Skip to content
2000
image of A Review on the Pathophysiology of Alzheimer’s Disease

Abstract

Introduction

Alzheimer’s disease is characterized by a complex and multifactorial pathogenesis, involving key features such as amyloid-beta plaques, tau tangles, and neuron loss. Understanding the disease requires investigating its underlying causes, as these hallmarks reflect the intricate physiological processes involved. Identifying the root factors driving AD is essential for developing effective treatments.

Method

This literature review was conducted using PubMed and Scopus databases, covering studies published from October 1999 to April 2025. The review included 190 references focused on the pathophysiology of Alzheimer's disease (AD). The selected studies analysed the primary pathophysiology leading to AD, particularly the accumulation of amyloid-beta plaques, tau tangles, and neuronal loss.

Result

The study highlights several key biological factors associated with Alzheimer's Disease (AD). These include genetic mutations, mitochondrial dysfunction, hormonal imbalances, inflammation, oxidative stress, cellular division abnormalities, and reduced levels of dopamine-related neurotransmitters. It also highlights issues with calcium regulation and the imbalance of metals, such as copper, iron, lead, and zinc, in the body. Lifestyle choices such as drinking alcohol and smoking, along with changes in blood vessels and problems with the blood-brain barrier, were also found to play a role in how the disease develops. Additionally, the presence of certain pathogens was suggested as a possible factor in the disease's underlying mechanisms.

Discussion

The results indicate that a complex combination of genetic, biochemical, and environmental factors shapes the development and progression of Alzheimer's disease. Genetic mutations seem to play a significant role in affecting enzyme functions, which can disrupt vital biological processes. Problems with mitochondria and hormonal imbalances contribute to the deterioration of nerve cells, while oxidative stress and neuroinflammation are key mechanisms that worsen cellular damage. Disruptions in calcium signalling and imbalances in bio-metals further disturb neuronal stability. Lifestyle choices, blood vessel issues, and blood-brain barrier problems highlight the multifaceted nature of the disease. The study also highlights the close relationship between oxidative stress and neuroinflammation, suggesting that they may form a feedback loop that accelerates disease progression. Additionally, the possible involvement of infectious agents adds another layer of complexity, indicating that infections might trigger or worsen neurodegeneration in vulnerable individuals.

Conclusion

To better understand and address Alzheimer’s disease, it is essential to examine the fundamental processes that trigger its development. The various and interconnected factors involved—such as genetic mutations, cellular problems, environmental factors, and exposure to pathogens—require a comprehensive and integrated approach to research and treatment. Recognizing that neuroinflammation and oxidative stress play key roles in the progression of the disease can help guide future efforts toward early detection and more precise interventions.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037416859250915091846
2025-10-14
2025-12-14
Loading full text...

Full text loading...

References

  1. Dementia. 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/dementia
    [Google Scholar]
  2. Alzheimer’s disease fact sheet. 2023 Available from: https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet
    [Google Scholar]
  3. Gao L. Zhang Y. Sterling K. Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022 11 1 4 10.1186/s40035‑022‑00279‑0 35090576
    [Google Scholar]
  4. Kocahan S. Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin. Psychopharmacol. Neurosci. 2017 15 1 1 8 10.9758/cpn.2017.15.1.1
    [Google Scholar]
  5. De Boer D. Nguyen N. Mao J. Moore J. Sorin E.J. A comprehensive review of cholinesterase modeling and simulation. Biomolecules 2021 11 4 580 10.3390/biom11040580 33920972
    [Google Scholar]
  6. Cheong S.L. Tiew J.K. Fong Y.H. Leong H.W. Chan Y.M. Chan Z.L. Kong E.W.J. Current pharmacotherapy and multi-target approaches for Alzheimer’s disease. Pharmaceuticals 2022 15 12 1560 10.3390/ph15121560 36559010
    [Google Scholar]
  7. McGleenon B.M. Dynan K.B. Passmore A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol. 1999 48 4 471 480 10.1046/j.1365‑2125.1999.00026.x 10583015
    [Google Scholar]
  8. Grossberg G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp. 2003 64 4 216 235 10.1016/S0011‑393X(03)00059‑6 24944370
    [Google Scholar]
  9. Motebennur S.L. Nandeshwarappa B.P. Katagi M.S. Drug candidates for the treatment of Alzheimer’s disease: New findings from 2021 and 2022. Drugs and Drug Candidates 2023 2 3 571 590 10.3390/ddc2030030
    [Google Scholar]
  10. Koola M.M. Nikiforuk A. Pillai A. Parsaik A.K. Galantamine-memantine combination superior to donepezil-memantine combination in Alzheimer’s disease: Critical dissection with an emphasis on kynurenic acid and mismatch negativity. J. Geriatr. Care Res. 2018 5 2 57 67 30984874
    [Google Scholar]
  11. Ansari N. Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer’s disease: Molecular mechanism aspect. Curr. Neuropharmacol. 2013 11 4 414 429 10.2174/1570159X11311040005 24381531
    [Google Scholar]
  12. Hung S.Y. Fu W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci. 2017 24 1 47 10.1186/s12929‑017‑0355‑7 28720101
    [Google Scholar]
  13. Hassan N.A. Alshamari A.K. Hassan A.A. Elharrif M.G. Alhajri A.M. Sattam M. Khattab R.R. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology. Molecules 2022 27 15 4839 10.3390/molecules27154839 35956796
    [Google Scholar]
  14. Mehta M. Adem A. Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis. 2012 2012 1 8 10.1155/2012/728983 22216416
    [Google Scholar]
  15. Moss D.E. Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer’s disease: Are irreversible inhibitors the future? Int. J. Mol. Sci. 2020 21 10 3438 10.3390/ijms21103438 32414155
    [Google Scholar]
  16. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  17. Colović M.B. Krstić D.Z. Lazarević-Pašti T.D. Bondžić A.M. Vasić V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013 11 3 315 335 10.2174/1570159X11311030006 24179466
    [Google Scholar]
  18. Moreta M.P.G. Burgos-Alonso N. Torrecilla M. Marco-Contelles J. Bruzos-Cidón C. Efficacy of acetylcholinesterase inhibitors on cognitive function in Alzheimer’s disease. Review of reviews. Biomedicines 2021 9 11 1689 10.3390/biomedicines9111689 34829917
    [Google Scholar]
  19. Passeri E. Elkhoury K. Morsink M. Broersen K. Linder M. Tamayol A. Malaplate C. Yen F.T. Arab-Tehrany E. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  20. Huang Y. Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012 148 6 1204 1222 10.1016/j.cell.2012.02.040 22424230
    [Google Scholar]
  21. Patil P. Thakur A. Sharma A. Flora S.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev. Res. 2020 81 2 165 183 10.1002/ddr.21587 31820476
    [Google Scholar]
  22. Mitra S. Behbahani H. Eriksdotter M. Innovative therapy for Alzheimer’s disease-with focus on biodelivery of NGF. Front. Neurosci. 2019 13 38 10.3389/fnins.2019.00038 30804738
    [Google Scholar]
  23. Majdi A. Sadigh-Eteghad S. Rahigh Aghsan S. Farajdokht F. Vatandoust S.M. Namvaran A. Mahmoudi J. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: Seeking direction in a tangle of clues. Rev. Neurosci. 2020 31 4 391 413 10.1515/revneuro‑2019‑0089 32017704
    [Google Scholar]
  24. De-Paula V.J. Radanovic M. Diniz B.S. Forlenza O.V. Alzheimer’s disease. Subcell. Biochem. 2012 65 329 352 10.1007/978‑94‑007‑5416‑4_14 23225010
    [Google Scholar]
  25. Anand R. Gill K.D. Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014 76 27 50 10.1016/j.neuropharm.2013.07.004
    [Google Scholar]
  26. Talesa V.N. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev. 2001 122 16 1961 1969 10.1016/S0047‑6374(01)00309‑8 11589914
    [Google Scholar]
  27. Murphy M.P. LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010 19 1 311 323 10.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  28. Sehar U. Rawat P. Reddy A.P. Kopel J. Reddy P.H. Amyloid beta in aging and Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 21 12924 10.3390/ijms232112924 36361714
    [Google Scholar]
  29. Bloom G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 71 4 505 508 10.1001/jamaneurol.2013.5847 24493463
    [Google Scholar]
  30. Rajmohan R. Reddy P.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis. 2017 57 4 975 999 10.3233/JAD‑160612 27567878
    [Google Scholar]
  31. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  32. Serrano-Pozo A. Frosch M.P. Masliah E. Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011 1 1 a006189 10.1101/cshperspect.a006189 22229116
    [Google Scholar]
  33. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  34. Miao J. Ma H. Yang Y. Liao Y. Lin C. Zheng J. Yu M. Lan J. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 2023 15 1201982 10.3389/fnagi.2023.1201982 37396657
    [Google Scholar]
  35. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  36. Dotiwala A.K. McCausland C. Samra N.S. Anatomy, Head and Neck: Blood Brain Barrier. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  37. Knox E.G. Aburto M.R. Clarke G. Cryan J.F. O’Driscoll C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022 27 6 2659 2673 10.1038/s41380‑022‑01511‑z 35361905
    [Google Scholar]
  38. Sweeney M.D. Sagare A.P. Zlokovic B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018 14 3 133 150 10.1038/nrneurol.2017.188 29377008
    [Google Scholar]
  39. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011 12 12 723 738 10.1038/nrn3114 22048062
    [Google Scholar]
  40. Baranello R. Bharani K. Padmaraju V. Chopra N. Lahiri D. Greig N. Pappolla M. Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr. Alzheimer Res. 2015 12 1 32 46 10.2174/1567205012666141218140953 25523424
    [Google Scholar]
  41. Su Q. Guo J-H. Zhang Y.L. Wang J. Zhang Z-N. The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer’s disease. Neural Regen. Res. 2022 17 11 2355 2363 10.4103/1673‑5374.335829 35535871
    [Google Scholar]
  42. Azargoonjahromi A. The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Mol. Brain 2024 17 1 44 10.1186/s13041‑024‑01118‑1 39020435
    [Google Scholar]
  43. Li J. Zheng M. Shimoni O. Banks W.A. Bush A.I. Gamble J.R. Shi B. Development of novel therapeutics targeting the blood–brain barrier: From barrier to carrier. Adv. Sci. 2021 8 16 2101090 10.1002/advs.202101090 34085418
    [Google Scholar]
  44. Alkhalifa A.E. Al-Ghraiybah N.F. Odum J. Shunnarah J.G. Austin N. Kaddoumi A. Blood–brain barrier breakdown in Alzheimer’s disease: Mechanisms and targeted strategies. Int. J. Mol. Sci. 2023 24 22 16288 10.3390/ijms242216288 38003477
    [Google Scholar]
  45. Gaur A. Kaliappan A. Balan Y. Sakthivadivel V. Medala K. Umesh M. Sleep and Alzheimer: The link. Maedica 2022 17 1 177 185 10.26574/maedica.2022.17.1.177 35733758
    [Google Scholar]
  46. Eisenmenger L.B. Peret A. Famakin B.M. Spahic A. Roberts G.S. Bockholt J.H. Johnson K.M. Paulsen J.S. Vascular contributions to Alzheimer’s disease. Transl. Res. 2023 254 41 53 10.1016/j.trsl.2022.12.003 36529160
    [Google Scholar]
  47. Fisher R.A. Miners J.S. Love S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol. 2022 32 6 13061 10.1111/bpa.13061 35289012
    [Google Scholar]
  48. Attems J. Jellinger K.A. The overlap between vascular disease and Alzheimer’s disease - Lessons from pathology. BMC Med. 2014 12 1 206 10.1186/s12916‑014‑0206‑2 25385447
    [Google Scholar]
  49. Vargas-Soria M. Ramos-Rodriguez J.J. del Marco A. Hierro-Bujalance C. Carranza-Naval M.J. Calvo-Rodriguez M. van Veluw S.J. Stitt A.W. Simó R. Bacskai B.J. Infante-Garcia C. Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer’s disease and type two diabetes. Fluids Barriers CNS 2022 19 1 88 10.1186/s12987‑022‑00380‑6 36345028
    [Google Scholar]
  50. Grinberg L.T. Thal D.R. Vascular pathology in the aged human brain. Acta Neuropathol. 2010 119 3 277 290 10.1007/s00401‑010‑0652‑7 20155424
    [Google Scholar]
  51. Agarwal U. Pannu A. Tonk R.K. Jaiswal P. Jain K. The potential of xanthotoxin in the treatment of cognitive disorders: Current insights and future perspectives. Future J. Pharm. Sci. 2024 10 1 147 10.1186/s43094‑024‑00717‑y
    [Google Scholar]
  52. Zenaro E. Piacentino G. Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017 107 41 56 10.1016/j.nbd.2016.07.007 27425887
    [Google Scholar]
  53. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  54. Sharma C. Woo H. Kim S.R. Addressing blood–brain barrier impairment in Alzheimer’s disease. Biomedicines 2022 10 4 742 10.3390/biomedicines10040742 35453494
    [Google Scholar]
  55. Chen T. Dai Y. Hu C. Lin Z. Wang S. Yang J. Zeng L. Li S. Li W. Cellular and molecular mechanisms of the blood–brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024 21 1 60 10.1186/s12987‑024‑00557‑1 39030617
    [Google Scholar]
  56. Chutinet A. Rost N.S. White matter disease as a biomarker for long-term cerebrovascular disease and dementia. Curr. Treat. Options Cardiovasc. Med. 2014 16 3 292 10.1007/s11936‑013‑0292‑z 24496967
    [Google Scholar]
  57. Alber J. Alladi S. Bae H.J. Barton D.A. Beckett L.A. Bell J.M. Berman S.E. Biessels G.J. Black S.E. Bos I. Bowman G.L. Brai E. Brickman A.M. Callahan B.L. Corriveau R.A. Fossati S. Gottesman R.F. Gustafson D.R. Hachinski V. Hayden K.M. Helman A.M. Hughes T.M. Isaacs J.D. Jefferson A.L. Johnson S.C. Kapasi A. Kern S. Kwon J.C. Kukolja J. Lee A. Lockhart S.N. Murray A. Osborn K.E. Power M.C. Price B.R. Rhodius-Meester H.F.M. Rondeau J.A. Rosen A.C. Rosene D.L. Schneider J.A. Scholtzova H. Shaaban C.E. Silva N.C.B.S. Snyder H.M. Swardfager W. Troen A.M. van Veluw S.J. Vemuri P. Wallin A. Wellington C. Wilcock D.M. Xie S.X. Hainsworth A.H. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement. 2019 5 1 107 117 10.1016/j.trci.2019.02.001 31011621
    [Google Scholar]
  58. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  59. Rather M.A. Khan A. Alshahrani S. Rashid H. Qadri M. Rashid S. Alsaffar R.M. Kamal M.A. Rehman M.U. Inflammation and Alzheimer’s disease: Mechanisms and therapeutic implications by natural products. Mediators Inflamm. 2021 2021 1 21 10.1155/2021/9982954 34381308
    [Google Scholar]
  60. Novoa C. Salazar P. Cisternas P. Gherardelli C. Vera-Salazar R. Zolezzi J.M. Inestrosa N.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol. Res. 2022 55 1 39 10.1186/s40659‑022‑00404‑3 36550479
    [Google Scholar]
  61. Huang X. Hussain B. Chang J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021 27 1 36 47 10.1111/cns.13569 33381913
    [Google Scholar]
  62. Beltran-Velasco A.I. Clemente-Suárez V.J. Impact of peripheral inflammation on blood–brain barrier dysfunction and its role in neurodegenerative diseases. Int. J. Mol. Sci. 2025 26 6 2440 10.3390/ijms26062440 40141084
    [Google Scholar]
  63. Wang W.Y. Tan M.S. Yu J.T. Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015 3 10 136 10.3978/j.issn.2305‑5839.2015.03.49 26207229
    [Google Scholar]
  64. Chen Z. Balachandran Y.L. Chong W.P. Chan K.W.Y. Roles of cytokines in Alzheimer’s disease. Int. J. Mol. Sci. 2024 25 11 5803 10.3390/ijms25115803 38891990
    [Google Scholar]
  65. Malik M. Parikh I. Vasquez J.B. Smith C. Tai L. Bu G. LaDu M.J. Fardo D.W. Rebeck G.W. Estus S. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol. Neurodegener. 2015 10 1 52 10.1186/s13024‑015‑0048‑1 26438529
    [Google Scholar]
  66. Wyss-Coray T. Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2012 2 1 a006346 10.1101/cshperspect.a006346 22315714
    [Google Scholar]
  67. Zhao Y. Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/316523 23983897
    [Google Scholar]
  68. Tamagno E. Guglielmotto M. Vasciaveo V. Tabaton M. Oxidative stress and beta amyloid in Alzheimer’s disease. which comes first: The chicken or the egg? Antioxidants 2021 10 9 1479 10.3390/antiox10091479 34573112
    [Google Scholar]
  69. Bartolome F. Carro E. Alquezar C. Oxidative stress in tauopathies: From cause to therapy. Antioxidants 2022 11 8 1421 10.3390/antiox11081421 35892623
    [Google Scholar]
  70. Fanlo-Ucar H. Picón-Pagès P. Herrera-Fernández V. ILL-Raga, G.; Muñoz, F.J. The dual role of amyloid beta-peptide in oxidative stress and inflammation: Unveiling their connections in Alzheimer’s disease etiopathology. Antioxidants 2024 13 10 1208 10.3390/antiox13101208 39456461
    [Google Scholar]
  71. Alavi Naini S.M. Soussi-Yanicostas N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev. 2015 2015 1 17 10.1155/2015/151979 26576216
    [Google Scholar]
  72. Sharma C. Kim S.R. Linking Oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants 2021 10 8 1231 10.3390/antiox10081231 34439479
    [Google Scholar]
  73. Tchekalarova J. Tzoneva R. Oxidative stress and aging as risk factors for alzheimer’s disease and Parkinson’s disease: The role of the antioxidant melatonin. Int. J. Mol. Sci. 2023 24 3 3022 10.3390/ijms24033022 36769340
    [Google Scholar]
  74. Cioffi F. Adam R.H.I. Bansal R. Broersen K. A review of oxidative stress products and related genes in early Alzheimer’s disease. J. Alzheimers Dis. 2021 83 3 977 1001 10.3233/JAD‑210497 34420962
    [Google Scholar]
  75. Bekris L.M. Yu C.E. Bird T.D. Tsuang D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2010 23 4 213 227 10.1177/0891988710383571 21045163
    [Google Scholar]
  76. Choi J.H. Lee J. Kang U. Chang H. Cho K.H. Network dynamics-based subtyping of Alzheimer’s disease with microglial genetic risk factors. Alzheimers Res. Ther. 2024 16 1 229 10.1186/s13195‑024‑01583‑9 39415193
    [Google Scholar]
  77. Suresh S. Singh S. A.; Rushendran, R.; Vellapandian, C.; Prajapati, B. Alzheimer’s disease: The role of extrinsic factors in its development, an investigation of the environmental enigma. Front. Neurol. 2023 14 1303111 10.3389/fneur.2023.1303111 38125832
    [Google Scholar]
  78. What are the causes and risk factors of Alzheimer’s and other dementias? 2025 Available from: https://www.alz.org/alzheimers-dementia/what-is-alzheimers/causes-and-risk-factors
    [Google Scholar]
  79. ] What is Alzheimer’s disease? 2025 Available from: https://www.alz.org/alzheimers-dementia/what-is-alzheimers
    [Google Scholar]
  80. Bateman R.J. Aisen P.S. De Strooper B. Fox N.C. Lemere C.A. Ringman J.M. Salloway S. Sperling R.A. Windisch M. Xiong C. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther. 2010 3 1 1 10.1186/alzrt59 21211070
    [Google Scholar]
  81. Valdez-Gaxiola C.A. Rosales-Leycegui F. Gaxiola-Rubio A. Moreno-Ortiz J.M. Figuera L.E. Early- and late-onset Alzheimer’s disease: Two sides of the same coin? Diseases 2024 12 6 110 10.3390/diseases12060110 38920542
    [Google Scholar]
  82. Thawabteh A.M. Ghanem A.W. AbuMadi S. Thaher D. Jaghama W. Karaman D. Karaman R. Recent advances in therapeutics for the treatment of Alzheimer’s disease. Molecules 2024 29 21 5131 10.3390/molecules29215131 39519769
    [Google Scholar]
  83. Yamazaki Y. Painter M.M. Bu G. Kanekiyo T. Apolipoprotein E as a therapeutic target in Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs 2016 30 9 773 789 10.1007/s40263‑016‑0361‑4 27328687
    [Google Scholar]
  84. Yamazaki Y. Zhao N. Caulfield T.R. Liu C.C. Bu G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019 15 9 501 518 10.1038/s41582‑019‑0228‑7 31367008
    [Google Scholar]
  85. Li Z. Shue F. Zhao N. Shinohara M. Bu G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 63 10.1186/s13024‑020‑00413‑4 33148290
    [Google Scholar]
  86. Raulin A.C. Doss S.V. Trottier Z.A. Ikezu T.C. Bu G. Liu C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022 17 1 72 10.1186/s13024‑022‑00574‑4 36348357
    [Google Scholar]
  87. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  88. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  89. Stanciu G.D. Luca A. Rusu R.N. Bild V. Beschea Chiriac S.I. Solcan C. Bild W. Ababei D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 2019 10 1 40 10.3390/biom10010040 31888102
    [Google Scholar]
  90. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated Tau in Alzheimer’s Disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  91. Su W.M. Gu X.J. Dou M. Duan Q.Q. Jiang Z. Yin K.F. Cai W.C. Cao B. Wang Y. Chen Y.P. Systematic druggable genome-wide Mendelian randomisation identifies therapeutic targets for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2023 94 11 954 961 10.1136/jnnp‑2023‑331142 37349091
    [Google Scholar]
  92. Zhang J. Wang Y. Zhang Y. Yao J. Genome-wide association study in Alzheimer’s disease: A bibliometric and visualization analysis. Front. Aging Neurosci. 2023 15 1290657 10.3389/fnagi.2023.1290657 38094504
    [Google Scholar]
  93. Duarte-Hospital C. Tête A. Brial F. Benoit L. Koual M. Tomkiewicz C. Kim M.J. Blanc E.B. Coumoul X. Bortoli S. Mitochondrial dysfunction as a hallmark of environmental injury. Cells 2021 11 1 110 10.3390/cells11010110 35011671
    [Google Scholar]
  94. Bartman S. Coppotelli G. Ross J.M. Mitochondrial dysfunction: A key player in brain aging and diseases. Curr. Issues Mol. Biol. 2024 46 3 1987 2026 10.3390/cimb46030130 38534746
    [Google Scholar]
  95. Guo C. Sun L. Chen X. Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013 8 21 2003 2014 10.3969/j.issn.1673‑5374.2013.21.009 25206509
    [Google Scholar]
  96. Zong Y. Li H. Liao P. Chen L. Pan Y. Zheng Y. Zhang C. Liu D. Zheng M. Gao J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 124 10.1038/s41392‑024‑01839‑8 38744846
    [Google Scholar]
  97. Massaad C.A. Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid. Redox Signal. 2011 14 10 2013 2054 10.1089/ars.2010.3208 20649473
    [Google Scholar]
  98. Parsons A.L.M. Bucknor E.M.V. Castroflorio E. Soares T.R. Oliver P.L. Rial D. The interconnected mechanisms of oxidative stress and neuroinflammation in epilepsy. Antioxidants 2022 11 1 157 10.3390/antiox11010157 35052661
    [Google Scholar]
  99. Jagtap Y.A. Kumar P. Kinger S. Dubey A.R. Choudhary A. Gutti R.K. Singh S. Jha H.C. Poluri K.M. Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 2023 11 1146564 10.3389/fcell.2023.1146564 36968195
    [Google Scholar]
  100. Chakravorty A. Jetto C.T. Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front. Aging Neurosci. 2019 11 311 10.3389/fnagi.2019.00311 31824296
    [Google Scholar]
  101. Liu B.H. Xu C.Z. Liu Y. Lu Z.L. Fu T.L. Li G.R. Deng Y. Luo G.Q. Ding S. Li N. Geng Q. Mitochondrial quality control in human health and disease. Mil. Med. Res. 2024 11 1 32 10.1186/s40779‑024‑00536‑5 38812059
    [Google Scholar]
  102. Meng K. Jia H. Hou X. Zhu Z. Lu Y. Feng Y. Feng J. Xia Y. Tan R. Cui F. Yuan J. Mitochondrial dysfunction in neurodegenerative diseases: Mechanisms and corresponding therapeutic strategies. Biomedicines 2025 13 2 327 10.3390/biomedicines13020327 40002740
    [Google Scholar]
  103. Berridge M.J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2013 7 1 2 13 10.4161/pri.21767 22895098
    [Google Scholar]
  104. McDaid J. Mustaly-Kalimi S. Stutzmann G.E. Ca2+ dyshomeostasis disrupts neuronal and synaptic function in Alzheimer’s disease. Cells 2020 9 12 2655 10.3390/cells9122655 33321866
    [Google Scholar]
  105. Cascella R. Cecchi C. Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int. J. Mol. Sci. 2021 22 9 4914 10.3390/ijms22094914 34066371
    [Google Scholar]
  106. Popugaeva E. Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front. Mol. Neurosci. 2013 6 29 10.3389/fnmol.2013.00029 24065882
    [Google Scholar]
  107. Robbins M. Clayton E. Kaminski Schierle G.S. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol. Commun. 2021 9 149 10.1186/s40478‑021‑01246‑y
    [Google Scholar]
  108. Zündorf G. Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 2011 14 7 1275 1288 10.1089/ars.2010.3359 20615073
    [Google Scholar]
  109. Ge M. Zhang J. Chen S. Huang Y. Chen W. He L. Zhang Y. Role of calcium homeostasis in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2022 18 487 498 10.2147/NDT.S350939 35264851
    [Google Scholar]
  110. Baracaldo-Santamaría D. Avendaño-Lopez S.S. Ariza-Salamanca D.F. Rodriguez-Giraldo M. Calderon-Ospina C.A. González-Reyes R.E. Nava-Mesa M.O. Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 10 9067 10.3390/ijms24109067 37240413
    [Google Scholar]
  111. Marambaud P. Dreses-Werringloer U. Vingtdeux V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 2009 4 1 20 10.1186/1750‑1326‑4‑20 19419557
    [Google Scholar]
  112. Guan P.P. Cao L.L. Wang P. Elevating the levels of calcium ions exacerbate Alzheimer’s disease via inducing the production and aggregation of β-Amyloid protein and phosphorylated Tau. Int. J. Mol. Sci. 2021 22 11 5900 10.3390/ijms22115900 34072743
    [Google Scholar]
  113. Pannuzzo M. Beta‐amyloid pore linked to controlled calcium influx into the cell: A new paradigm for Alzheimer’s Disease. Alzheimers Dement. 2022 18 1 191 196 10.1002/alz.12373 34051062
    [Google Scholar]
  114. Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol. Med. 2009 15 3 89 100 10.1016/j.molmed.2009.01.001 19230774
    [Google Scholar]
  115. Janicki S.C. Schupf N. Hormonal influences on cognition and risk for Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 2010 10 5 359 366 10.1007/s11910‑010‑0122‑6 20535591
    [Google Scholar]
  116. Tan Z.S. Beiser A. Vasan R.S. Au R. Auerbach S. Kiel D.P. Wolf P.A. Seshadri S. Thyroid function and the risk of Alzheimer disease: The Framingham study. Arch. Intern. Med. 2008 168 14 1514 1520 10.1001/archinte.168.14.1514 18663163
    [Google Scholar]
  117. Mazza E. Troiano E. Ferro Y. Lisso F. Tosi M. Turco E. Pujia R. Montalcini T. Obesity, dietary patterns, and hormonal balance modulation: Gender-specific impacts. Nutrients 2024 16 11 1629 10.3390/nu16111629 38892561
    [Google Scholar]
  118. Ottarsdottir K. Nilsson A.G. Hellgren M. Lindblad U. Daka B. The association between serum testosterone and insulin resistance: A longitudinal study. Endocr. Connect. 2018 7 12 1491 1500 10.1530/EC‑18‑0480 30592706
    [Google Scholar]
  119. Dziurkowska E. Wesolowski M. Cortisol as a biomarker of mental disorder severity. J. Clin. Med. 2021 10 21 5204 10.3390/jcm10215204 34768724
    [Google Scholar]
  120. Sic A. Cvetkovic K. Manchanda E. Knezevic N.N. Neurobiological implications of chronic stress and metabolic dysregulation in inflammatory bowel diseases. Diseases 2024 12 9 220 10.3390/diseases12090220 39329889
    [Google Scholar]
  121. Baker L.D. Barsness S.M. Borson S. Merriam G.R. Friedman S.D. Craft S. Vitiello M.V. Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: Results of a controlled trial. Arch. Neurol. 2012 69 11 1420 1429 10.1001/archneurol.2012.1970 22869065
    [Google Scholar]
  122. Bonda D.J. Lee H. Kudo W. Zhu X. Smith M.A. Lee H. Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev. Mol. Med. 2010 12 19 10.1017/S146239941000150X 20584423
    [Google Scholar]
  123. Koseoglu M.M. Norambuena A. Sharlow E.R. Lazo J.S. Bloom G.S. Aberrant neuronal cell cycle re-entry: The pathological confluence of Alzheimer’s disease and brain insulin resistance, and its relation to cancer. J. Alzheimers Dis. 2019 67 1 1 11 10.3233/JAD‑180874 30452418
    [Google Scholar]
  124. Pellarin I. Dall’Acqua A. Favero A. Segatto I. Rossi V. Crestan N. Karimbayli J. Belletti B. Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct. Target. Ther. 2025 10 1 11 10.1038/s41392‑024‑02080‑z 39800748
    [Google Scholar]
  125. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  126. Frade J.M. Ovejero-Benito M.C. Neuronal cell cycle: The neuron itself and its circumstances. Cell Cycle 2015 14 5 712 720 10.1080/15384101.2015.1004937 25590687
    [Google Scholar]
  127. Wu D. Sun J.K.L. Chow K.H.M. Neuronal cell cycle reentry events in the aging brain are more prevalent in neurodegeneration and lead to cellular senescence. PLoS Biol. 2024 22 4 3002559 10.1371/journal.pbio.3002559 38652714
    [Google Scholar]
  128. Wikipedia contributors. 2024. 2024 Available from: https://en.wikipedia.org/w/index.php?title=G0_phase&oldid=1260632209
    [Google Scholar]
  129. Gendron T.F. Petrucelli L. The role of tau in neurodegeneration. Mol. Neurodegener. 2009 4 1 13 10.1186/1750‑1326‑4‑13 19284597
    [Google Scholar]
  130. Ratan Y. Rajput A. Maleysm S. Pareek A. Jain V. Pareek A. Kaur R. Singh G. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease. Biomedicines 2023 11 5 1398 10.3390/biomedicines11051398 37239068
    [Google Scholar]
  131. Szabo L. Eckert A. Grimm A. Insights into disease-associated tau impact on mitochondria. Int. J. Mol. Sci. 2020 21 17 6344 10.3390/ijms21176344 32882957
    [Google Scholar]
  132. Torres A.K. Jara C. Olesen M.A. Tapia-Rojas C. Pathologically phosphorylated tau at S396/404 (PHF-1) is accumulated inside of hippocampal synaptic mitochondria of aged Wild-type mice. Sci. Rep. 2021 11 1 4448 10.1038/s41598‑021‑83910‑w 33627790
    [Google Scholar]
  133. Al-Ghraiybah N.F. Wang J. Alkhalifa A.E. Roberts A.B. Raj R. Yang E. Kaddoumi A. Glial cell-mediated neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 18 10572 10.3390/ijms231810572 36142483
    [Google Scholar]
  134. Akyuz E. Arulsamy A. Aslan F.S. Sarisözen B. Guney B. Hekimoglu A. Yilmaz B.N. Retinasamy T. Shaikh M.F. An expanded narrative review of neurotransmitters on Alzheimer’s disease: The role of therapeutic interventions on neurotransmission. Mol. Neurobiol. 2025 62 2 1631 1674 10.1007/s12035‑024‑04333‑y 39012443
    [Google Scholar]
  135. Pan X. Kaminga A.C. Wen S.W. Wu X. Acheampong K. Liu A. Dopamine and dopamine receptors in Alzheimer’s disease: A systematic review and network meta-analysis. Front. Aging Neurosci. 2019 11 175 10.3389/fnagi.2019.00175 31354471
    [Google Scholar]
  136. Nobili A. Latagliata E.C. Viscomi M.T. Cavallucci V. Cutuli D. Giacovazzo G. Krashia P. Rizzo F.R. Marino R. Federici M. De Bartolo P. Aversa D. Dell’Acqua M.C. Cordella A. Sancandi M. Keller F. Petrosini L. Puglisi-Allegra S. Mercuri N.B. Coccurello R. Berretta N. D’Amelio M. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun. 2017 8 1 14727 10.1038/ncomms14727 28367951
    [Google Scholar]
  137. Shaikh A. Ahmad F. Teoh S.L. Kumar J. Yahaya M.F. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer’s disease. Front. Cell. Neurosci. 2023 17 1292858 10.3389/fncel.2023.1292858 38026688
    [Google Scholar]
  138. Saggu S. Bai A. Aida M. Rehman H. Pless A. Ware D. Deak F. Jiao K. Wang Q. Monoamine alterations in Alzheimer’s disease and their implications in comorbid neuropsychiatric symptoms. Geroscience 2024 47 1 457 482 10.1007/s11357‑024‑01359‑x 39331291
    [Google Scholar]
  139. Teleanu R.I. Niculescu A.G. Roza E. Vladâcenco O. Grumezescu A.M. Teleanu D.M. Neurotransmitters—Key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 2022 23 11 5954 10.3390/ijms23115954 35682631
    [Google Scholar]
  140. Ramesh S. Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023 10 3 200 231 10.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  141. Triarhou L.C. Dopamine and Parkinson’s Disease. Madame Curie Bioscience Database 2000 2013
    [Google Scholar]
  142. Ryan K.C. Ashkavand Z. Norman K.R. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases. Int. J. Mol. Sci. 2020 21 23 9153 10.3390/ijms21239153 33271784
    [Google Scholar]
  143. Vilella A. Daini E. De Benedictis C.A. Targeting metal homeostasis as a therapeutic strategy for Alzheimer’s disease. Alzheimer’s disease: Drug discovery 10.36255/exoncitations.alzheimersdisease.2020.ch5
    [Google Scholar]
  144. Li Y. Jiao Q. Xu H. Du X. Shi L. Jia F. Jiang H. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front. Mol. Neurosci. 2017 10 339 10.3389/fnmol.2017.00339 29114205
    [Google Scholar]
  145. Wang L. Yin Y.L. Liu X.Z. Shen P. Zheng Y.G. Lan X.R. Lu C.B. Wang J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020 9 1 10 10.1186/s40035‑020‑00189‑z 32266063
    [Google Scholar]
  146. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  147. Fan H. Wang K. Zhao X. Song B. Yao T. Liu T. Gao G. Lu W. Liu C. Emerging insights into cuproptosis and copper metabolism: Implications for age-related diseases and potential therapeutic strategies. Front. Aging Neurosci. 2024 16 1335122 10.3389/fnagi.2024.1335122 38715962
    [Google Scholar]
  148. Kardos J. Héja L. Simon Á. Jablonkai I. Kovács R. Jemnitz K. Copper signalling: Causes and consequences. Cell Commun. Signal. 2018 16 1 71 10.1186/s12964‑018‑0277‑3 30348177
    [Google Scholar]
  149. Gaggelli E. Kozlowski H. Valensin D. Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006 106 6 1995 2044 10.1021/cr040410w 16771441
    [Google Scholar]
  150. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  151. Cheng R. Dhorajia V.V. Kim J. Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022 88 88 101 10.1016/j.neuro.2021.11.003 34748789
    [Google Scholar]
  152. Gao G. You L. Zhang J. Chang Y.Z. Yu P. Brain iron metabolism, redox balance and neurological diseases. Antioxidants 2023 12 6 1289 10.3390/antiox12061289 37372019
    [Google Scholar]
  153. Kulaszyńska M. Kwiatkowski S. Skonieczna-Żydecka K. The iron metabolism with a specific focus on the functioning of the nervous system. Biomedicines 2024 12 3 595 10.3390/biomedicines12030595 38540208
    [Google Scholar]
  154. Yarjanli Z. Ghaedi K. Esmaeili A. Rahgozar S. Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017 18 1 51 10.1186/s12868‑017‑0369‑9 28651647
    [Google Scholar]
  155. Watt N.T. Whitehouse I.J. Hooper N.M. The role of zinc in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011 2011 1 971021 10.4061/2011/971021 21197404
    [Google Scholar]
  156. Lovell M.A. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer’s disease. J. Alzheimers Dis. 2009 16 3 471 483 10.3233/JAD‑2009‑0992 19276540
    [Google Scholar]
  157. Sanders T. Liu Y. Buchner V. Tchounwou P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health 2009 24 1 15 45 10.1515/REVEH.2009.24.1.15 19476290
    [Google Scholar]
  158. Lead poisoning. 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
    [Google Scholar]
  159. Bisht K. Sharma K. Tremblay M.È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress 2018 9 9 21 10.1016/j.ynstr.2018.05.003 29992181
    [Google Scholar]
  160. Zhang H. Wei W. Zhao M. Ma L. Jiang X. Pei H. Cao Y. Li H. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci. 2021 17 9 2181 2192 10.7150/ijbs.57078 34239348
    [Google Scholar]
  161. Bakulski K.M. Rozek L.S. Dolinoy D.C. Paulson H.L. Hu H. Alzheimer’s disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics. Curr. Alzheimer Res. 2012 9 5 563 573 10.2174/156720512800617991 22272628
    [Google Scholar]
  162. Agarwal U. Pannu A. Tonk R.K. Foreign contaminants target brain health. CNS Neurol. Disord. Drug Targets 2025 24 5 353 374 10.2174/0118715273338071241213101016 39812065
    [Google Scholar]
  163. Arora S. Santiago J.A. Bernstein M. Potashkin J.A. Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Front. Nutr. 2023 10 1213223 10.3389/fnut.2023.1213223 37457976
    [Google Scholar]
  164. Stefaniak O. Dobrzyńska M. Drzymała-Czyż S. Przysławski J. Diet in the prevention of Alzheimer’s disease: Current knowledge and future research requirements. Nutrients 2022 14 21 4564 10.3390/nu14214564 36364826
    [Google Scholar]
  165. Fekete M. Varga P. Ungvari Z. Fekete J.T. Buda A. Szappanos Á. Lehoczki A. Mózes N. Grosso G. Godos J. Menyhart O. Munkácsy G. Tarantini S. Yabluchanskiy A. Ungvari A. Győrffy B. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. Geroscience 2025 47 3 3111 3130 10.1007/s11357‑024‑01488‑3 39797935
    [Google Scholar]
  166. Christodoulou C.C. Pitsillides M. Hadjisavvas A. Zamba-Papanicolaou E. Dietary intake, mediterranean and nordic diet adherence in Alzheimer’s Disease and dementia: A systematic review. Nutrients 2025 17 2 336 10.3390/nu17020336 39861466
    [Google Scholar]
  167. Marchand N.E. Jensen M.K. The role of dietary and lifestyle factors in maintaining cognitive health. Am. J. Lifestyle Med. 2018 12 4 268 285 10.1177/1559827617701066 32063810
    [Google Scholar]
  168. Mosconi L. McHugh P.F. Let food be thy medicine: Diet, nutrition, and biomarkers’ risk of Alzheimer’s disease. Curr. Nutr. Rep. 2015 4 2 126 135 10.1007/s13668‑014‑0111‑5 26167396
    [Google Scholar]
  169. Khan M. Jaiswal A. Wandile B. A comprehensive review of modifiable cardiovascular risk factors and genetic influences in dementia prevention. Cureus 2023 15 11 48430 10.7759/cureus.48430 38074067
    [Google Scholar]
  170. Vojtechova I. Machacek T. Kristofikova Z. Stuchlik A. Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog. 2022 18 11 1010929 10.1371/journal.ppat.1010929 36395147
    [Google Scholar]
  171. Itzhaki R.F. Herpes simplex virus type 1 and Alzheimer’s disease: Increasing evidence for a major role of the virus. Front. Aging Neurosci. 2014 6 202 10.3389/fnagi.2014.00202 25157230
    [Google Scholar]
  172. Ganz T. Fainstein N. Ben-Hur T. When the infectious environment meets the AD brain. Mol. Neurodegener. 2022 17 1 53 10.1186/s13024‑022‑00559‑3 35986296
    [Google Scholar]
  173. Dando S.J. Mackay-Sim A. Norton R. Currie B.J. St John J.A. Ekberg J.A. Batzloff M. Ulett G.C. Beacham I.R. Pathogens penetrating the central nervous system: Infection pathways and the cellular and molecular mechanisms of invasion. Clin. Microbiol. Rev. 2014 27 4 691 726 10.1128/CMR.00118‑13 25278572
    [Google Scholar]
  174. Onisiforou A. Charalambous E.G. Zanos P. Shattering the amyloid illusion: The microbial enigma of Alzheimer’s disease pathogenesis—from gut microbiota and viruses to brain biofilms. Microorganisms 2025 13 1 90 10.3390/microorganisms13010090 39858858
    [Google Scholar]
  175. Cantero J.L. Atienza M. Sastre I. Bullido M.J. Human in vivo evidence of associations between herpes simplex virus and cerebral amyloid-beta load in normal aging. Alzheimers Res. Ther. 2024 16 1 68 10.1186/s13195‑024‑01437‑4 38570885
    [Google Scholar]
  176. Zhou X. Kumar P. Bhuyan D.J. Jensen S.O. Roberts T.L. Münch G.W. Neuroinflammation in Alzheimer’s disease: A potential role of nose-picking in pathogen entry via the olfactory system? Biomolecules 2023 13 11 1568 10.3390/biom13111568 38002250
    [Google Scholar]
  177. Cairns D.M. Itzhaki R.F. Kaplan D.L. Potential involvement of varicella zoster virus in Alzheimer’s disease via reactivation of quiescent herpes simplex virus type 1. J. Alzheimers Dis. 2022 88 3 1189 1200 10.3233/JAD‑220287 35754275
    [Google Scholar]
  178. Wang L. Davis P.B. Volkow N.D. Berger N.A. Kaelber D.C. Xu R. Association of COVID-19 with new-onset Alzheimer’s disease. J. Alzheimers Dis. 2022 89 2 411 414 10.3233/JAD‑220717 35912749
    [Google Scholar]
  179. Alonso R. Pisa D. Aguado B. Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017 58 1 55 67 10.3233/JAD‑170058 28387676
    [Google Scholar]
  180. Parady B. Innate immune and fungal model of Alzheimer’s disease. J. Alzheimers Dis. Rep. 2018 2 1 139 152 10.3233/ADR‑180073 30480257
    [Google Scholar]
  181. Alonso R. Pisa D. Fernández-Fernández A.M. Carrasco L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 2018 10 159 10.3389/fnagi.2018.00159 29881346
    [Google Scholar]
  182. Park G. Kadyan S. Hochuli N. Salazar G. Laitano O. Chakrabarty P. Efron P.A. Zafar M.A. Wilber A. Nagpal R. An enteric bacterial infection triggers neuroinflammation and neurobehavioral impairment in 3xTg-AD transgenic mice. J. Infect. Dis. 2024 230 Suppl. 2 S95 S108 10.1093/infdis/jiae165 39255397
    [Google Scholar]
  183. Chu C.S. Liang C.S. Tsai S.J. Bai Y.M. Su T.P. Chen T.J. Chen M.H. Bacterial pneumonia and subsequent dementia risk: A nationwide cohort study. Brain Behav. Immun. 2022 103 12 18 10.1016/j.bbi.2022.04.002 35390468
    [Google Scholar]
  184. Grabowska-Pyrzewicz W. Want A. Leszek J. Wojda U. Antisense oligonucleotides for Alzheimer’s disease therapy: From the mRNA to miRNA paradigm. EBioMedicine 2021 74 103691 10.1016/j.ebiom.2021.103691 34773891
    [Google Scholar]
  185. Bhardwaj S. Kesari K.K. Rachamalla M. Mani S. Ashraf G.M. Jha S.K. Kumar P. Ambasta R.K. Dureja H. Devkota H.P. Gupta G. Chellappan D.K. Singh S.K. Dua K. Ruokolainen J. Kamal M.A. Ojha S. Jha N.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J. Adv. Res. 2022 40 207 221 10.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  186. Sigurdsson E.M. Tau immunotherapies for Alzheimer’s disease and related tauopathies: Progress and potential pitfalls1. J. Alzheimers Dis. 2018 64 s1 S555 S565 10.3233/JAD‑179937 29865056
    [Google Scholar]
  187. Xu W. Huang Y. Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell. Mol. Immunol. 2025 22 4 341 355 10.1038/s41423‑025‑01275‑w 40075143
    [Google Scholar]
  188. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  189. Yen C. Lin C.L. Chiang M.C. Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life 2023 13 7 1472 10.3390/life13071472 37511847
    [Google Scholar]
  190. Doğan Z. Cetın S. Clinical reflections of the glymphatic system and neurodegenerative diseases. J. Med. Top Updat 2025 4 1 16 22 10.58651/jomtu.1675339
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037416859250915091846
Loading
/content/journals/cpps/10.2174/0113892037416859250915091846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test