Skip to content
2000
image of RGD Peptide-Based Hydrogel Enhances the Osteogenic Differentiation of Periodontal Ligament Stem Cells via Wnt Signaling

Abstract

Introduction

Periodontitis results in progressive loss of gingival tissue and periodontal ligament, eventually resulting in tooth instability. As regenerating degraded periodontal tissue is not possible without intervention, therefore, a tissue-engineered substitute is a good option. Bone regeneration strategies often rely on either biochemical stimulation or engineered scaffolds, but rarely in a coordinated manner. Arginine-Glycine-Aspartic acid (RGD) hydrogel provides a unique combination of biocompatibility and biodegradability, making it an attractive scaffold for tissue engineering. The study aims to investigate the effect of combining Wnt pathway activation with Arginine-Glycine-Aspartic acid (RGD) hydrogel (a three-dimensional environment, 3D) to enhance the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from periodontal ligament tissue.

Methods

The cells were isolated from the root of the extracted tooth. They were grown in an osteogenic medium with and without a Wnt activator in two-dimensional (2D) and RGD hydrogel-based 3D environments to expand . Osteogenic gene expression was evaluated by qPCR in 2D and 3D cultures. Mesenchymal stem cells isolated from periodontal ligament tissue showed osteogenic differentiation when cultured in a differential medium with or without the Wnt signaling activator, CHIR99021 (a GSK3β inhibitor).

Results

The data of our study revealed that osteogenic genes were expressed in both 2D- and 3D-cultured cells. However, higher expression of osteogenic genes was found in Wnt signaling-activated cells. Furthermore, the RGD hydrogel provided better differentiation efficacy and a significant increase ( 0.001) in terms of Wnt-activated differentiation.

Discussion

The RGD hydrogel-Wnt activation model described in this study holds strong potential for translation into preclinical bone regeneration strategies. By enhancing osteogenic differentiation through a synergistic interaction between the Wnt signaling pathway and the 3D peptide hydrogel matrix, this platform offers a promising approach to early-stage testing of bone regeneration therapies.

Conclusion

Hence, the Arg-Gly-Asp (RGD) hydrogel-based 3D microenvironment along with a Wnt signaling activator provides superior efficacy in differentiation since it allows cell encapsulation and an environment that closely simulates native tissues. Therefore, these findings highlight the synergistic effect of biochemical and biophysical cues in directing stem cell fate and offer a promising strategy for advancing stem cell-based bone tissue engineering.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037389217250916074726
2025-10-10
2026-02-08
Loading full text...

Full text loading...

References

  1. Chamila Prageeth Pandula P.K. Samaranayake L.P. Jin L.J. Zhang C. Periodontal ligament stem cells: An update and perspectives. J. Investig. Clin. Dent. 2014 5 2 81 90 10.1111/jicd.12089 24610628
    [Google Scholar]
  2. Page R.C. Kornman K.S. The pathogenesis of human periodontitis: An introduction. Periodontol. 2000 1997 14 1 9 11 10.1111/j.1600‑0757.1997.tb00189.x 9567963
    [Google Scholar]
  3. Lee H.S. Byun S.H. Cho S.W. Yang B.E. Past, present, and future of regeneration therapy in oral and periodontal tissue: A review. Appl. Sci. 2019 9 6 1046 10.3390/app9061046
    [Google Scholar]
  4. Pellegrini G. Pagni G. Rasperini G. Surgical approaches based on biological objectives: GTR versus GBR techniques. Int. J. Dent. 2013 2013 1 1 13 10.1155/2013/521547 23843792
    [Google Scholar]
  5. Mrozik K.M. Wada N. Marino V. Richter W. Shi S. Wheeler D.L. Gronthos S. Bartold P.M. Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen. Med. 2013 8 6 711 723 10.2217/rme.13.66 24147527
    [Google Scholar]
  6. Hombach-Klonisch S. Panigrahi S. Rashedi I. Seifert A. Alberti E. Pocar P. Kurpisz M. Schulze-Osthoff K. Mackiewicz A. Los M. Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol. Med. 2008 86 12 1301 1314 10.1007/s00109‑008‑0383‑6 18629466
    [Google Scholar]
  7. Kim J.H. Liu X. Wang J. Chen X. Zhang H. Kim S.H. Cui J. Li R. Zhang W. Kong Y. Zhang J. Shui W. Lamplot J. Rogers M.R. Zhao C. Wang N. Rajan P. Tomal J. Statz J. Wu N. Luu H.H. Haydon R.C. He T.C. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther. Adv. Musculoskelet. Dis. 2013 5 1 13 31 10.1177/1759720X12466608 23514963
    [Google Scholar]
  8. Vlashi R. Zhang X. Wu M. Chen G. Wnt signaling: Essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2023 10 4 1291 1317 10.1016/j.gendis.2022.07.011 37397540
    [Google Scholar]
  9. Khan Y. Bisht A.S. Ashique S. Khan G. Hussain M.S. Innovative anti-aging strategies targeting WNT pathway epigenetics for gut function. Hum. Genet. 2025 44 201397 10.1016/j.humgen.2025.201397
    [Google Scholar]
  10. Trubiani O. Marconi G.D. Pierdomenico S.D. Piattelli A. Diomede F. Pizzicannella J. Human oral stem cells, biomaterials and extracellular vesicles: A promising tool in bone tissue repair. Int. J. Mol. Sci. 2019 20 20 4987 10.3390/ijms20204987 31600975
    [Google Scholar]
  11. Bartold P.M. McCulloch C.A.G. Narayanan A.S. Pitaru S. Tissue engineering: A new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 24 1 253 269 10.1034/j.1600‑0757.2000.2240113.x 11276871
    [Google Scholar]
  12. Nikolova M.P. Chavali M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019 4 271 292 10.1016/j.bioactmat.2019.10.005 31709311
    [Google Scholar]
  13. Haneef K. Lila N. Benadda S. Legrand F. Carpentier A. Chachques J.C. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells. Heart Int. 2012 7 2 hi.2012.e14 10.4081/hi.2012.e14 23185681
    [Google Scholar]
  14. Qazi R.M. Khan I. Haneef K. Malick T.S. Naeem N. Ahmad W. Salim A. Mohsin S. Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model. World J. Stem Cells 2022 14 8 633 657 10.4252/wjsc.v14.i8.633 36157910
    [Google Scholar]
  15. Gunduz O. Egles C. Pérez R.A. Ficai D. Ustundag C.B. Biomaterials and tissue engineering. Springer 2023 10.1007/978‑3‑031‑35832‑6
    [Google Scholar]
  16. Yang P. Chen X. Qin Y. Yu L. Ge G. Yin W. Zhang W. Li W. Li W. Xia W. Wu Z. Ding F. Bai J. Meng F. Geng D. Regulation of osteoimmune microenvironment via functional dynamic hydrogel for diabetic bone regeneration. Biomaterials 2025 320 123273 10.1016/j.biomaterials.2025.123273 40121832
    [Google Scholar]
  17. Long M. Wu G. Tao F. Ma S. Dong X. Deng H. Nanofibrous textured silk aerogel with 3D channel arrays and adjustable mechanical properties for bone tissue regeneration. Int. J. Biol. Macromol. 2024 278 Pt 2 134372 10.1016/j.ijbiomac.2024.134372 39134201
    [Google Scholar]
  18. Kondiah P. Choonara Y. Kondiah P. Marimuthu T. Kumar P. Du Toit L. Pillay V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 2016 21 11 1580 10.3390/molecules21111580 27879635
    [Google Scholar]
  19. Kumar V.B. Tiwari O.S. Finkelstein-Zuta G. Rencus-Lazar S. Gazit E. Design of functional RGD peptide-based biomaterials for tissue engineering. Pharmaceutics 2023 15 2 345 10.3390/pharmaceutics15020345 36839667
    [Google Scholar]
  20. Fang L. Lin X. Xu R. Liu L. Zhang Y. Tian F. Li J.J. Xue J. Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 2025 17 1 75 10.1007/s40820‑024‑01581‑4 39601962
    [Google Scholar]
  21. Zakrzewski W. Dobrzyński M. Szymonowicz M. Rybak Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019 10 1 68 10.1186/s13287‑019‑1165‑5 30808416
    [Google Scholar]
  22. Benoit D.S.W. Durney A.R. Anseth K.S. The effect of the RGD peptide motif on osteoinduction of bone marrow stromal cells in hydrogel scaffolds. Biomaterials 2008 29 15 2329 2337
    [Google Scholar]
  23. Murphy W.L. McDevitt T.C. Engler A.J. Effects of RGD peptide density on cell attachment and osteogenic differentiation of mesenchymal stem cells. Biomaterials 2004 25 16 3023 3031
    [Google Scholar]
  24. Yanza R.M. Cortez J.L.G. De La Torre M. Rivera D.R. RGD functionalized self-assembling peptide hydrogel induces proliferative profile in human osteoblasts. Biomolecules 2023 13 12 1764
    [Google Scholar]
  25. Yang M. Deng R.H. Yuan F.Z. Zhang J.Y. Zhang Z.N. Chen Y.R. Yu J.K. Immunomodulatory PEG-CRGD hydrogels promote chondrogenic differentiation of PBMSCs. Pharmaceutics 2022 14 12 2622 10.3390/pharmaceutics14122622 36559119
    [Google Scholar]
  26. Polonchuk L. Chidambaram A. Ribas V. Nakamura H. Kim D. Leclerc E. Transcriptomics demonstrates significant biological effect of growing stem cells on RGD-cotton scaffold. Tissue Eng. Part A 2024 30 1–2 1 12
    [Google Scholar]
  27. Haneef K. Naeem N. Khan I. Iqbal H. Kabir N. Jamall S. Zahid M. Salim A. Conditioned medium enhances the fusion capability of rat bone marrow mesenchymal stem cells and cardiomyocytes. Mol. Biol. Rep. 2014 41 5 3099 3112 10.1007/s11033‑014‑3170‑1 24469729
    [Google Scholar]
  28. Alvarez R. Lee H.L. Wang C.Y. Hong C. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. Int. J. Oral Sci. 2015 7 4 213 219 10.1038/ijos.2015.42 26674423
    [Google Scholar]
  29. Conte G. Nishimine D. Dault S. Dault S. Tissue engineering for periodontal regeneration. J. Calif. Dent. Assoc. 2005 33 3 205 215 10.1080/19424396.2005.12223862 15918402
    [Google Scholar]
  30. Diomede F. Marconi G.D. Cavalcanti M.F.X.B. Pizzicannella J. Pierdomenico S.D. Fonticoli L. Piattelli A. Trubiani O. VEGF/VEGF-R/RUNX2 upregulation in human periodontal ligament stem cells seeded on dual acid etched titanium disk. Materials 2020 13 3 706 10.3390/ma13030706 32033260
    [Google Scholar]
  31. An S. Gao Y. Ling J. Wei X. Xiao Y. Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: Implications for pulp capping materials. J. Mater. Sci. Mater. Med. 2012 23 3 789 795 10.1007/s10856‑011‑4531‑0 22190198
    [Google Scholar]
  32. AlMuraikhi N. Binhamdan S. Alaskar H. Alotaibi A. Tareen S. Muthurangan M. Alfayez M. Inhibition of GSK-3β enhances osteoblast differentiation of human mesenchymal stem cells through wnt signalling overexpressing Runx2. Int. J. Mol. Sci. 2023 24 8 7164 10.3390/ijms24087164 37108323
    [Google Scholar]
  33. Rutkovskiy A. Stensløkken K.O. Vaage I.J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. 2016 22 95 106 10.12659/MSMBR.901142 27667570
    [Google Scholar]
  34. Yom-Tov O. Seliktar D. Bianco-Peled H. Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds. Mater. Sci. Eng. C 2016 61 256 264 10.1016/j.msec.2015.12.034
    [Google Scholar]
  35. Zhang L. Liu Y. Xu Y. Wu X. Lei S. Liu X. ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress. Mater. Today Bio 2022 15 100324 10.1016/j.mtbio.2022.100324
    [Google Scholar]
  36. Yan J. Zhang Z. Zhan X. Chen K. Pu Y. Liang Y. He B. In situ injection of dual-delivery PEG based MMP-2 sensitive hydrogels for enhanced tumor penetration and chemo-immune combination therapy. Nanoscale 2021 13 21 9577 9589 10.1039/D1NR01155C 33998643
    [Google Scholar]
  37. Liu T.M. Lee E.H. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng. Part B Rev. 2013 19 3 254 263 10.1089/ten.teb.2012.0527 23150948
    [Google Scholar]
  38. Fan L. Ren Y. Emmert S. Vučković I. Stojanovic S. Najman S. Schnettler R. Barbeck M. Schenke-Layland K. Xiong X. The use of collagen-based materials in bone tissue engineering. Int. J. Mol. Sci. 2023 24 4 3744 10.3390/ijms24043744 36835168
    [Google Scholar]
  39. Lin X. Patil S. Gao Y.G. Qian A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 2020 11 757 10.3389/fphar.2020.00757 32528290
    [Google Scholar]
  40. Payr S. Rosado-Balmayor E. Tiefenboeck T. Schuseil T. Unger M. Seeliger C. van Griensven M. Direct comparison of 3D and 2D cultivation reveals higher osteogenic capacity of elderly osteoblasts in 3D. J. Orthop. Surg. Res. 2021 16 1 13 10.1186/s13018‑020‑02153‑z 33407623
    [Google Scholar]
  41. Vimalraj S. Saravanan S. Vairamani M. Gopalakrishnan C. Sastry T.P. Selvamurugan N. A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int. J. Biol. Macromol. 2016 93 Pt B 1457 1464 10.1016/j.ijbiomac.2015.12.083 26751402
    [Google Scholar]
  42. Cawthorn W.P. Bree A.J. Yao Y. Du B. Hemati N. Martinez-Santibañez G. MacDougald O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012 50 2 477 489 10.1016/j.bone.2011.08.010 21872687
    [Google Scholar]
  43. Li X. Liu P. Liu W. Maye P. Zhang J. Zhang Y. Hurley M. Guo C. Boskey A. Sun L. Harris S.E. Rowe D.W. Ke H.Z. Wu D. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 2005 37 9 945 952 10.1038/ng1614 16056226
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037389217250916074726
Loading
/content/journals/cpps/10.2174/0113892037389217250916074726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test