Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Osteoarthritis (OA) is a persistent joint condition marked by gradual softening and breakdown of articular cartilage. Current research in OA treatment explores biologics that target proinflammatory cytokines and proteases, as well as promote chondrocyte regeneration and cartilage repair. Human placental tissues, abundant in anti-catabolic factors, can mitigate cartilage degradation by inhibiting protease expression and maintaining cartilage homeostasis in the presence of anabolic factors.

Objective

This investigation examined placental protein interactions with proteases and OA target proteins through protein-protein docking and dynamic studies.

Methods

The NCBI conserved domain database was utilized to predict functional protein domains. Protein sequence motifs were identified using literature, the MEME suite tool, and the MyHits database. The Expasy-ProtParam online tool was employed to analyze protein physical parameters. ClusPro Advanced Options was used to dock binding site residues of selected placental proteins against specific OA target proteins, while PDBsum and Biovia Discovery Studio were used to visualize and examine molecular interactions. A 100 ns molecular dynamics (MD) study was conducted using DESMOND software.

Results

Protein-protein docking revealed strong interactions of placental proteins with docking scores ranging from -1700 to -2450.3 against proteases and -900 to -1400 against specific target proteins. PDBsum analysis of placental protein-target protein docked complexes revealed residue interactions, hydrogen bonds, and non-bonded contacts. Molecular dynamics simulations further confirmed the stability of these complexes, indicating favorable protein-protein interactions (PPIs). The anti-inflammatory activity of human placental tissue against lipopolysaccharide-induced macrophages was investigated using flow cytometry.

Conclusion

These results provide a foundation for future experimental studies to confirm the predicted interactions and to explore their potential therapeutic applications in OA treatment. Additionally, patients with OA and other arthritic conditions could benefit from the biologics chondroprotective biofactors, which serve as a promising alternative to conventional knee replacement surgery.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037366889250322043039
2025-04-14
2025-11-07
Loading full text...

Full text loading...

References

  1. FiksmanF. Krekhovska-LepiavkoO.M. LokayB.A. Osteoarthritis: Its prevalence, risk factors, clinical manifestation, diagnosis and treatment.Медсестринство20230847910.11603/2411‑1597.2022.4.13759
    [Google Scholar]
  2. Hicks-LittleC.A. HubbardT.J. CordovaM.L. The role of exercise in the treatment of knee osteoarthritis.Athl. Ther. Today200813371010.1123/att.13.3.7
    [Google Scholar]
  3. LatourteA. KloppenburgM. RichetteP. Emerging pharmaceutical therapies for osteoarthritis.Nat. Rev. Rheumatol.2020161267368810.1038/s41584‑020‑00518‑633122845
    [Google Scholar]
  4. CaiX. YuanS. ZengY. WangC. YuN. DingC. New trends in pharmacological treatments for osteoarthritis.Front. Pharmacol.20211264584210.3389/fphar.2021.64584233935742
    [Google Scholar]
  5. KimmerlingK.A. GomollA.H. FarrJ. MowryK.C. Amniotic suspension allograft modulates inflammation in a rat pain model of osteoarthritis.J. Orthop. Res.20203851141114910.1002/jor.2455931814175
    [Google Scholar]
  6. SandellL.J. AignerT. Articular cartilage and changes in Arthritis: Cell biology of osteoarthritis.Arthritis Res. Ther.20013210711310.1186/ar14811178118
    [Google Scholar]
  7. EmaraA.K. AnisH. PiuzziN.S. Human placental extract: The feasibility of translation from basic science into clinical practice.Ann. Transl. Med.20208515615610.21037/atm.2020.01.5032310247
    [Google Scholar]
  8. McClurgO. TinsonR. TroebergL. Targeting cartilage degradation in osteoarthritis.Pharmaceuticals202114212610.3390/ph1402012633562742
    [Google Scholar]
  9. FlanneryC.R. BuddinK.E. BegumL. NasertM.A. CatalfamoB. SemlerE.J. FortierL.A. Composition and bioactivity of a placental tissue particulate (ptp-001) indicate greater potential than platelet-rich plasma for the treatment of osteoarthritis.Cartilage202314446747210.1177/1947603523115974836912174
    [Google Scholar]
  10. BhattacharjeeM. IviricoE.J.L. KanH.M. ShahS. OtsukaT. BordettR. BarajaaM. NagiahN. PandeyR. NairL.S. LaurencinC.T. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment.Proc. Natl. Acad. Sci. USA20221194e212096811910.1073/pnas.212096811935046053
    [Google Scholar]
  11. FlanneryC.R. SeamanS.A. BuddinK.E. NasertM.A. SemlerE.J. KelleyK.L. LongM. FavretJ. PavesioA. LoeserR.F. A novel placental tissue biologic, PTP-001, inhibits inflammatory and catabolic responses in vitro and prevents pain and cartilage degeneration in a rat model of osteoarthritis.Osteoarthritis Cartilage20212981203121210.1016/j.joca.2021.03.02234023528
    [Google Scholar]
  12. Marino-MartínezI.A. Martínez-CastroA.G. Peña-MartínezV.M. Acosta-OlivoC.A. Vílchez-CavazosF. Guzmán-LópezA. RodríguezP.E. Romero-DíazV.J. Ortega-BlancoJ.A. Lara-AriasJ. Human amniotic membrane intra-articular injection prevents cartilage damage in an osteoarthritis model.Exp. Ther. Med.2019171111610.3892/etm.2018.692430651759
    [Google Scholar]
  13. GwamC. OhaneleC. HambyJ. ChughtaiN. MuftiZ. MaX. Human placental extract: A potential therapeutic in treating osteoarthritis.Ann. Transl. Med.202311932232210.21037/atm.2019.10.2037404996
    [Google Scholar]
  14. KimJ. KimT. ParkS. KimH. KimS. LeeS. LeeS. Protective effects of human placenta extract on cartilage degradation in experimental osteoarthritis.Biol. Pharm. Bull.20103361004101010.1248/bpb.33.100420522967
    [Google Scholar]
  15. MohamedN.S. WilkieW.A. RemilyE.A. DelanoisR.E. Can human placental extract help patients with osteoarthritis?Ann. Transl. Med.2020846210.21037/atm.2019.12.13532176220
    [Google Scholar]
  16. TansathienK. SuriyaampornP. NgawhirunpatT. OpanasopitP. RangsimawongW. A novel approach for skin regeneration by a potent bioactive placental-loaded microneedle patch: Comparative study of deer, goat, and porcine placentas.Pharmaceutics2022146122110.3390/pharmaceutics1406122135745793
    [Google Scholar]
  17. PlichtaJ. KunaP. PanekM. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives.Front. Immunol.202314120764110.3389/fimmu.2023.120764137334374
    [Google Scholar]
  18. DelanoisR.E. EtchesonJ.I. SodhiN. HennR.F.III GwamC.U. GeorgeN.E. MontM.A. Biologic therapies for the treatment of knee osteoarthritis.J. Arthroplasty201934480181310.1016/j.arth.2018.12.00130612835
    [Google Scholar]
  19. JamesJ.J. SandhyaK.V. SridharK.N. SudarsonS. BasavarajB.V. BharathS. Proteomic characterization of human placenta: Insights into potential therapeutic applications for osteoarthritis.AAPS PharmSciTech202425613910.1208/s12249‑024‑02851‑538890179
    [Google Scholar]
  20. JamesJ.J. PavadaiP. SandhyaK.V. Current Trends in Drug Discovery, Development and Delivery. In: MurahariM. NalluriB.N. ChakravarthiG. LondonRoyal Society of Chemistry2023576910.1039/9781837671090‑00057
    [Google Scholar]
  21. MatadaP.G.S. DhiwarP.S. AbbasN. SinghE. GharaA. DasA. BhargavaS.V. Molecular docking and molecular dynamic studies: Screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer.J. Biomol. Struct. Dyn.202240136183619210.1080/07391102.2021.187782333525984
    [Google Scholar]
  22. GopinathP. KathiravanM.K. Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity.RSC Advances20211160380793809310.1039/D1RA07377J35498092
    [Google Scholar]
  23. GengH. ChenF. YeJ. JiangF. Applications of molecular dynamics simulation in structure prediction of peptides and proteins.Comput. Struct. Biotechnol. J.2019171162117010.1016/j.csbj.2019.07.01031462972
    [Google Scholar]
  24. JiangM. NiuC. CaoJ. NiD. ChuZ. In silico-prediction of protein–protein interactions network about MAPKs and PP2Cs reveals a novel docking site variants in Brachypodium distachyon. Sci. Rep.2018811508310.1038/s41598‑018‑33428‑530305661
    [Google Scholar]
  25. RaoG.A.B.N. PavadaiP. RajamanickamD. Unravelling the Potential of Morinda citrifolia in wound care: An Integrated Computational Approach.Afr. J. Biomed. Res.2024272689271210.53555/AJBR.v27i4S.4097
    [Google Scholar]
  26. KumariG. NigamV.K. PandeyD.M. The molecular docking and molecular dynamics study of flavonol synthase and flavonoid 3′-monooxygenase enzymes involved for the enrichment of kaempferol.J. Biomol. Struct. Dyn.20234162478249110.1080/07391102.2022.203332435105279
    [Google Scholar]
  27. KumariM. SinghR. SubbaraoN. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of Mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation.J. Biomol. Struct. Dyn.20224024134971352610.1080/07391102.2021.198904034662260
    [Google Scholar]
  28. HariniM. KavithaK. PrabakaranV. KrithikaA. DineshS. RajalakshmiA. SureshG. PuvanakrishnanR. RameshB. Identification of apigenin-4′-glucoside as bacterial DNA gyrase inhibitor by QSAR modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation studies.J. Mol. Model.20243012210.1007/s00894‑023‑05813‑z38170229
    [Google Scholar]
  29. SalariaP. AkshinthalaP. KapavarapuR. MA.R. Identification of novel C-15 fluoro isosteviol derivatives for GABA-AT inhibition by in silico investigations.J. Mol. Model.20232937610.1007/s00894‑023‑05479‑736826597
    [Google Scholar]
  30. GucluG. TasA. DincerE. UcarE. KayaS. BerishaA. DuralE. SiligY. Biological evaluation and in silico molecular docking studies of Abies cilicica (Antoine & Kotschy) Carrière resin.J. Mol. Struct.2023128813574010.1016/j.molstruc.2023.135740
    [Google Scholar]
  31. GilesD. SaiprabhaV.N. YeshnaG. Design of chalcones of 7-Azaindole as Raf-B inhibitors.J. Adv. Chem. Sci.20194460660810.30799/jacs.183.18040404
    [Google Scholar]
  32. TiwariN.P. PandeyJ.P. PandeyD.M. Protein–protein docking and molecular dynamics studies of sericin and cocoonase of silkworm: An insight for cocoon softening.J. Biomol. Struct. Dyn.20234141193120510.1080/07391102.2021.201735234939532
    [Google Scholar]
  33. ChristofferC. BharadwajV. LuuR. KiharaD. LZerd protein-protein docking webserver enhanced with de novo structure prediction.Front. Mol. Biosci.2021872494710.3389/fmolb.2021.72494734466411
    [Google Scholar]
  34. PremachandranK. SrinivasanT.S. AlphonseW.C.R. In silico approach on sequential and structural variability in oryzacystatin and its interaction with cysteine protease enzymes of insect.Phytochemistry202118611272810.1016/j.phytochem.2021.11272833721793
    [Google Scholar]
  35. PremachandranK. SrinivasanT.S. In silico modelling and interactive profiling of BPH resistance NBS-LRR proteins with salivary specific proteins of rice planthoppers.Gene Rep.20222810164810.1016/j.genrep.2022.101648
    [Google Scholar]
  36. PeacockT. ChainB. Information-driven docking for TCR-pMHC complex prediction.Front. Immunol.20211268612710.3389/fimmu.2021.68612734177934
    [Google Scholar]
  37. PanA.C. JacobsonD. YatsenkoK. SritharanD. WeinreichT.M. ShawD.E. Atomic-level characterization of protein–protein association.Proc. Natl. Acad. Sci. USA2019116104244424910.1073/pnas.181543111630760596
    [Google Scholar]
  38. LopezJ.A. QuoikaP.K. LinkeM. HummerG. KöfingerJ. Quantifying protein–protein interactions in molecular simulations.J. Phys. Chem. B2020124234673468510.1021/acs.jpcb.9b1180232379446
    [Google Scholar]
  39. BalasubramaniamM. AyyadevaraS. ReisS.R.J. Structural insights into pro-aggregation effects of C. elegans CRAM-1 and its human ortholog SERF2.Sci. Rep.2018811489110.1038/s41598‑018‑33143‑130291272
    [Google Scholar]
  40. ChongW.L. ChupraditK. ChinS.P. KhooM.M. KhorS.M. TayapiwatanaC. NimmanpipugP. ThongkumW. LeeV.S. Protein-protein interactions: Insight from molecular dynamics simulations and nanoparticle tracking analysis.Molecules20212618569610.3390/molecules2618569634577167
    [Google Scholar]
  41. WangJ. AlekseenkoA. KozakovD. MiaoY. Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations.Front. Mol. Biosci.2019611210.3389/fmolb.2019.0011231737642
    [Google Scholar]
  42. KumarB. ParasuramanP. MurthyT.P.K. MurahariM. ChandramohanV. In silico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (Mpro) structure of SARS-CoV-2.J. Biomol. Struct. Dyn.202240177796781410.1080/07391102.2021.190239433759690
    [Google Scholar]
  43. PetchimuthuP. AlaC. KunjiappanS. PavadaiP. SankaranarayananM. Ram Kumar PandianS. SundarK. Pharmacoinformatics-based identification of phytochemicals from Solanum torvum Swartz. fruits as potential inhibitors for MAPK14 protein.J. Biomol. Struct. Dyn.202442157795781110.1080/07391102.2023.224656237583290
    [Google Scholar]
  44. ArumugamM. ShanmugavelB. SellppanM. PavadaiP. In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 – inhibitors using molecular dynamic approach.J. Biomol. Struct. Dyn.20244221072107810.1080/07391102.2023.220184837139540
    [Google Scholar]
  45. VellurS. PavadaiP. BabkiewiczE. Ram Kumar PandianS. MaszczykP. KunjiappanS. An in silico molecular modelling-based prediction of potential keap1 inhibitors from hemidesmus indicus (L.) R.Br. against oxidative-stress-induced diseases.Molecules20232811454110.3390/molecules2811454137299017
    [Google Scholar]
  46. MohankumarT. ChandramohanV. LalithambaH.S. JayarajR.L. KumaradhasP. SivanandamM. HundayG. VijayakumarR. BalakrishnanR. ManimaranD. ElangovanN. Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein.Sci. Rep.202010159910.1038/s41598‑020‑57417‑9
    [Google Scholar]
  47. KalimuthuA.K. PanneerselvamT. PavadaiP. PandianS.R.K. SundarK. MurugesanS. AmmunjeD.N. KumarS. ArunachalamS. KunjiappanS. Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer.Sci. Rep.20211112148810.1038/s41598‑021‑01008‑934728718
    [Google Scholar]
  48. HuangJ. WuS. XieX. WangM. ZhuS. GuJ. Inhibiting effects of Leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells.Eur. J. Pharmacol.2011670130431010.1016/j.ejphar.2011.07.04521871883
    [Google Scholar]
  49. AikawaY. YamamotoM. YamamotoT. MorimotoK. TanakaK. An anti-rheumatic agent T-614 inhibits NF-κB activation in LPS- and TNF-α-stimulated THP-1 cells without interfering with IκBα degradation.Inflamm. Res.200251418819410.1007/PL0000029112058956
    [Google Scholar]
  50. VishwakarmaS. IyerL.R. MuleyM. SinghP.K. ShastryA. SaxenaA. KulathingalJ. VijaykanthG. RaghulJ. RajeshN. RathinasamyS. KachhadiaV. KilambiN. RajgopalS. BalasubramanianG. NarayananS. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects.Int. Immunopharmacol.2013161727810.1016/j.intimp.2013.03.01623541634
    [Google Scholar]
  51. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for Rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.10862230797146
    [Google Scholar]
  52. GrattendickK.J. NakashimaJ.M. FengL. GiriS.N. MargolinS.B. Effects of three anti-TNF-α drugs: Etanercept, infliximab and pirfenidone on release of TNF-α in medium and TNF-α associated with the cell in vitro. Int. Immunopharmacol.20088567968710.1016/j.intimp.2008.01.01318387510
    [Google Scholar]
  53. FanD. KassiriZ. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology.Front. Physiol.20201166110.3389/fphys.2020.0066132612540
    [Google Scholar]
  54. LechowiczU. RudzinskiS. Jezela-StanekA. JanciauskieneS. Chorostowska-WynimkoJ. Post-translational modifications of circulating alpha-1-antitrypsin protein.Int. J. Mol. Sci.20202123918710.3390/ijms2123918733276468
    [Google Scholar]
  55. HuQ. EckerM. Overview of MMP-13 as a promising target for the treatment of osteoarthritis.Int. J. Mol. Sci.2021224174210.3390/ijms2204174233572320
    [Google Scholar]
  56. KumarS.K. VelayuthamR. RoyK.K. A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis.J. Biomol. Struct. Dyn.202038103074308610.1080/07391102.2019.165122131378153
    [Google Scholar]
  57. SantamariaS. CuffaroD. NutiE. CicconeL. TuccinardiT. LivaF. D’AndreaF. GrootD.R. RosselloA. AhnströmJ. Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide.Sci. Rep.202111194910.1038/s41598‑020‑80294‑133441904
    [Google Scholar]
  58. MosyakL. GeorgiadisK. ShaneT. SvensonK. HebertT. McDonaghT. MackieS. OllandS. LinL. ZhongX. KrizR. ReifenbergE.L. Collins-RacieL.A. CorcoranC. FreemanB. ZollnerR. MarvellT. VeraM. SumP.E. LavallieE.R. StahlM. SomersW. Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5.Protein Sci.2008171162110.1110/ps.07328700818042673
    [Google Scholar]
  59. JandovaZ. VargiuA.V. BonvinA.M.J.J. Native or non-native protein–protein docking models? Molecular dynamics to the rescue.J. Chem. Theory Comput.20211795944595410.1021/acs.jctc.1c0033634342983
    [Google Scholar]
  60. CherifiC. MonteagudoS. LoriesR.J. Promising targets for therapy of osteoarthritis: A review on the Wnt and TGF-β signalling pathways.Ther. Adv. Musculoskelet. Dis.2021131759720X21100695910.1177/1759720X21100695933948125
    [Google Scholar]
  61. ShiehH.S. MathisK.J. WilliamsJ.M. HillsR.L. WieseJ.F. BensonT.E. KieferJ.R. MarinoM.H. CarrollJ.N. LeoneJ.W. MalfaitA.M. ArnerE.C. TortorellaM.D. TomasselliA. High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2).J. Biol. Chem.200828331501150710.1074/jbc.M70587920017991750
    [Google Scholar]
  62. LevinM. UdiY. SolomonovI. SagiI. Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects.Biochim. Biophys. Acta Mol. Cell Res.20171864111927193910.1016/j.bbamcr.2017.06.00928636874
    [Google Scholar]
  63. KashiwagiM. TortorellaM. NagaseH. BrewK. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5).J. Biol. Chem.200127616125011250410.1074/jbc.C00084820011278243
    [Google Scholar]
  64. TroebergL. MulloyB. GhoshP. LeeM.H. MurphyG. NagaseH. Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex.Biochem. J.2012443130731510.1042/BJ2011215922299597
    [Google Scholar]
  65. ChaneyS. VergaraR. QiryaqozZ. SuggsK. AkkouchA. The involvement of neutrophils in the pathophysiology and treatment of osteoarthritis.Biomedicines2022107160410.3390/biomedicines1007160435884909
    [Google Scholar]
  66. FeiR. ZhangH. ZhongS. XueB. GaoY. ZhouX. Anti-inflammatory activity of a thermophilic serine protease inhibitor from extremophile Pyrobaculum neutrophilum.Eur. J. Inflamm.201715314315110.1177/1721727X17739516
    [Google Scholar]
  67. WilkinsonD.J. ArquesM.C. HuesaC. RowanA.D. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: Implications for therapeutics.Br. J. Pharmacol.20191761385110.1111/bph.1417329473950
    [Google Scholar]
  68. WilkinsonD.J. Serpins in cartilage and osteoarthritis: What do we know?Biochem. Soc. Trans.20214921013102610.1042/BST2020123133843993
    [Google Scholar]
  69. JanciauskieneS. WrengerS. ImmenschuhS. OlejnickaB. GreulichT. WelteT. Chorostowska-WynimkoJ. The multifaceted effects of Alpha1-Antitrypsin on neutrophil functions.Front. Pharmacol.2018934110.3389/fphar.2018.0034129719508
    [Google Scholar]
  70. KanevaM.K. MuleyM.M. KrustevE. ReidA.R. SouzaP.R. Dell’AccioF. McDougallJ.J. PerrettiM. Alpha-1-antitrypsin reduces inflammation and exerts chondroprotection in arthritis.FASEB J.2021355e2147210.1096/fj.202001801R33788977
    [Google Scholar]
  71. ChenH. CuiY. ZhangD. XieJ. ZhouX. The role of fibroblast growth factor 8 in cartilage development and disease.J. Cell. Mol. Med.202226499099910.1111/jcmm.1717435001536
    [Google Scholar]
  72. ShenJ. LiS. ChenD. TGF-β signaling and the development of osteoarthritis.Bone Res.2014211400210.1038/boneres.2014.225541594
    [Google Scholar]
  73. EllmanM.B. YanD. AhmadiniaK. ChenD. AnH.S. ImH.J. Fibroblast growth factor control of cartilage homeostasis.J. Cell. Biochem.2013114473574210.1002/jcb.2441823060229
    [Google Scholar]
  74. ZhangJ. LiuZ. LiY. YouQ. YangJ. JinY. ZouG. TangJ. GeZ. LiuY. FGF2: A key regulator augmenting tendon-to-bone healing and cartilage repair.Regen. Med.20201592129214210.2217/rme‑2019‑008033201773
    [Google Scholar]
  75. JamesJ.J. PahalS. JayaramanA. AN.D. NarasimhacharK.S. SundarrajanS. VeerabhadraiahB.B. SrinivasanB. VemulaP.K. NguyenT.D. VeethilK.S. Polymeric microneedles for transdermal delivery of human placental tissue for the treatment of osteoarthritis.Macromol. Biosci.20242400485240048510.1002/mabi.20240048539704612
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037366889250322043039
Loading
/content/journals/cpps/10.2174/0113892037366889250322043039
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test