. JiaQ. FuZ. LiY. KangZ. WuY. RuZ. PengY. HuangY. LuoY. LiW. HuY. SunX. WangJ. DengZ. WuC. WangY. YangX. Hydrogel loaded with peptide-containing nanocomplexes: symphonic cooperation of photothermal antimicrobial nanoparticles and prohealing peptides for the treatment of infected wounds.ACS Appl. Mater. Interfaces20241611134221343810.1021/acsami.3c1606138442213
    [Google Scholar]
  29. MateescuM. BaixeS. GarnierT. JierryL. BallV. HaikelY. Metz-BoutigueM.H. NardinM. SchaafP. EtienneO. LavalleP. Antibacterial peptide-based gel for prevention of medical implanted-device infection.PLoS One20151012e014514310.1371/journal.pone.014514326659616
    [Google Scholar]
  30. FraczykJ. LipinskiW. ChaberskaA. Search for fibrous aggregates potentially useful in regenerative medicine formed under physiological conditions by self-assembling short peptides containing two identical aromatic amino acid residues.Molecules.201823356810.3390/molecules2303056829498711
    [Google Scholar]
  31. VeigaS.A. SchneiderJ.P. Antimicrobial hydrogels for the treatment of infection.Biopolymers2013100663764410.1002/bip.2241224122459
    [Google Scholar]
  32. AnnabiN. RanaD. SaniS.E. Portillo-LaraR. GiffordJ.L. FaresM.M. MithieuxS.M. WeissA.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing.Biomaterials201713922924310.1016/j.biomaterials.2017.05.01128579065
    [Google Scholar]
  33. BiernatM. CiołekL. DzierżyńskaM. OziębłoA. SawickaJ. DeptułaM. BauerM. KamyszW. PikułaM. JaegermannZ. Rodziewicz-MotowidłoS. Porous chitosan/ZnO-doped bioglass composites as carriers of bioactive peptides.Int. J. Appl. Ceram. Technol.20201762807281610.1111/ijac.13609
    [Google Scholar]
  34. PrabaharanM. SivashankariP.R. Prospects of bioactive chitosan-based scaffolds in tissue engineering and regenerative medicineChitin and Chitosan for Regenerative Medicine2015415910.1007/978‑81‑322‑2511‑9_2
    [Google Scholar]
  35. AzeeraM. VaideviS. KumarJ. ShanmugarathinamA. RuckmaniK. Chitosan-based systems in tissue engineeringFunctional Chitosan: Drug Delivery and Biomedical Applications202029732010.1007/978‑981‑15‑0263‑7_10
    [Google Scholar]
  36. Paradowska-StolarzA. MikulewiczM. LaskowskaJ. KarolewiczB. OwczarekA. The importance of chitosan coatings in dentistry.Mar. Drugs2023211261310.3390/md2112061338132934
    [Google Scholar]
  37. KatunarM.R. DiazF. BoccacciniA.R. BallarreJ. SiO2–CaO rod-like particles in chitosan matrix as bioactive coatings for stainless steel implants.Ceram. Int.20234923385353854310.1016/j.ceramint.2023.09.185
    [Google Scholar]
  38. JiX. ShaoH. LiX. UllahM.W. LuoG. XuZ. MaL. HeX. LeiZ. LiQ. JiangX. YangG. ZhangY. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration.Biomaterials202228512153010.1016/j.biomaterials.2022.12153035504181
    [Google Scholar]
  39. KaganB.L. JangH. CaponeR. ArceT.F. RamachandranS. LalR. NussinovR. Antimicrobial properties of amyloid peptides.Mol. Pharm.20129470871710.1021/mp200419b22081976
    [Google Scholar]
  40. ShaX. LiP. FengY. XiaD. TianX. WangZ. YangY. MaoX. LiuL. Self-assembled peptide nanofibrils designed to release membrane-lysing antimicrobial peptides.ACS Appl. Bio Mater.2020363648365510.1021/acsabm.0c0028135025235
    [Google Scholar]
  41. CalabreseA.N. LiuY. WangT. MusgraveI.F. PukalaT.L. TaborR.F. MartinL.L. CarverJ.A. BowieJ.H. The amyloid fibril-forming properties of the amphibian antimicrobial peptide uperin 3.5.Chem. Bio. Chem.201617323924610.1002/cbic.20150051826676975
    [Google Scholar]
  42. JangH. ArceF.T. MustataM. RamachandranS. CaponeR. NussinovR. LalR. Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link.Biophys. J.201110071775178310.1016/j.bpj.2011.01.07221463591
    [Google Scholar]
  43. PaivaK.B.S. GranjeiroJ.M. Matrix metalloproteinases in bone resorption, remodeling, and repair.Prog. Mol. Biol. Transl. Sci.201714820330310.1016/bs.pmbts.2017.05.00128662823
    [Google Scholar]
  44. Manon-JensenT. MulthauptH.A.B. CouchmanJ.R. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains.FEBS J.2013280102320233110.1111/febs.1217423384311
    [Google Scholar]
  45. KrishnaP.V.M. ReddyV.S. KumarV.P. SureshP. Antibiotic susceptibility pattern of Staphylococcus aureus and methicillin – resistant Staphylococcus aureus isolated from various clinical specimens in a tertiary care teaching hospital, Pondicherry.Indian J. Public Health Res. Dev.201910220821310.5958/0976‑5506.2019.00287.0
    [Google Scholar]
  46. ParastanR. KargarM. SolhjooK. KafilzadehF. Staphylococcus aureus biofilms: Structures, antibiotic resistance, inhibition, and vaccines.Gene Rep.20202010073910.1016/j.genrep.2020.100739
    [Google Scholar]
  47. IdreesM. SawantS. KarodiaN. RahmanA. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies.Int. J. Environ. Res. Public Health20211814760210.3390/ijerph1814760234300053
    [Google Scholar]
  48. CiofuO. Tolker-NielsenT. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics.Front. Microbiol.201910MAY91310.3389/fmicb.2019.0091331130925
    [Google Scholar]
  49. LabordaP. Hernando-AmadoS. MartínezJ.L. Sanz-GarcíaF. Antibiotic resistance in pseudomonas.Adv. Exp. Med. Biol.2022138611714310.1007/978‑3‑031‑08491‑1_536258071
    [Google Scholar]
  50. KowalskaK. CarrD.B. LipkowskiA.W. Direct antimicrobial properties of substance P.Life Sci.200271774775010.1016/S0024‑3205(02)01740‑X12074933
    [Google Scholar]
  51. ZarenaD. MishraB. LushnikovaT. WangF. WangG. The π configuration of the WWW motif of a short trp-rich peptide is critical for targeting bacterial membranes, disrupting preformed biofilms, and killing methicillin-resistant Staphylococcus aureus.Biochemistry201756314039404310.1021/acs.biochem.7b0045628731688
    [Google Scholar]
  52. SahariahP. SørensenK.K. HjálmarsdóttirM.Á. SigurjónssonÓ.E. JensenK.J. MássonM. ThygesenM.B. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers.Chem. Commun.20155158116111161410.1039/C5CC04010H26096124
    [Google Scholar]
  53. GrafskaiaE.N. NadezhdinK.D. TalyzinaI.A. PolinaN.F. PodgornyO.V. PavlovaE.R. BashkirovP.V. KharlampievaD.D. BobrovskyP.A. LatsisI.A. ManuveraV.A. BabenkoV.V. TrukhanV.M. ArsenievA.S. KlinovD.V. LazarevV.N. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens.Eur. J. Med. Chem.201918014315310.1016/j.ejmech.2019.06.08031302447
    [Google Scholar]
  54. LiY. XuW. TangY. ImageI. TangY. ImageI. Y L Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains.J. Biol. Chem.201028530227642277310.1074/jbc.M110.12850420479000
    [Google Scholar]
  55. BalharaV. SchmidtR. GorrS.U. DeWolfC. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K.Biochim. Biophys. Acta Biomembr.2013182892193220310.1016/j.bbamem.2013.05.02723747365
    [Google Scholar]
  56. IłowskaE. BarciszewskiJ. JaskólskiM. MolińskiA. KozakM. SzymańskaA. Identification of a steric zipper motif in the amyloidogenic core of human cystatin C and its use for the design of self-assembling peptides.Int. J. Mol. Sci.20222310580010.3390/ijms2310580035628610
    [Google Scholar]
  57. FonsecaK.B. MaiaF.R. CruzF.A. AndradeD. JulianoM.A. GranjaP.L. BarriasC.C. Enzymatic, physicochemical and biological properties of MMP-sensitive alginate hydrogels.Soft Matter20139123283329210.1039/c3sm27560d
    [Google Scholar]
  58. BiancalanaM. MakabeK. KoideA. KoideS. Molecular mechanism of thioflavin-T binding to the surface of β-rich peptide self-assemblies.J. Mol. Biol.200938541052106310.1016/j.jmb.2008.11.00619038267
    [Google Scholar]
  59. RusakovK. El-TurabiA. ReimerL. JensenP.H. HanczycP. Thioflavin T─a reporter of microviscosity in protein aggregation process: the study case of α-synuclein.J. Phys. Chem. Lett.202415256685669010.1021/acs.jpclett.4c0069938899873
    [Google Scholar]
  60. RusakovK. DemianiukS. JalonickaE. HanczycP. Cavity lasing characteristics of thioflavin T and thioflavin X in different solvents and their interaction with DNA for the controlled reduction of a light amplification threshold in solid-state biofilms.ACS Appl. Opt. Mater.20231121922192910.1021/acsaom.3c0026438149104
    [Google Scholar]
  61. HanczycP. FitaP. Laser emission of thioflavin T uncovers protein aggregation in amyloid nucleation phase.ACS Photonics2021892598260910.1021/acsphotonics.1c0008234557567
    [Google Scholar]
  62. SchrödingerL. The PyMOL molecular graphics system.J. Biophy. Chem.201562546310.4236/jbpc.2015.62006
    [Google Scholar]
  63. CiołekL. Krok-BorkowiczM. GąsińskiA. BiernatM. AntosikA. PamułaE. Bioactive glasses enriched with strontium or zinc with different degrees of structural order as components of chitosan-based composite scaffolds for bone tissue engineering.Polymers.20231519399410.3390/polym1519399437836043
    [Google Scholar]
  64. CiołekL. ChraniukM. BollinP. BiernatM. PanasiukM. NidzworskiD. GromadzkaB. JaegermannZ. PamułaE. Bioactive glasses enriched with zinc and strontium: Synthesis, characterization, cytocompatibility with osteoblasts and antibacterial properties.Acta Bioeng. Biomech.2023254698010.37190/ABB‑02339‑2023‑0239072467
    [Google Scholar]
  65. GarboC. LocsJ. D’EsteM. DemazeauG. MocanuA. RomanC. HorovitzO. Tomoaia-CotiselM. Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration.Int. J. Nanomedicine2020151037105810.2147/IJN.S22663032103955
    [Google Scholar]
  66. AbedinF. KandelN. TatulianS.A. Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep.2021111926210.1038/s41598‑021‑98644‑y34584131
    [Google Scholar]
  67. PortilloA. HashemiM. ZhangY. BreydoL. UverskyV.N. LyubchenkoY.L. Role of monomer arrangement in the amyloid self-assembly.Biochim. Biophys. Acta. Proteins Proteomics20151854321822810.1016/j.bbapap.2014.12.00925542374
    [Google Scholar]
  68. BiskupekI. CzaplewskiC. SawickaJ. Prediction of aggregation of biologically-active peptides with the UNRES coarse-grained model.Biomolecules.2022128114010.3390/biom1208114036009034
    [Google Scholar]
  69. MicroorganismsN.R.C. Bacteria, their smallest representatives and subcellular structures, and the purported precambrian fossil “Metallogenium”.Size limits of very small microorganisms: Proceedings of a workshop.Washington (DC)National Academies Press (US)1999
    [Google Scholar]
  70. NakaiR. Size matters: Ultra-small and filterable microorganisms in the environment.Microbes Environ.202035210.1264/jsme2.ME2002532493880
    [Google Scholar]
  71. FilipovićU. DahmaneR.G. GhannouchiS. ZoreA. BohincK. Bacterial adhesion on orthopedic implants.Adv. Colloid Interface Sci.202028310222810.1016/j.cis.2020.10222832858407
    [Google Scholar]
  72. VestbyL.K. GrønsethT. SimmR. NesseL.L. Bacterial biofilm and its role in the pathogenesis of disease.Bact. Biof.2020925910.3390/antibiotics902005932028684
    [Google Scholar]
  73. SieradzanA.K. CzaplewskiC. KrupaP. MozolewskaM.A. KarczyńskaA.S. LipskaA.G. LubeckaE.A. GołaśE. WireckiT. MakowskiM. OłdziejS. LiwoA. Modeling the structure, dynamics, and transformations of proteins with the UNRES force field.Methods Mol. Biol.2022237639941610.1007/978‑1‑0716‑1716‑8_2334845623
    [Google Scholar]
  74. LiwoA. SieradzanA.K. LipskaA.G. CzaplewskiC. JoungI. ŻmudzińskaW. HałabisA. OłdziejS. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. III. Determination of scale-consistent backbone-local and correlation potentials in the UNRES force field and force-field calibration and validation.J. Chem. Phys.20191501515510410.1063/1.509301531005069
    [Google Scholar]
  75. CzaplewskiC. KalinowskiS. LiwoA. ScheragaH.A. Application of multiplexed replica exchange molecular dynamics to the UNRES force field: tests with α and α+β proteins.J. Chem. Theory Comput.20095362764010.1021/ct800397z20161452
    [Google Scholar]
  76. KhaliliM. LiwoA. JagielskaA. ScheragaH.A. Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model α-helical systems.J. Phys. Chem. B200510928137981381010.1021/jp058007w16852728
    [Google Scholar]
  77. KhaliliM. LiwoA. RakowskiF. GrochowskiP. ScheragaH.A. Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode.J. Phys. Chem. B200510928137851379710.1021/jp058008o16852727
    [Google Scholar]
  78. KatzgraberH.G. TrebstS. HuseD.A. TroyerM. Feedback-optimized parallel tempering Monte Carlo.J. Statist. Mech. The. Experi.200633P0301810.1088/1742‑5468/2006/03/P03018
    [Google Scholar]
  79. SieradzanA.K. Sans-DuñóJ. LubeckaE.A. CzaplewskiC. LipskaA.G. LeszczyńskiH. OcetkiewiczK.M. ProficzJ. CzarnulP. KrawczykH. LiwoA. Optimization of parallel implementation of UNRES package for coarse-grained simulations to treat large proteins.J. Comput. Chem.202344460262510.1002/jcc.2702636378078
    [Google Scholar]
  80. KumarS. RosenbergJ.M. BouzidaD. SwendsenR.H. KollmanP.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method.J. Comput. Chem.19921381011102110.1002/jcc.540130812
    [Google Scholar]
  81. LiwoA. KhaliliM. CzaplewskiC. KalinowskiS. OłdziejS. WachucikK. ScheragaH.A. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.J. Phys. Chem. B2007111126028510.1021/jp065380a17201450
    [Google Scholar]
  82. BiernatM. WoźniakA. ChraniukM. Effect of selected crosslinking and stabilization methods on the properties of porous chitosan composites dedicated for medical applications.Polymers20231511250710.3390/POLYM15112507
    [Google Scholar]
  83. E2180 standard test method for determining the activity of incorporated antimicrobial agent.Available from: https://www.astm.org/e2180-18.html (Accessed April 30, 2024)
  84. ChraniukM. PanasiukM. HovhannisyanL. ŻołędowskaS. NidzworskiD. CiołekL. WoźniakA. KubiśA. KarskaN. JaegermannZ. Rodziewicz-MotowidłoS. BiernatM. GromadzkaB. Assessment of the toxicity of biocompatible materials supporting bone regeneration: impact of the type of assay and used controls.Toxics20221012010.3390/toxics1001002035051062
    [Google Scholar]
  85. KonnoK. HisadaM. FontanaR. LorenziC.C.B. NaokiH. ItagakiY. MiwaA. KawaiN. NakataY. YasuharaT. NetoR.J. AzevedoD.W.F.Jr PalmaM.S. NakajimaT. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200115501708010.1016/S0167‑4838(01)00271‑011738089
    [Google Scholar]
  86. WojciechowskaM. MacyszynJ. MiszkiewiczJ. GrzelaR. TrylskaJ. Stapled anoplin as an antibacterial agent.Front. Microbiol.20211277203810.3389/fmicb.2021.77203834966367
    [Google Scholar]
  87. IfrahD. DoisyX. RygeT.S. HansenP.R. Structure-activity relationship study of anoplin.J. Pept. Sci.200511211312110.1002/psc.59815635634
    [Google Scholar]
  88. GouS. LiB. OuyangX. BaZ. ZhongC. ZhangT. ChangL. ZhuY. ZhangJ. ZhuN. ZhangY. LiuH. NiJ. Novel broad-spectrum antimicrobial peptide derived from anoplin and its activity on bacterial pneumonia in mice.J. Med. Chem.20216415112471126610.1021/acs.jmedchem.1c0061434180670
    [Google Scholar]
  89. MunkJ.K. UggerhøjL.E. PoulsenT.J. Frimodt-MøllerN. WimmerR. NybergN.T. HansenP.R. Synthetic analogs of anoplin show improved antimicrobial activities.J. Pept. Sci.2013191166967510.1002/psc.254824019229
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037353453241219185311
Loading
/content/journals/cpps/10.2174/0113892037353453241219185311
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test