Skip to content
2000
image of Multi-omics Analysis Reveals the Role of lncRNAs and Peptides in the Age-related Hearing Loss

Abstract

Introduction

The pathogenesis of age-related hearing loss (ARHL), especially the role of long non-coding RNAs (lncRNAs) and their encoded peptides, remains incompletely understood. This study aimed to characterize expression changes in lncRNAs and peptides in the cochleae of ARHL mice and explore the potential functions of lncRNA-encoded peptides multi-omics analysis.

Methods

C57BL/6J mice were used to establish the ARHL model. The molecular expression profiles of cochlear tissues from normal and ARHL mice were synthesized by lncRNA sequencing, peptidomics, and bioinformatics.

Results

Compared with the control group, a total of 789 differentially expressed lncRNAs and 466 differentially expressed peptides were identified in the ARHL group. Functional enrichment analysis revealed their association with key pathways, including ion transport, calcium signaling, the TCA cycle, and cytoskeleton regulation, indicating broad molecular dysregulation in the aging cochlea. Notably, 64 differentially expressed lncRNAs showed high translational potential, yielding 107 novel lncRNA-encoded peptides. These were mainly short peptides, some with stabilizing hydrophobic properties suited for membrane interactions, and enriched in domains like Pkinase and C2, suggesting involvement in signal transduction.

Discussion

These results emphasized that lncRNA-encoded peptides were novel regulators of ARHL, potentially regulating calcium homeostasis and mitochondrial function. The overlap of pathways such as the cytoskeleton and fatty acid metabolism indicated that the lncRNA-peptide axis drove auditory decline, providing institutional insights into the epigenetic basis of ARHL.

Conclusion

Our findings suggest that lncRNA-encoded peptides are a novel class of regulatory molecules involved in the complex pathogenesis of ARHL, highlighting them as promising targets for future therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037423330251019171447
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Lin F.R. Age-related hearing loss. N. Engl. J. Med. 2024 390 16 1505 1512 10.1056/NEJMcp2306778 38657246
    [Google Scholar]
  2. Dong L. Dong W. Zhang S. Jin Y. Jiang Y. Li Z. Li C. Yu D. Global trends and burden of age-related hearing loss: 32-year study. Arch. Gerontol. Geriatr. 2025 134 105847 10.1016/j.archger.2025.105847 40186987
    [Google Scholar]
  3. Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. Brayne C. Burns A. Cohen-Mansfield J. Cooper C. Costafreda S.G. Dias A. Fox N. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Ogunniyi A. Orgeta V. Ritchie K. Rockwood K. Sampson E.L. Samus Q. Schneider L.S. Selbæk G. Teri L. Mukadam N. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  4. Pang J. Xiong H. Lin P. Lai L. Yang H. Liu Y. Huang Q. Chen S. Ye Y. Sun Y. Zheng Y. Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: Implications for age-related hearing loss. Cell Death Dis. 2017 8 10 e3079 10.1038/cddis.2017.462 28981097
    [Google Scholar]
  5. Quinn J.J. Chang H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016 17 1 47 62 10.1038/nrg.2015.10 26666209
    [Google Scholar]
  6. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  7. Kopp F. Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018 172 3 393 407 10.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  8. Taghvimi S. Soltani Fard E. Khatami S.H. Zafaranchi Z M S. Taheri-Anganeh M. Movahedpour A. Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct. Integr. Genomics 2024 24 5 165 10.1007/s10142‑024‑01444‑6 39294422
    [Google Scholar]
  9. Luo X. Hu Y. Zhou X. Zhang C. Feng M. Yang T. Yuan W. Potential roles for lncRNA Mirg/Foxp1 in an ARHL model created using C57BL/6J mice. Hear. Res. 2023 438 108859 10.1016/j.heares.2023.108859 37579646
    [Google Scholar]
  10. Chen J. Brunner A.D. Cogan J.Z. Nuñez J.K. Fields A.P. Adamson B. Itzhak D.N. Li J.Y. Mann M. Leonetti M.D. Weissman J.S. Pervasive functional translation of noncanonical human open reading frames. Science 2020 367 6482 1140 1146 10.1126/science.aay0262 32139545
    [Google Scholar]
  11. Matsumoto A. Pasut A. Matsumoto M. Yamashita R. Fung J. Monteleone E. Saghatelian A. Nakayama K.I. Clohessy J.G. Pandolfi P.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 2017 541 7636 228 232 10.1038/nature21034 28024296
    [Google Scholar]
  12. Barczak W. Carr S.M. Liu G. Munro S. Nicastri A. Lee L.N. Hutchings C. Ternette N. Klenerman P. Kanapin A. Samsonova A. La Thangue N.B. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 2023 14 1 1078 10.1038/s41467‑023‑36826‑0 36841868
    [Google Scholar]
  13. Zaigraev M.M. Lyukmanova E.N. Paramonov A.S. Shenkarev Z.O. Chugunov A.O. Orientational preferences of GPI-Anchored Ly6/uPAR proteins. Int. J. Mol. Sci. 2022 24 1 11 10.3390/ijms24010011 36613456
    [Google Scholar]
  14. Navaratnam D.S. Su H.S. Scott S.P. Oberholtzer J.C. Proliferation in the auditory receptor epithelium mediated by a cyclic AMP–dependent signaling pathway. Nat. Med. 1996 2 10 1136 1139 10.1038/nm1096‑1136 8837614
    [Google Scholar]
  15. Kjellgren Å. Lundgren E. Golovleva I. Kriström B. Werner M. Hearing impairment and vestibular function in patients with a pathogenic splice variant in the LHX3 gene. BMC Med. Genomics 2024 17 1 270 10.1186/s12920‑024‑02049‑5 39548529
    [Google Scholar]
  16. Bauwens L.J.J.M. De Groot J.C.M.J. Veldman J.E. Ramaekers F.C.S. Huizing E.H. Expression of intermediate filament proteins in the adult human vestibular labyrinth. Ann. Otol. Rhinol. Laryngol. 1992 101 6 479 486 10.1177/000348949210100606 1376975
    [Google Scholar]
  17. Brown S.T. Wang J. Groves A.K. Dlx gene expression during chick inner ear development. J. Comp. Neurol. 2005 483 1 48 65 10.1002/cne.20418 15672396
    [Google Scholar]
  18. Mammano F. Bortolozzi M. Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2018 70 117 126 10.1016/j.ceca.2017.05.006 28578918
    [Google Scholar]
  19. Gao L. Yang F. Tang D. Xu Z. Tang Y. Yang D. Sun D. Chen Z. Teng Y. Mediation of PKM2-dependent glycolytic and non-glycolytic pathways by ENO2 in head and neck cancer development. J. Exp. Clin. Cancer Res. 2023 42 1 1 10.1186/s13046‑022‑02574‑0 36588153
    [Google Scholar]
  20. Zhao J. Li G. Zhao X. Lin X. Gao Y. Raimundo N. Li G.L. Shang W. Wu H. Song L. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging 2020 12 7 5590 5611 10.18632/aging.102977 32240104
    [Google Scholar]
  21. Luo H. Urbonaviciute V. Saei A.A. Lyu H. Gaetani M. Végvári Á. Li Y. Zubarev R.A. Holmdahl R. NCF1-dependent production of ROS protects against lupus by regulating plasmacytoid dendritic cell development and functions. JCI Insight 2023 8 7 e164875 10.1172/jci.insight.164875 36853827
    [Google Scholar]
  22. Tan W.J.T. Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear. Res. 2023 434 108783 10.1016/j.heares.2023.108783 37167889
    [Google Scholar]
  23. Mostowy S. Cossart P. Septins: The fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012 13 3 183 194 10.1038/nrm3284 22314400
    [Google Scholar]
  24. Weng W. Gu X. Yang Y. Zhang Q. Deng Q. Zhou J. Cheng J. Zhu M.X. Feng J. Huang O. Li Y. N-terminal α-amino SUMOylation of cofilin-1 is critical for its regulation of actin depolymerization. Nat. Commun. 2023 14 1 5688 10.1038/s41467‑023‑41520‑2 37709794
    [Google Scholar]
  25. White J.M. ADAMs: modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 2003 15 5 598 606 10.1016/j.ceb.2003.08.001 14519395
    [Google Scholar]
  26. Xia M. Zhang F. Ma J. Li Y. Jia G. Wu M. Lou Y. Liu Y. Li L. Li H. Li W. Single-nucleus profiling of mouse inner ear aging uncovers cell type heterogeneity and hair cell subtype-specific age-related signatures. Cell Rep. 2025 44 6 115781 10.1016/j.celrep.2025.115781 40440168
    [Google Scholar]
  27. Liu W. Wang X. Xu D. Gong F. Pei L. Yang S. Zhao S. Zheng X. Li R. Yang Z. Fei J. Mao E. Chen E. Chen Y. SIRT5 mediated succinylation of SUCLA2 regulates TCA cycle dysfunction and mitochondrial damage in pancreatic acinar cells in acute pancreatitis. Biochim. Biophys. Acta Mol. Basis Dis. 2025 1871 3 167613 10.1016/j.bbadis.2024.167613 39643219
    [Google Scholar]
  28. Zhang A. Pan Y. Wang H. Ding R. Zou T. Guo D. Shen Y. Ji P. Huang W. Wen Q. Wang Q. Hu H. Wu J. Xiang M. Ye B. Excessive processing and acetylation of OPA1 aggravate age-related hearing loss via the dysregulation of mitochondrial dynamics. Aging Cell 2024 23 4 e14091 10.1111/acel.14091 38267829
    [Google Scholar]
  29. Kalinec G.M. Lomberk G. Urrutia R.A. Kalinec F. Resolution of cochlear inflammation: Novel target for preventing or ameliorating drug-, noise- and age-related hearing loss. Front. Cell. Neurosci. 2017 11 192 10.3389/fncel.2017.00192 28736517
    [Google Scholar]
  30. Wang J. Puel J.L. Presbycusis: An update on cochlear mechanisms and therapies. J. Clin. Med. 2020 9 1 218 10.3390/jcm9010218 31947524
    [Google Scholar]
  31. Xie W. Shu T. Peng H. Liu J. Li C. Wang M. Wu P. Liu Y. LncRNA H19 inhibits oxidative stress injury of cochlear hair cells by regulating miR-653-5p/SIRT1 axis. Acta Biochim. Biophys. Sin. 2022 54 3 332 339 10.3724/abbs.2022018 35538041
    [Google Scholar]
  32. Al-Sheikh U. Kang L. Molecular crux of hair cell mechanotransduction machinery. Neuron 2020 107 3 404 406 10.1016/j.neuron.2020.07.007 32758446
    [Google Scholar]
  33. Guo D. Zhang A. Zou T. Ding R. Chen K. Pan Y. Ji P. Ye B. Xiang M. The influence of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction. Front. Aging Neurosci. 2022 14 930105 10.3389/fnagi.2022.930105 35966796
    [Google Scholar]
  34. Ren S. Uversky V.N. Chen Z. Dunker A.K. Obradovic Z. Short linear motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions. BMC Genomics 2008 9 Suppl 2 S26 10.1186/1471‑2164‑9‑S2‑S26 18831792 PMC2559891
    [Google Scholar]
  35. Downing R. Volpe B.G. May S. Saddle-curvature instability of lipid bilayer induced by amphipathic peptides: A molecular model. Soft Matter 2020 16 21 5032 5043 10.1039/D0SM00499E 32452495
    [Google Scholar]
  36. Cherry M.A. Higgins S.K. Melroy H. Lee H.S. Pokorny A. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. J. Phys. Chem. B 2014 118 43 12462 12470 10.1021/jp507289w 25329983
    [Google Scholar]
  37. Narayanasamy S. Ong H.L. Ambudkar I.S. A deep dive into the N-Terminus of STIM Proteins: Structure–function analysis and evolutionary significance of the functional domains. Biomolecules 2024 14 10 1200 10.3390/biom14101200 39456133
    [Google Scholar]
  38. Bowers M.R. Reist N.E. The C2A domain of synaptotagmin is an essential component of the calcium sensor for synaptic transmission. PLoS One 2020 15 2 e0228348 10.1371/journal.pone.0228348 32032373
    [Google Scholar]
  39. Hu S. Sun Q. Xu F. Jiang N. Gao J. Age-related hearing loss and its potential drug candidates: A systematic review. Chin. Med. 2023 18 1 121 10.1186/s13020‑023‑00825‑6 37730634
    [Google Scholar]
  40. Suskiewicz M.J. Munnur D. Strømland Ø. Yang J.C. Easton L.E. Chatrin C. Zhu K. Baretić D. Goffinont S. Schuller M. Wu W.F. Elkins J.M. Ahel D. Sanyal S. Neuhaus D. Ahel I. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res. 2023 51 15 8217 8236 10.1093/nar/gkad514 37326024
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037423330251019171447
Loading
/content/journals/cpps/10.2174/0113892037423330251019171447
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test