Skip to content
2000
image of Unveiling the Advances in Protein Kinase: From Concept to Clinic

Abstract

Protein kinase inhibitors (PKIs) are medicinal substances that target enzymes essential to vital cellular functions by controlling kinase activity. PKIs are being considered as targeted therapeutics to disrupt carcinogenic pathways since dysregulated kinase signalling is a hallmark of cancer. According to their binding mechanisms, PKIs are structurally categorised as follows: Type I inhibitors bind ATP competitively, Type II inhibitors target inactive kinase conformations, Type III inhibitors act through allosteric modulation, Type IV inhibitors operate independently of ATP, and Type V inhibitors, also referred to as covalent inhibitors, create irreversible bonds with target residues. PKIs have shown promise as a treatment for a number of malignancies, including leukemia, melanoma, lung, breast, and kidney cancers. While HER2-targeted PKIs have greatly improved results in breast cancer, targeting EGFR and ALK mutations has enhanced the treatment of lung cancer. Treatments for melanoma target BRAF and MEK inhibitors, while those for renal cell carcinoma concentrate on VEGF and mTOR pathways. Tyrosine kinase inhibitors have made significant strides in treating chronic myeloid leukemia, improving remission rates. Notwithstanding these achievements, resistance mechanisms still pose a threat to the efficacy of treatment, highlighting the necessity of continued investigation into next-generation PKIs and combination approaches to improve clinical outcomes for a range of cancer types. This article provides a comprehensive review of recent advancements in PKI research, including their mechanisms, therapeutic applications, and strategies to overcome drug resistance.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037406748250901214051
2025-09-24
2025-12-14
Loading full text...

Full text loading...

References

  1. Bao W Yang B Chen B. TAPE_selection: Organelle proteins classification with TAPE feature selection. IEEE Trans. Comput. Biol. Bioinform. 2025 PP 99 1 13 10.1109/TCBBIO.2025.3559713
    [Google Scholar]
  2. Arter C. Trask L. Ward S. Yeoh S. Bayliss R. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. J. Biol. Chem. 2022 298 8 102247 10.1016/j.jbc.2022.102247 35830914
    [Google Scholar]
  3. Bao W. Yang B. Protein acetylation sites with complex-valued polynomial model. Front. Comput. Sci. 2024 18 3 183904 10.1007/s11704‑023‑2640‑9
    [Google Scholar]
  4. Cohen P. Alessi D.R. Kinase drug discovery--What’s next in the field? ACS Chem. Biol. 2013 8 1 96 104 10.1021/cb300610s 23276252
    [Google Scholar]
  5. Ferguson F.M. Gray N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov. 2018 17 5 353 377 10.1038/nrd.2018.21 29545548
    [Google Scholar]
  6. Zarrin A.A. Bao K. Lupardus P. Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021 20 1 39 63 10.1038/s41573‑020‑0082‑8 33077936
    [Google Scholar]
  7. Costa-Mattioli M. Walter P. The integrated stress response: From mechanism to disease. Science 2020 368 6489 eaat5314 10.1126/science.aat5314 32327570
    [Google Scholar]
  8. Nikolic I. Leiva M. Sabio G. The role of stress kinases in metabolic disease. Nat. Rev. Endocrinol. 2020 16 12 697 716 10.1038/s41574‑020‑00418‑5 33067545
    [Google Scholar]
  9. Kumar R. Sanawar R. Li X. Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2017 605 20 31 10.1016/j.gene.2016.12.014 28007610
    [Google Scholar]
  10. Manning B.D. Toker A. AKT/PKB signaling: Navigating the network. Cell 2017 169 3 381 405 10.1016/j.cell.2017.04.001 28431241
    [Google Scholar]
  11. Ou X. Gao G. Habaz I.A. Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm 2024 5 9 e694 10.1002/mco2.694 39184861
    [Google Scholar]
  12. Zhang J. Yang P.L. Gray N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009 9 1 28 39 10.1038/nrc2559 19104514
    [Google Scholar]
  13. Li J. Gong C. Zhou H. Liu J. Xia X. Ha W. Jiang Y. Liu Q. Xiong H. Kinase inhibitors and kinase-targeted cancer therapies: Recent advances and future perspectives. Int. J. Mol. Sci. 2024 25 10 5489 10.3390/ijms25105489 38791529
    [Google Scholar]
  14. Hussain S. Mursal M. Verma G. Hasan S.M. Khan M.F. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur. J. Pharmacol. 2024 970 176484 10.1016/j.ejphar.2024.176484 38467235
    [Google Scholar]
  15. Bhullar K.S. Lagarón N.O. McGowan E.M. Parmar I. Jha A. Hubbard B.P. Rupasinghe H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018 17 1 48 10.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  16. Liu Y. Gray N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006 2 7 358 364 10.1038/nchembio799 16783341
    [Google Scholar]
  17. Zhang Q. Wang R. Xu L. Clinical advances in EGFR-TKI combination therapy for EGFR-mutated NSCLC: A narrative review. Transl. Cancer Res. 2023 12 12 3764 3778 10.21037/tcr‑23‑956 38192990
    [Google Scholar]
  18. Kufareva I. Abagyan R. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem. 2008 51 24 7921 7932 10.1021/jm8010299 19053777
    [Google Scholar]
  19. Lamba V. Ghosh I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr. Pharm. Des. 2012 18 20 2936 2945 10.2174/138161212800672813 22571662
    [Google Scholar]
  20. Eglen R. Reisine T. Drug discovery and the human kinome: Recent trends. Pharmacol. Ther. 2011 130 2 144 156 10.1016/j.pharmthera.2011.01.007 21256157
    [Google Scholar]
  21. Naik R.R. Shakya A.K. Exploring the chemotherapeutic potential of currently used kinase inhibitors: An update. Front. Pharmacol. 2023 13 1064472 10.3389/fphar.2022.1064472 36699049
    [Google Scholar]
  22. Lu X. Smaill J.B. Patterson A.V. Ding K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J. Med. Chem. 2022 65 1 58 83 10.1021/acs.jmedchem.1c01719 34962782
    [Google Scholar]
  23. Roskoski R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024 200 107059 10.1016/j.phrs.2024.107059 38216005
    [Google Scholar]
  24. Johnson L.N. Lewis R.J. Structural basis for control by phosphorylation. Chem. Rev. 2001 101 8 2209 2242 10.1021/cr000225s 11749371
    [Google Scholar]
  25. Cheng H.C. Qi R.Z. Paudel H. Zhu H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res. 2011 2011 1 3 10.4061/2011/794089 22195276
    [Google Scholar]
  26. Kannaiyan R. Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther. 2018 18 12 1249 1270 10.1080/14737140.2018.1527688 30259761
    [Google Scholar]
  27. Blume-Jensen P. Hunter T. Oncogenic kinase signalling. Nature 2001 411 6835 355 365 10.1038/35077225 11357143
    [Google Scholar]
  28. Dankner M. Rose A.A.N. Rajkumar S. Siegel P.M. Watson I.R. Classifying BRAF alterations in cancer: New rational therapeutic strategies for actionable mutations. Oncogene 2018 37 24 3183 3199 10.1038/s41388‑018‑0171‑x 29540830
    [Google Scholar]
  29. Liu Q. Yu S. Zhao W. Qin S. Chu Q. Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer 2018 17 1 53 10.1186/s12943‑018‑0793‑1 29455669
    [Google Scholar]
  30. Śmiech M. Leszczyński P. Kono H. Wardell C. Taniguchi H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes 2020 11 11 1342 10.3390/genes11111342 33198372
    [Google Scholar]
  31. Thomas R. Weihua Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol. 2019 9 800 10.3389/fonc.2019.00800 31508364
    [Google Scholar]
  32. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  33. Ridge C.A. McErlean A.M. Ginsberg M.S. Epidemiology of lung cancer. Semin. Interv. Radiol. 2013 30 2 93 98 10.1055/s‑0033‑1342949 24436524
    [Google Scholar]
  34. Kanwal M. Ding X.J. Cao Y. Familial risk for lung cancer. Oncol. Lett. 2017 13 2 535 542 10.3892/ol.2016.5518 28356926
    [Google Scholar]
  35. Khouri C. Mahé J. Caquelin L. Locher C. Despas F. Pharmacology and pharmacovigilance of protein kinase inhibitors. Therapie 2022 77 2 207 217 10.1016/j.therap.2021.11.004 34895753
    [Google Scholar]
  36. Chapman A.M. Sun K.Y. Ruestow P. Cowan D.M. Madl A.K. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer 2016 102 122 134 10.1016/j.lungcan.2016.10.010 27987580
    [Google Scholar]
  37. Wang X. Ricciuti B. Nguyen T. Li X. Rabin M.S. Awad M.M. Lin X. Johnson B.E. Christiani D.C. Association between smoking history and tumor mutation burden in advanced non–small cell lung cancer. Cancer Res. 2021 81 9 2566 2573 10.1158/0008‑5472.CAN‑20‑3991 33653773
    [Google Scholar]
  38. Solassol I. Pinguet F. Quantin X. FDA-and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules 2019 9 11 668 10.3390/biom9110668 31671561
    [Google Scholar]
  39. Shirley M. Dacomitinib: First global approval. Drugs 2018 78 18 1947 1953 10.1007/s40265‑018‑1028‑x 30506139
    [Google Scholar]
  40. Xu Y. Liu H. Chen J. Zhou Q. Acquired resistance of lung adenocarcinoma to EGFR-tyrosine kinase inhibitors gefitinib and erlotinib. Cancer Biol. Ther. 2010 9 8 572 582 10.4161/cbt.9.8.11881 20404520
    [Google Scholar]
  41. Nagano T. Tachihara M. Nishimura Y. Dacomitinib, a second-generation irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) to treat non-small cell lung cancer. Drugs Today 2019 55 4 231 236 10.1358/dot.2019.55.4.2965337 31050691
    [Google Scholar]
  42. Carpenter R.L. Lo H-W. Dacomitinib, an emerging HER-targeted therapy for non-small cell lung cancer. J. Thorac. Dis. 2012 4 6 639 642 10.3978/j.issn.2072‑1439.2012.10.09 23205292
    [Google Scholar]
  43. Shen Y. Chen J.Q. Li X.P. Differences between lung adenocarcinoma and lung squamous cell carcinoma: Driver genes, therapeutic targets, and clinical efficacy. Genes Dis. 2025 12 3 101374 10.1016/j.gendis.2024.101374 40083325
    [Google Scholar]
  44. Dagogo-Jack I. Rooney M. Lin J.J. Nagy R.J. Yeap B.Y. Hubbeling H. Chin E. Ackil J. Farago A.F. Hata A.N. Lennerz J.K. Gainor J.F. Lanman R.B. Shaw A.T. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin. Cancer Res. 2019 25 22 6662 6670 10.1158/1078‑0432.CCR‑19‑1436 31358542
    [Google Scholar]
  45. Paik J. Dhillon S. Alectinib: A review in advanced, ALK-positive NSCLC. Drugs 2018 78 12 1247 1257 10.1007/s40265‑018‑0952‑0 30030733
    [Google Scholar]
  46. Smolle E. Taucher V. Lindenmann J. Jost P.J. Pichler M. Current knowledge about mechanisms of drug resistance against ALK inhibitors in non-small cell lung cancer. Cancers 2021 13 4 699 10.3390/cancers13040699 33572278
    [Google Scholar]
  47. Wang X. Goldstein D. Crowe P. Yang J.L. Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: A review of the evidence. OncoTargets Ther. 2016 9 5461 5473 10.2147/OTT.S94745 27660463
    [Google Scholar]
  48. Wu S.G. Shih J.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer 2018 17 1 38 10.1186/s12943‑018‑0777‑1 29455650
    [Google Scholar]
  49. Leonetti A. Sharma S. Minari R. Perego P. Giovannetti E. Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 2019 121 9 725 737 10.1038/s41416‑019‑0573‑8 31564718
    [Google Scholar]
  50. Obeagu E.I. Babar Q. Vincent C.C.N. Udenze C.L. Eze R. Okafor C.J. Ifionu B.I. Amaeze A.A. Amaeze F.N. Therapeutic targets in breast cancer signaling: A review. J. Pharm. Res. Int. 2021 33 56A 82 99 10.9734/jpri/2021/v33i56A33889
    [Google Scholar]
  51. Aizaz M. Khan M. Khan F.I. Munir A. Ahmad S. Obeagu E.I. Burden of breast cancer: Developing countries perspective. Int. J. Innov. Appl. Res. 2023 11 1 31 37
    [Google Scholar]
  52. Ibekwe A.M. Obeagu E.I. Ibekwe C.E. Onyekwuo C. Ibekwe C.V. Okoro A.D. Ifezue C.B. Challenges of exclusive breastfeeding among working class women in a teaching hospital South East, Nigeria. J. Pharm. Res. Int. 2022 34 46A 1 10 10.9734/jpri/2022/v34i46A36371
    [Google Scholar]
  53. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  54. Segovia-Mendoza M. González-González M.E. Barrera D. Díaz L. García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence. Am. J. Cancer Res. 2015 5 9 2531 2561 26609467
    [Google Scholar]
  55. Schroeder R. Stevens C. Sridhar J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules 2014 19 9 15196 15212 10.3390/molecules190915196 25251190
    [Google Scholar]
  56. García-Aranda M. Redondo M. Protein kinase targets in breast cancer. Int. J. Mol. Sci. 2017 18 12 2543 10.3390/ijms18122543 29186886
    [Google Scholar]
  57. Midland A.A. Whittle M.C. Duncan J.S. Abell A.N. Nakamura K. Zawistowski J.S. Carey L.A. Earp H.S. III Graves L.M. Gomez S.M. Johnson G.L. Defining the expressed breast cancer kinome. Cell Res. 2012 22 4 620 623 10.1038/cr.2012.25 22310242
    [Google Scholar]
  58. Burstein H.J. Sun Y. Dirix L.Y. Jiang Z. Paridaens R. Tan A.R. Awada A. Ranade A. Jiao S. Schwartz G. Abbas R. Powell C. Turnbull K. Vermette J. Zacharchuk C. Badwe R. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol. 2010 28 8 1301 1307 10.1200/JCO.2009.25.8707 20142587
    [Google Scholar]
  59. Prové A. Dirix L. Neratinib for the treatment of breast cancer. Expert Opin. Pharmacother. 2016 17 16 2243 2248 10.1080/14656566.2016.1244528 27690680
    [Google Scholar]
  60. Zhang X. Munster P.N. New protein kinase inhibitors in breast cancer: Afatinib and neratinib. Expert Opin. Pharmacother. 2014 15 9 1277 1288 10.1517/14656566.2014.913570 24787047
    [Google Scholar]
  61. Li B. Zhang X. Ren Q. Gao L. Tian J. NVP-BEZ235 inhibits renal cell carcinoma by targeting TAK1 and PI3K/Akt/mTOR pathways. Front. Pharmacol. 2022 12 781623 10.3389/fphar.2021.781623 35082669
    [Google Scholar]
  62. Siegel R. Ma J. Zou Z. Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014 64 1 9 29 10.3322/caac.21208 24399786
    [Google Scholar]
  63. Parkin D.M. Bray F. Ferlay J. Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005 55 2 74 108 10.3322/canjclin.55.2.74 15761078
    [Google Scholar]
  64. Athar U. Gentile T.C. Treatment options for metastatic renal cell carcinoma: A review. Can. J. Urol. 2008 15 2 3954 3966 18405442
    [Google Scholar]
  65. Díaz-Montero C.M. Rini B.I. Finke J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020 16 12 721 735 10.1038/s41581‑020‑0316‑3 32733094
    [Google Scholar]
  66. Daste A. Grellety T. Gross-Goupil M. Ravaud A. Protein kinase inhibitors in renal cell carcinoma. Expert Opin. Pharmacother. 2014 15 3 337 351 10.1517/14656566.2014.869210 24328606
    [Google Scholar]
  67. Choueiri T.K. Motzer R.J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 2017 376 4 354 366 10.1056/NEJMra1601333 28121507
    [Google Scholar]
  68. Battelli C. Cho D.C. mTOR inhibitors in renal cell carcinoma. Therapy 2011 8 4 359 367 10.2217/thy.11.32 21894244
    [Google Scholar]
  69. Bai J. Wan Z. Zhou W. Wang L. Lou W. Zhang Y. Jin H. Global trends and emerging insights in BRAF and MEK inhibitor resistance in melanoma: A bibliometric analysis. Front. Mol. Biosci. 2025 12 1538743 10.3389/fmolb.2025.1538743 39897423
    [Google Scholar]
  70. Falcone I. Conciatori F. Bazzichetto C. Ferretti G. Cognetti F. Ciuffreda L. Milella M. Tumor microenvironment: Implications in melanoma resistance to targeted therapy and immunotherapy. Cancers 2020 12 10 2870 10.3390/cancers12102870 33036192
    [Google Scholar]
  71. Lai X. Friedman A. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: A mathematical model. BMC Syst. Biol. 2017 11 1 70 10.1186/s12918‑017‑0446‑9 28724377
    [Google Scholar]
  72. Naik P.P. Cutaneous malignant melanoma: A review of early diagnosis and management. World J. Oncol. 2021 12 1 7 19 10.14740/wjon1349 33738001
    [Google Scholar]
  73. Knight A. Karapetyan L. Kirkwood J.M. Immunotherapy in melanoma: Recent advances and future directions. Cancers 2023 15 4 1106 10.3390/cancers15041106 36831449
    [Google Scholar]
  74. Fernandez M.F. Choi J. Sosman J. New approaches to targeted therapy in melanoma. Cancers 2023 15 12 3224 10.3390/cancers15123224 37370834
    [Google Scholar]
  75. Guertin D.A. Sabatini D.M. The pharmacology of mTOR inhibition. Sci. Signal. 2009 2 67 pe24 pe24 10.1126/scisignal.267pe24 19383975
    [Google Scholar]
  76. Rodríguez-Agustín A. Casanova V. Grau-Expósito J. Sánchez-Palomino S. Alcamí J. Climent N. Immunomodulatory activity of the tyrosine kinase inhibitor dasatinib to elicit NK cytotoxicity against cancer, HIV infection and aging. Pharmaceutics 2023 15 3 917 10.3390/pharmaceutics15030917 36986778
    [Google Scholar]
  77. Poudel G. Tolland M.G. Hughes T.P. Pagani I.S. Mechanisms of resistance and implications for treatment strategies in chronic myeloid leukaemia. Cancers 2022 14 14 3300 10.3390/cancers14143300 35884363
    [Google Scholar]
  78. Sánchez-Gastaldo A. Kempf E. González del Alba A. Duran I. Systemic treatment of renal cell cancer: A comprehensive review. Cancer Treat. Rev. 2017 60 77 89 10.1016/j.ctrv.2017.08.010 28898679
    [Google Scholar]
  79. Ahmed B. Qadir M.I. Ghafoor S. Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment. Crit. Rev. Eukaryot. Gene Expr. 2020 30 4 291 297 10.1615/CritRevEukaryotGeneExpr.2020028454 32894659
    [Google Scholar]
  80. Davey M.G. Miller N. McInerney N.M. A review of epidemiology and cancer biology of malignant melanoma. Cureus 2021 13 5 e15087 10.7759/cureus.15087 34155457
    [Google Scholar]
  81. Farshidfar F. Rhrissorrakrai K. Levovitz C. Peng C. Knight J. Bacchiocchi A. Su J. Yin M. Sznol M. Ariyan S. Clune J. Olino K. Parida L. Nikolaus J. Zhang M. Zhao S. Wang Y. Huang G. Wan M. Li X. Cao J. Yan Q. Chen X. Newman A.M. Halaban R. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat. Commun. 2022 13 1 898 10.1038/s41467‑022‑28566‑4 35197475
    [Google Scholar]
  82. Bruzzese A. Martino E.A. Labanca C. Mendicino F. Lucia E. Olivito V. Rossi T. Neri A. Morabito F. Vigna E. Gentile M. Advances and challenges in quizartinib-based FLT3 inhibition for acute myeloid leukemia: Mechanisms of resistance and prospective combination therapies. Eur. J. Haematol. 2025 114 4 584 595 10.1111/ejh.14383 39763167
    [Google Scholar]
  83. Degirmenci U. Wang M. Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells 2020 9 1 198 10.3390/cells9010198 31941155
    [Google Scholar]
  84. Curti B.D. Faries M.B. Recent advances in the treatment of melanoma. N. Engl. J. Med. 2021 384 23 2229 2240 10.1056/NEJMra2034861 34107182
    [Google Scholar]
  85. Caksa S. Baqai U. Aplin A.E. The future of targeted kinase inhibitors in melanoma. Pharmacol. Ther. 2022 239 108200 10.1016/j.pharmthera.2022.108200 35513054
    [Google Scholar]
  86. Miranda-Filho A. Piñeros M. Ferlay J. Soerjomataram I. Monnereau A. Bray F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 2018 5 1 e14 e24 10.1016/S2352‑3026(17)30232‑6 29304322
    [Google Scholar]
  87. Lin Q. Mao L. Shao L. Zhu L. Han Q. Zhu H. Jin J. You L. Global, regional, and national burden of chronic myeloid leukemia, 1990–2017: A systematic analysis for the global burden of disease study 2017. Front. Oncol. 2020 10 580759 10.3389/fonc.2020.580759 33384954
    [Google Scholar]
  88. Thompson P.A. Kantarjian H.M. Cortes J.E. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin. Proc. 2015 90 10 1440 1454 10.1016/j.mayocp.2015.08.010 26434969
    [Google Scholar]
  89. Granatowicz A. Piatek C.I. Moschiano E. El-Hemaidi I. Armitage J.D. Akhtari M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J. Fam. Med. 2015 36 5 197 202 10.4082/kjfm.2015.36.5.197 26435808
    [Google Scholar]
  90. Hochhaus A. Larson R.A. Guilhot F. Radich J.P. Branford S. Hughes T.P. Baccarani M. Deininger M.W. Cervantes F. Fujihara S. Ortmann C.E. Menssen H.D. Kantarjian H. O’Brien S.G. Druker B.J. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 2017 376 10 917 927 10.1056/NEJMoa1609324 28273028
    [Google Scholar]
  91. Mahon F.X. Boquimpani C. Kim D.W. Benyamini N. Clementino N.C.D. Shuvaev V. Ailawadhi S. Lipton J.H. Turkina A.G. De Paz R. Moiraghi B. Nicolini F.E. Dengler J. Sacha T. Takahashi N. Fellague-Chebra R. Acharya S. Wong S. Jin Y. Hughes T.P. Treatment-free remission after second-line nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: Results from a single-group, phase 2, open-label study. Ann. Intern. Med. 2018 168 7 461 470 10.7326/M17‑1094 29459949
    [Google Scholar]
  92. Imagawa J. Tanaka H. Okada M. Nakamae H. Hino M. Murai K. Ishida Y. Kumagai T. Sato S. Ohashi K. Sakamaki H. Wakita H. Uoshima N. Nakagawa Y. Minami Y. Ogasawara M. Takeoka T. Akasaka H. Utsumi T. Uike N. Sato T. Ando S. Usuki K. Morita S. Sakamoto J. Kimura S. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): A multicentre phase 2 trial. Lancet Haematol. 2015 2 12 e528 e535 10.1016/S2352‑3026(15)00196‑9 26686407
    [Google Scholar]
  93. Hamilton A. Helgason G.V. Schemionek M. Zhang B. Myssina S. Allan E.K. Nicolini F.E. Müller-Tidow C. Bhatia R. Brunton V.G. Koschmieder S. Holyoake T.L. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012 119 6 1501 1510 10.1182/blood‑2010‑12‑326843 22184410
    [Google Scholar]
  94. Corbin A.S. Agarwal A. Loriaux M. Cortes J. Deininger M.W. Druker B.J. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 2011 121 1 396 409 10.1172/JCI35721 21157039
    [Google Scholar]
  95. Voso M.T. Larson R.A. Jones D. Marcucci G. Prior T. Krauter J. Heuser M. Lavorgna S. Nomdedeu J. Geyer S.M. Walker A. Wei A.H. Sierra J. Sanz M.A. Brandwein J.M. de Witte T.M. Jansen J.H. Niederwieser D. Appelbaum F.R. Medeiros B.C. Tallman M.S. Schlenk R.F. Ganser A. Amadori S. Cheng Y. Chen Y. Pallaud C. Du L. Piciocchi A. Ehninger G. Byrd J. Thiede C. Döhner K. Stone R.M. Döhner H. Bloomfield C.D. Lo-Coco F. Midostaurin in patients with acute myeloid leukemia and FLT3-TKD mutations: A subanalysis from the RATIFY trial. Blood Adv. 2020 4 19 4945 4954 10.1182/bloodadvances.2020002904 33049054
    [Google Scholar]
  96. Wang J. Jiang B. Li J. Liu L. Du X. Jiang H. Hu J. Yuan M. Sakatani T. Kadokura T. Takeuchi M. Kosako M. Ma X. Girshova L. Tan J. Bondarenko S. Lee L.W.L. Khuhapinant A. Martynova E. Hasabou N. Phase 3 study of gilteritinib versus salvage chemotherapy in predominantly Asian patients with relapsed/refractory FLT3-mutated acute myeloid leukemia. Leukemia 2024 38 11 2410 2418 10.1038/s41375‑024‑02382‑9 39237634
    [Google Scholar]
  97. Cao Y Zhang C. Cao L. Mo X. Hu X. Quizartinib is a good option for AML patients with FLT3-ITD mutations. Innov. Med. 2023 1 1 100007 10.59717/j.xinn‑med.2023.100007
    [Google Scholar]
  98. Xuan L. Wang Y. Yang K. Shao R. Huang F. Fan Z. Chi P. Xu Y. Xu N. Deng L. Li X. Liang X. Luo X. Shi P. Liu H. Wang Z. Jiang L. Lin R. Chen Y. Tu S. Zhang Y. Sun J. Huang X. Liu Q. Sorafenib maintenance after allogeneic haemopoietic stem-cell transplantation in patients with FLT3-ITD acute myeloid leukaemia: Long-term follow-up of an open-label, multicentre, randomised, phase 3 trial. Lancet Haematol. 2023 10 8 e600 e611 10.1016/S2352‑3026(23)00117‑5 37414062
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037406748250901214051
Loading
/content/journals/cpps/10.2174/0113892037406748250901214051
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: breast cancer ; leukemia ; EGFR ; Protein kinase inhibitor ; melanoma ; BRAF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test