Skip to content
2000
image of Versatility of Collagen as a Natural Biopolymer for Biomedical, Food, and Cosmetic Applications

Abstract

Collagen is the most abundant structural protein and an essential connective tissue constituent. It plays vital roles in the body and is found in different tissues, including tendons, cartilages, bones, and skin. Collagen is mainly extracted from marine and animal sources (such as fish, cows, pigs, ). Synthetic biology platforms have recently gained significant attention by producing non-native collagen substitutes. The multi-purpose uses of collagen and collagen-based products have increased the growing demand for collagen in various industrial applications, including biomedical, food, and cosmetics. The inherent characteristics of collagen, such as biodegradability, biocompatibility, hemostatic activity, , are commonly employed in many biomedical applications. Collagen is widely used in the biomedical industry for drug delivery, tissue regeneration, medical devices, bio-inks, . It is used in cosmetics for its moisturizing and anti-aging properties. In addition, food-grade collagen is used in many functional foods as a health supplement. The current review describes the collagen's structures, types, and sources. Later, it discusses collagen's versatile applications as a natural biopolymer in biomedical, food, and cosmetic fields. The potential collagen market and sustainable collagen production with a synthetic biology platform have also been covered.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037405587250911064729
2025-10-14
2026-02-14
Loading full text...

Full text loading...

References

  1. Wosicka-Frąckowiak H. Poniedziałek K. Woźny S. Kuprianowicz M. Nyga M. Jadach B. Milanowski B. Collagen and its derivatives serving biomedical purposes: A review. Polymers 2024 16 18 2668 10.3390/polym16182668 39339133
    [Google Scholar]
  2. Shoulders M.D. Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009 78 1 929 958 10.1146/annurev.biochem.77.032207.120833 19344236
    [Google Scholar]
  3. Amirrah I.N. Lokanathan Y. Zulkiflee I. Wee M.F.M.R. Motta A. Fauzi M.B. A comprehensive review on collagen type I development of biomaterials for tissue engineering: From biosynthesis to bioscaffold. Biomedicines 2022 10 9 2307 10.3390/biomedicines10092307 36140407
    [Google Scholar]
  4. Oslan S.N.H. Li C.X. Shapawi R. Mokhtar R.A.M. Noordin W.N.M. Huda N. Extraction and characterization of bioactive fish by-product collagen as promising for potential wound healing agent in pharmaceutical applications: Current trend and future perspective. Int. J. Food Sci. 2022 2022 1 10 10.1155/2022/9437878 35573824
    [Google Scholar]
  5. Meena C. Mengi S.A. Deshpande S.G. Biomedical and industrial applications of collagen. J. Chem. Sci. 1999 111 2 319 329 10.1007/BF02871912
    [Google Scholar]
  6. Silvipriya K. Kumar K. Bhat A. Kumar B. John A. Lakshmanan P. Collagen: Animal sources and biomedical application. J. Appl. Pharm. Sci. 2015 5 123 127 10.7324/JAPS.2015.50322
    [Google Scholar]
  7. Wallace J.M. Chen Q. Fang M. Erickson B. Orr B.G. Banaszak Holl M.M. Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir 2010 26 10 7349 7354 10.1021/la100006a 20121266
    [Google Scholar]
  8. Pragnère S. Auregan J-C. Bosser C. Linglart A. Bensidhoum M. Hoc T. Nouguier-Lehon C. Chaussain C. Human dentin characteristics of patients with osteogenesis imperfecta: Insights into collagen-based biomaterials. Acta. Biomater. 2021 119 259 267 10.1016/j.actbio.2020.10.033 33122145
    [Google Scholar]
  9. Reilly D.M. Lozano J. Skin collagen through the lifestages: Importance for skin health and beauty. Plast. Aesthet. Res. 2021 8 2 10.20517/2347‑9264.2020.153
    [Google Scholar]
  10. Martínez-Puig D. Costa-Larrión E. Rubio-Rodríguez N. Gálvez-Martín P. Collagen supplementation for joint health: The link between composition and scientific knowledge. Nutrients 2023 15 6 1332 10.3390/nu15061332 36986062
    [Google Scholar]
  11. Chen W. Xiang N. Huang J. Xu H. Wang Z. Ruan B. Zhang J. Wu C. Zhang J. Liang Y. Supramolecular collagen nanoparticles for anti-wrinkle, skin whitening, and moisturizing effects. Colloids Surf. B Biointerfaces 2025 245 114275 10.1016/j.colsurfb.2024.114275 39383579
    [Google Scholar]
  12. Mistry K. van der Steen B. Clifford T. van Holthoon F. Kleinnijenhuis A. Prawitt J. Labus M. Vanhoecke B. Lovat P.E. McConnell A. Potentiating cutaneous wound healing in young and aged skin with nutraceutical collagen peptides. Clin. Exp. Dermatol. 2021 46 1 109 117 10.1111/ced.14392 32687652
    [Google Scholar]
  13. Campos L.D. Santos Junior V.A. Pimentel J.D. Carregã G.L.F. Cazarin C.B.B. Collagen supplementation in skin and orthopedic diseases: A review of the literature. Heliyon 2023 9 4 e14961 10.1016/j.heliyon.2023.e14961 37064452
    [Google Scholar]
  14. Sowbhagya R. Muktha H. Ramakrishnaiah T.N. Surendra A.S. Sushma S.M. Tejaswini C. Roopini K. Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024 90 102497 10.1016/j.tice.2024.102497 39059131
    [Google Scholar]
  15. Ahmad M.I. Li Y. Pan J. Liu F. Dai H. Fu Y. Huang T. Farooq S. Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int. J. Biol. Macromol. 2024 254 Pt 3 128037 10.1016/j.ijbiomac.2023.128037 37963506
    [Google Scholar]
  16. Prete S. Dattilo M. Patitucci F. Pezzi G. Parisi O.I. Puoci F. Natural and synthetic polymeric biomaterials for application in wound management. J. Funct. Biomater. 2023 14 9 455 10.3390/jfb14090455 37754869
    [Google Scholar]
  17. Sun L. Xu Y. Han Y. Cui J. Jing Z. Li D. Liu J. Xiao C. Li D. Cai B. Collagen-based hydrogels for cartilage regeneration. Orthop. Surg. 2023 15 12 3026 3045 10.1111/os.13884 37942509
    [Google Scholar]
  18. Kusnadi K. Herdiana Y. Rochima E. Putra O.N. Mohd Gazzali A. Muchtaridi M. Collagen-based nanoparticles as drug delivery system in wound healing applications. Int. J. Nanomedicine 2024 19 11321 11341 10.2147/IJN.S485588 39524919
    [Google Scholar]
  19. Friess W. Collagen – biomaterial for drug delivery. Dedicated to Professor Dr. Eberhard Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, on the occasion of his 70th birthday. Eur. J. Pharm. Biopharm. 1998 45 2 113 136 10.1016/S0939‑6411(98)00017‑4 9704909
    [Google Scholar]
  20. Avila Rodríguez M.I. Rodríguez Barroso L.G. Sánchez M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018 17 1 20 26 10.1111/jocd.12450 29144022
    [Google Scholar]
  21. Liu W. Lin H. Zhao P. Xing L. Li J. Wang Z. Ju S. Shi X. Liu Y. Deng G. Gao G. Sun L. Zhang X. A regulatory perspective on recombinant collagen-based medical devices. Bioact. Mater. 2022 12 198 202 10.1016/j.bioactmat.2021.10.031 35310384
    [Google Scholar]
  22. Cao L. Zhang Z. Yuan D. Yu M. Min J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024 12 1358246 10.3389/fbioe.2024.1358246 38419725
    [Google Scholar]
  23. Ramshaw J.A.M. Werkmeister J.A. Dumsday G.J. Bioengineered collagens. Bioengineered 2014 5 4 227 233 10.4161/bioe.28791 24717980
    [Google Scholar]
  24. An B. Kaplan D.L. Brodsky B. Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Front Chem. 2014 2 40 10.3389/fchem.2014.00040 25003103
    [Google Scholar]
  25. Olsen D. Yang C. Bodo M. Chang R. Leigh S. Baez J. Carmichael D. Perälä M. Hämäläinen E.R. Jarvinen M. Polarek J. Recombinant collagen and gelatin for drug delivery. Adv. Drug Deliv. Rev. 2003 55 12 1547 1567 10.1016/j.addr.2003.08.008 14623401
    [Google Scholar]
  26. Li Z. Du T. Ruan C. Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact. Mater. 2021 6 5 1491 1511 10.1016/j.bioactmat.2020.11.004 33294729
    [Google Scholar]
  27. Abedi M. Shafiee M. Afshari F. Mohammadi H. Ghasemi Y. Collagen-based medical devices for regenerative medicine and tissue engineering. Appl. Biochem. Biotechnol. 2024 196 8 5563 5603 10.1007/s12010‑023‑04793‑3 38133881
    [Google Scholar]
  28. Debnath S. Agrawal A. Jain N. Chatterjee K. Player D.J. Collagen as a bio-ink for 3D printing: A critical review. J. Mater. Chem. B Mater. Biol. Med. 2025 13 6 1890 1919 10.1039/D4TB01060D 39775500
    [Google Scholar]
  29. Gu L. Shan T. Ma Y. Tay F.R. Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019 37 5 464 491 10.1016/j.tibtech.2018.10.007 30447877
    [Google Scholar]
  30. Zheng L. Tseomashko N. Voronova A. Vasil’kov A. Hu X. Wang X. Recent advances of collagen composite biomaterials for biomedical engineering: Antibacterial functionalization and 3D-printed architecturalization. Collagen and Leather 2024 6 1 22 10.1186/s42825‑024‑00164‑8
    [Google Scholar]
  31. Tsekoura E.K. Dick T. Pankongadisak P. Graf D. Boluk Y. Uludağ H. Delivery of bioactive gene particles via gelatin-collagen-PEG-based electrospun matrices. Pharmaceuticals 2021 14 7 666 10.3390/ph14070666 34358092
    [Google Scholar]
  32. Rustad A.M. Nickles M.A. McKenney J.E. Bilimoria S.N. Lio P.A. Myths and media in oral collagen supplementation for the skin, nails, and hair: A review. J. Cosmet. Dermatol. 2022 21 2 438 443 10.1111/jocd.14567 34694676
    [Google Scholar]
  33. Wu Y. Deng S. Wei W. He Y. He Y. Hong G. Zheng Y. Han L. Li Y. Hua Y. Guo J. Oral collagen-based supplement as a bioactive component in functional foods. Collagen and Leather 2025 7 1 15 10.1186/s42825‑025‑00198‑6
    [Google Scholar]
  34. Ramachandran G.N. Kartha G. Structure of Collagen. Nature 1954 174 4423 269 270 10.1038/174269c0 13185286
    [Google Scholar]
  35. Bell J.S. Hayes S. Whitford C. Sanchez-Weatherby J. Shebanova O. Terrill N.J. Sørensen T.L.M. Elsheikh A. Meek K.M. Tropocollagen springs allow collagen fibrils to stretch elastically. Acta Biomater. 2022 142 185 193 10.1016/j.actbio.2022.01.041 35081430
    [Google Scholar]
  36. Fidler A.L. Boudko S.P. Rokas A. Hudson B.G. The triple helix of collagens – An ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell Sci. 2018 131 7 jcs203950 10.1242/jcs.203950 29632050
    [Google Scholar]
  37. Ricard-Blum S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011 3 1 a004978 10.1101/cshperspect.a004978 21421911
    [Google Scholar]
  38. Li P. Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018 50 1 29 38 10.1007/s00726‑017‑2490‑6 28929384
    [Google Scholar]
  39. Kirkness M.W.H. Lehmann K. Forde N.R. Mechanics and structural stability of the collagen triple helix. Curr. Opin. Chem. Biol. 2019 53 98 105 10.1016/j.cbpa.2019.08.001 31606538
    [Google Scholar]
  40. Salo A.M. Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp. Dermatol. 2021 30 1 38 49 10.1111/exd.14197 32969070
    [Google Scholar]
  41. Gelse K. Pöschl E. Aigner T. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003 55 12 1531 1546 10.1016/j.addr.2003.08.002 14623400
    [Google Scholar]
  42. Bhaskar, B. Amrapali, S. Sonal, P. Smita, P. Amol, D. Venkatesh, P. Santanu, D. A guide to collagen sources, applications and current advancements. Syst. Biosci. Eng. 2021 1 2 67 87 10.37256/sbe.1220211043
    [Google Scholar]
  43. Wu Z. Korntner S.H. Mullen A.M. Zeugolis D.I. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. Biomater. Biosyst. 2021 4 100030 10.1016/j.bbiosy.2021.100030 36824570
    [Google Scholar]
  44. Kuivaniemi H. Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019 707 151 171 10.1016/j.gene.2019.05.003 31075413
    [Google Scholar]
  45. Hsu H.H. Murasawa Y. Qi P. Nishimura Y. Wang P.C. Type V collagen fibrils in mouse metanephroi. Biochem. Biophys. Res. Commun. 2013 441 3 649 654 10.1016/j.bbrc.2013.10.097 24404584
    [Google Scholar]
  46. Konomi H. Hayashi T. Nakayasu K. Arima M. Localization of type V collagen and type IV collagen in human cornea, lung, and skin. Immunohistochemical evidence by anti-collagen antibodies characterized by immunoelectroblotting. Am. J. Pathol. 1984 116 3 417 426 6383060
    [Google Scholar]
  47. Ouyang Z. Dong L. Yao F. Wang K. Chen Y. Li S. Zhou R. Zhao Y. Hu W. Cartilage-related collagens in osteoarthritis and rheumatoid arthritis: From Pathogenesis to therapeutics. Int. J. Mol. Sci. 2023 24 12 9841 10.3390/ijms24129841 37372989
    [Google Scholar]
  48. Mio F. Chiba K. Hirose Y. Kawaguchi Y. Mikami Y. Oya T. Mori M. Kamata M. Matsumoto M. Ozaki K. Tanaka T. Takahashi A. Kubo T. Kimura T. Toyama Y. Ikegawa S. A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am. J. Hum. Genet. 2007 81 6 1271 1277 10.1086/522377 17999364
    [Google Scholar]
  49. Bushby K.M.D. Collins J. Hicks D. Collagen type VI myopathies. Adv. Exp. Med. Biol. 2014 802 185 199 10.1007/978‑94‑007‑7893‑1_12 24443028
    [Google Scholar]
  50. Banu N. Hara H. Kataoka S. Egusa G. Yamakido M. A novel method for concentrating urinary type IV collagen based on precipitation with polyethylene glycol: Application to its measurement by enzyme immunoassay. Ann. Clin. Biochem. 1994 31 5 485 491 10.1177/000456329403100511 7530438
    [Google Scholar]
  51. Watanabe H. Sanada H. Shigetomi S. Katoh T. Watanabe T. Urinary excretion of type IV collagen as a specific indicator of the progression of diabetic nephropathy. Nephron J. 2000 86 1 27 35 10.1159/000045709 10971150
    [Google Scholar]
  52. Woodley D.T. Keene D.R. Atha T. Huang Y. Lipman K. Li W. Chen M. Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat. Med. 2004 10 7 693 695 10.1038/nm1063 15195089
    [Google Scholar]
  53. Gottsch J.D. Zhang C. Sundin O.H. Bell W.R. Stark W.J. Green W.R. Fuchs corneal dystrophy: Aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest. Ophthalmol. Vis. Sci. 2005 46 12 4504 4511 10.1167/iovs.05‑0497 16303941
    [Google Scholar]
  54. Shuttleworth C.A. Type VIII collagen. Int. J. Biochem. Cell Biol. 1997 29 10 1145 1148 10.1016/S1357‑2725(97)00033‑2 9438378
    [Google Scholar]
  55. Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofac. Res. 2005 8 1 11 17 10.1111/j.1601‑6343.2004.00308.x 15667640
    [Google Scholar]
  56. Arriazu E. Ruiz de Galarreta M. Cubero F.J. Varela-Rey M. Pérez de Obanos M.P. Leung T.M. Lopategi A. Benedicto A. Abraham-Enachescu I. Nieto N. Extracellular matrix and liver disease. Antioxid. Redox Signal. 2014 21 7 1078 1097 10.1089/ars.2013.5697 24219114
    [Google Scholar]
  57. Seppinen L. Pihlajaniemi T. The multiple functions of collagen XVIII in development and disease. Matrix Biol. 2011 30 2 83 92 10.1016/j.matbio.2010.11.001 21163348
    [Google Scholar]
  58. Grässel S. Unsöld C. Schäcke H. Bruckner-Tuderman L. Bruckner P. Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 1999 18 3 309 317 10.1016/S0945‑053X(99)00019‑0 10429949
    [Google Scholar]
  59. Marneros A.G. Keene D.R. Hansen U. Fukai N. Moulton K. Goletz P.L. Moiseyev G. Pawlyk B.S. Halfter W. Dong S. Shibata M. Li T. Crouch R.K. Bruckner P. Olsen B.R. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 2004 23 1 89 99 10.1038/sj.emboj.7600014 14685281
    [Google Scholar]
  60. Diab M. Wu J.J. Eyre D.R. Collagen type IX from human cartilage: A structural profile of intermolecular cross-linking sites. Biochem. J. 1996 314 1 327 332 10.1042/bj3140327 8660302
    [Google Scholar]
  61. Oudart J.B. Monboisse J.C. Maquart F.X. Brassart B. Brassart-Pasco S. Ramont L. Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment. Matrix Biol. 2017 57-58 169 177 10.1016/j.matbio.2016.07.010 27491275
    [Google Scholar]
  62. Ricard-Blum S. Ruggiero F. The collagen superfamily: From the extracellular matrix to the cell membrane. Pathol. Biol. 2005 53 7 430 442 10.1016/j.patbio.2004.12.024 16085121
    [Google Scholar]
  63. Chou M.Y. Li H.C. Genomic organization and characterization of the human type XXI collagen (COL21A1) gene. Genomics 2002 79 3 395 401 10.1006/geno.2002.6712 11863369
    [Google Scholar]
  64. Davison-Kotler E. Marshall W.S. García-Gareta E. Sources of collagen for biomaterials in skin wound healing. Bioengineering 2019 6 3 56 10.3390/bioengineering6030056 31261996
    [Google Scholar]
  65. Ferraro V. Gaillard-Martinie B. Sayd T. Chambon C. Anton M. Santé-Lhoutellier V. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int. J. Biol. Macromol. 2017 97 55 66 10.1016/j.ijbiomac.2016.12.068 28038914
    [Google Scholar]
  66. Wenz B. Oesch B. Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 2001 22 12 1599 1606 10.1016/S0142‑9612(00)00312‑4 11374460
    [Google Scholar]
  67. Gao Z-R. Hao Z-Q. Li Y. Im M.J. Spence R.J. Porcine dermal collagen as a wound dressing for skin donor sites and deep partial skin thickness burns. Burns 1992 18 6 492 496 10.1016/0305‑4179(92)90183‑U 1489500
    [Google Scholar]
  68. Matinong A.M.E. Chisti Y. Pickering K.L. Haverkamp R.G. Collagen extraction from animal skin. Biology 2022 11 6 905 10.3390/biology11060905 35741426
    [Google Scholar]
  69. Fu Y. Therkildsen M. Aluko R.E. Lametsch R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit. Rev. Food Sci. Nutr. 2019 59 13 2011 2027 10.1080/10408398.2018.1436038 29394086
    [Google Scholar]
  70. Salvatore L. Gallo N. Aiello D. Lunetti P. Barca A. Blasi L. Madaghiele M. Bettini S. Giancane G. Hasan M. Borovkov V. Natali M.L. Campa L. Valli L. Capobianco L. Napoli A. Sannino A. An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int. J. Biol. Macromol. 2020 154 291 306 10.1016/j.ijbiomac.2020.03.082 32173436
    [Google Scholar]
  71. Mayne R. Zettergren J.G. Type IV collagen from chicken muscular tissues. Isolation and characterization of the pepsin-resistant fragments. Biochemistry 1980 19 17 4065 4072 10.1021/bi00558a025 6773561
    [Google Scholar]
  72. Geahchan S. Baharlouei P. Rahman A. Marine collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar. Drugs 2022 20 1 61 10.3390/md20010061 35049916
    [Google Scholar]
  73. Coppola D. Oliviero M. Vitale G.A. Lauritano C. D’Ambra I. Iannace S. de Pascale D. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar. Drugs 2020 18 4 214 10.3390/md18040214 32326635
    [Google Scholar]
  74. Cadar E. Pesterau A.M. Prasacu I. Ionescu A.M. Pascale C. Dragan A.M.L. Sirbu R. Tomescu C.L. Marine antioxidants from marine collagen and collagen peptides with nutraceuticals applications: A review. Antioxidants 2024 13 8 919 10.3390/antiox13080919 39199165
    [Google Scholar]
  75. Shaik M.I. Rahman S.H.A. Yusri A.S. Ismail-Fitry M.R. Kumar N.S.S. Sarbon N.M. A review on the processing technique, physicochemical, and bioactive properties of marine collagen. J. Food Sci. 2024 89 9 5205 5229 10.1111/1750‑3841.17273 39126690
    [Google Scholar]
  76. Lim Y.S. Ok Y.J. Hwang S.Y. Kwak J.Y. Yoon S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 2019 17 8 467 10.3390/md17080467 31405173
    [Google Scholar]
  77. Rajabimashhadi Z. Gallo N. Salvatore L. Lionetto F. Collagen derived from fish industry waste: Progresses and challenges. Polymers 2023 15 3 544 10.3390/polym15030544 36771844
    [Google Scholar]
  78. Binlateh T. Thammanichanon P. Rittipakorn P. Thinsathid N. Jitprasertwong P. Collagen-based biomaterials in periodontal regeneration: Current applications and future perspectives of plant-based collagen. Biomimetics 2022 7 2 34 10.3390/biomimetics7020034 35466251
    [Google Scholar]
  79. Shoseyov O. Posen Y. Grynspan F. Human recombinant type I collagen produced in plants. Tissue Eng. Part A 2013 19 13-14 1527 1533 10.1089/ten.tea.2012.0347 23252967
    [Google Scholar]
  80. Willard J.J. Drexler J.W. Das A. Roy S. Shilo S. Shoseyov O. Powell H.M. Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng. Part A 2013 19 13-14 1507 1518 10.1089/ten.tea.2012.0338 23298216
    [Google Scholar]
  81. Haagdorens M. Edin E. Fagerholm P. Groleau M. Shtein Z. Ulčinas A. Yaari A. Samanta A. Cepla V. Liszka A. Tassignon M.J. Simpson F. Shoseyov O. Valiokas R. Pintelon I. Ljunggren M.K. Griffith M. Plant recombinant human collagen type I hydrogels for corneal regeneration. Regen. Eng. Transl. Med. 2022 8 2 269 283 10.1007/s40883‑021‑00220‑3
    [Google Scholar]
  82. Wolak M. Bojanowska E. Staszewska T. Piera L. Szymański J. Drobnik J. Histamine augments collagen content via H1 receptor stimulation in cultures of myofibroblasts taken from wound granulation tissue. Mol. Cell. Biochem. 2021 476 2 1083 1092 10.1007/s11010‑020‑03974‑6 33230787
    [Google Scholar]
  83. Chattopadhyay S. Raines R.T. Collagen-based biomaterials for wound healing. Biopolymers 2014 101 8 821 833 10.1002/bip.22486 24633807
    [Google Scholar]
  84. Irastorza A. Zarandona I. Andonegi M. Guerrero P. de la Caba K. The versatility of collagen and chitosan: From food to biomedical applications. Food Hydrocoll. 2021 116 106633 10.1016/j.foodhyd.2021.106633
    [Google Scholar]
  85. Ferreira A.M. Gentile P. Chiono V. Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012 8 9 3191 3200 10.1016/j.actbio.2012.06.014 22705634
    [Google Scholar]
  86. Subhan F. Hussain Z. Tauseef I. Shehzad A. Wahid F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2021 61 6 1027 1037 10.1080/10408398.2020.1751585 32345036
    [Google Scholar]
  87. Vázquez-Portalatín N. Kilmer C.E. Panitch A. Liu J.C. Characterization of collagen type I and II blended hydrogels for articular cartilage tissue engineering. Biomacromolecules 2016 17 10 3145 3152 10.1021/acs.biomac.6b00684 27585034
    [Google Scholar]
  88. Adamiak K. Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020 161 550 560 10.1016/j.ijbiomac.2020.06.075 32534089
    [Google Scholar]
  89. Jiang Y.H. Lou Y.Y. Li T.H. Liu B.Z. Chen K. Zhang D. Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am. J. Transl. Res. 2022 14 2 1146 1159 35273719
    [Google Scholar]
  90. Twardowski T. Fertala A. Orgel J. San Antonio J. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr. Pharm. Des. 2007 13 35 3608 3621 10.2174/138161207782794176 18220798
    [Google Scholar]
  91. Mathew-Steiner S.S. Roy S. Sen C.K. Collagen in wound healing. Bioengineering 2021 8 5 63 10.3390/bioengineering8050063 34064689
    [Google Scholar]
  92. Fan L. Ren Y. Emmert S. Vučković I. Stojanovic S. Najman S. Schnettler R. Barbeck M. Schenke-Layland K. Xiong X. The use of collagen-based materials in bone tissue engineering. Int. J. Mol. Sci. 2023 24 4 3744 10.3390/ijms24043744 36835168
    [Google Scholar]
  93. Wang Y. Wang Z. Dong Y. Collagen-based biomaterials for tissue engineering. ACS Biomater. Sci. Eng. 2023 9 3 1132 1150 10.1021/acsbiomaterials.2c00730 36800415
    [Google Scholar]
  94. La Monica F. Campora S. Ghersi G. Collagen-based scaffolds for chronic skin wound treatment. Gels 2024 10 2 137 10.3390/gels10020137 38391467
    [Google Scholar]
  95. de Miranda R.B. Weimer P. Rossi R.C. Effects of hydrolyzed collagen supplementation on skin aging: A systematic review and meta-analysis. Int. J. Dermatol. 2021 60 12 1449 1461 10.1111/ijd.15518 33742704
    [Google Scholar]
  96. Siaghi M. Karimizade A. Mellati A. Saeedi M. Talebpour Amiri F. Kalhori S. Shahani S. Luteolin-incorporated fish collagen hydrogel scaffold: An effective drug delivery strategy for wound healing. Int. J. Pharm. 2024 657 124138 10.1016/j.ijpharm.2024.124138 38642619
    [Google Scholar]
  97. Yamada S. Yamamoto K. Ikeda T. Yanagiguchi K. Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed. Res. Int. 2014 2014 1 8 10.1155/2014/302932 24982861
    [Google Scholar]
  98. Han D. Wang W. Gong J. Ma Y. Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine 2024 19 18-20 1689 1709 10.1080/17435889.2024.2375958 39163266
    [Google Scholar]
  99. Singh D. Rai V. K Agrawal D. Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 2023 7 1 5 16 10.26502/fccm.92920302 36776717
    [Google Scholar]
  100. Sugahara T. Ueno M. Goto Y. Shiraishi R. Doi M. Akiyama K. Yamauchi S. Immunostimulation effect of jellyfish collagen. Biosci. Biotechnol. Biochem. 2006 70 9 2131 2137 10.1271/bbb.60076 16960386
    [Google Scholar]
  101. Raman M. Gopakumar K. Fish collagen and its applications in food and pharmaceutical industry: A review. EC Nutr. 2018 13 752 767
    [Google Scholar]
  102. Wang H. A review of the effects of collagen treatment in clinical studies. Polymers 2021 13 22 3868 10.3390/polym13223868 34833168
    [Google Scholar]
  103. Lee C.H. Singla A. Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001 221 1-2 1 22 10.1016/S0378‑5173(01)00691‑3 11397563
    [Google Scholar]
  104. Xu Q. Torres J.E. Hakim M. Babiak P.M. Pal P. Battistoni C.M. Nguyen M. Panitch A. Solorio L. Liu J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. Rep. 2021 146 100641 10.1016/j.mser.2021.100641 34483486
    [Google Scholar]
  105. Li H. Wang D. Li S. Liu B. Gao L. Sustained release of BSA from a novel drug delivery matrix -- bullfrog skin collagen film. Macromol. Biosci. 2004 4 4 454 457 10.1002/mabi.200300039 15468237
    [Google Scholar]
  106. Di Martino A. Drannikov A. Surgutskaia N.S. Ozaltin K. Postnikov P.S. Marina T.E. Sedlarik V. Chitosan-collagen based film for controlled delivery of a combination of short life anesthetics. Int. J. Biol. Macromol. 2019 140 1183 1193 10.1016/j.ijbiomac.2019.08.228 31472209
    [Google Scholar]
  107. Gil C.S.B. Gil V.S.B. Carvalho S.M. Silva G.R. Magalhães J.T. Oréfice R.L. Mansur A. Mansur H.S. Patricio P.S.O. Oliveira L.C.A. Recycled collagen films as biomaterials for controlled drug delivery. New J. Chem. 2016 40 10 8502 8510 10.1039/C6NJ00674D
    [Google Scholar]
  108. Hu X. Tang J. Yu H. Yang H. Lu X. Zheng D. Preparation of fish collagen and vancomycin microspheres based on microfluidic technology and its application in osteomyelitis. Front. Bioeng. Biotechnol. 2023 11 1249706 10.3389/fbioe.2023.1249706 37915548
    [Google Scholar]
  109. Zhang W. Wang X. Wang J. Zhang L. Drugs adsorption and release behavior of collagen/bacterial cellulose porous microspheres. Int. J. Biol. Macromol. 2019 140 196 205 10.1016/j.ijbiomac.2019.08.139 31430489
    [Google Scholar]
  110. van Vugt T.A.G. Walraven J.M.B. Geurts J.A.P. Arts J.J.C. Antibiotic-loaded collagen sponges in clinical treatment of chronic osteomyelitis: A systematic review. J. Bone Joint Surg. Am. 2018 100 24 2153 2161 10.2106/JBJS.17.01140 30562296
    [Google Scholar]
  111. Ueda H. Hong L. Yamamoto M. Shigeno K. Inoue M. Toba T. Yoshitani M. Nakamura T. Tabata Y. Shimizu Y. Use of collagen sponge incorporating transforming growth factor-β1 to promote bone repair in skull defects in rabbits. Biomaterials 2002 23 4 1003 1010 10.1016/S0142‑9612(01)00211‑3 11791902
    [Google Scholar]
  112. Aravinthan A. Park J.K. Hossain M.A. Sharmila J. Kim H.J. Kang C.W. Kim N.S. Kim J.H. Collagen-based sponge hastens wound healing via decrease of inflammatory cytokines. 3 Biotech 2018 8 12 487 10.1007/s13205‑018‑1497‑3 30467532
    [Google Scholar]
  113. Wu L. Zhang Q. Li Y. Song W. Chen A. Liu J. Xuan X. Collagen sponge prolongs taurine release for improved wound healing through inflammation inhibition and proliferation stimulation. Ann. Transl. Med. 2021 9 12 1010 10.21037/atm‑21‑2739 34277810
    [Google Scholar]
  114. Hartinger J.M. Lukáč P. Mitáš P. Mlček M. Popková M. Suchý T. Šupová M. Závora J. Adámková V. Benáková H. Slanař O. Šíma M. Bartoš M. Chlup H. Grus T. Vancomycin-releasing cross-linked collagen sponges as wound dressings. Bosn. J. Basic Med. Sci. 2021 21 1 61 70 31782696
    [Google Scholar]
  115. Bennett-Guerrero E. Pappas T.N. Koltun W.A. Fleshman J.W. Lin M. Garg J. Mark D.B. Marcet J.E. Remzi F.H. George V.V. Newland K. Corey G.R. Gentamicin-collagen sponge for infection prophylaxis in colorectal surgery. N. Engl. J. Med. 2010 363 11 1038 1049 10.1056/NEJMoa1000837 20825316
    [Google Scholar]
  116. Ioan D.C. Rău I. Tihan G.T. Zgârian R.G. Ghica M.V. Albu Kaya M.G. Dinu-Pîrvu E.C. Piroxicam-collagen-based sponges for medical applications. Int. J. Polym. Sci. 2019 2019 1 7 10.1155/2019/6062381
    [Google Scholar]
  117. Khan R. Khan M. Use of collagen as a biomaterial: An update. J. Indian Soc. Periodontol. 2013 17 4 539 542 10.4103/0972‑124X.118333 24174741
    [Google Scholar]
  118. Maeda M. Tani S. Sano A. Fujioka K. Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J. Control. Release 1999 62 3 313 324 10.1016/S0168‑3659(99)00156‑X 10528069
    [Google Scholar]
  119. Maeda H. Sano A. Fujioka K. Profile of rhBMP-2 release from collagen minipellet and induction of ectopic bone formation. Drug Dev. Ind. Pharm. 2004 30 5 473 480 10.1081/DDC‑120037475 15244082
    [Google Scholar]
  120. Maeda H. Sano A. Fujioka K. Controlled release of rhBMP-2 from collagen minipellet and the relationship between release profile and ectopic bone formation. Int. J. Pharm. 2004 275 1-2 109 122 10.1016/j.ijpharm.2004.01.040 15081142
    [Google Scholar]
  121. Jarman E. Burgess J. Sharma A. Hayashigatani K. Singh A. Fox P. Human-Derived collagen hydrogel as an antibiotic vehicle for topical treatment of bacterial biofilms. PLoS One 2024 19 5 e0303039 10.1371/journal.pone.0303039 38701045
    [Google Scholar]
  122. Moeinzadeh S. Park Y. Lin S. Yang Y.P. In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. Materialia 2021 15 100954 10.1016/j.mtla.2020.100954 33367226
    [Google Scholar]
  123. Li J. Zhai Y.N. Xu J.P. Zhu X.Y. Yang H.R. Che H.J. Liu C.K. Qu J.B. An injectable collagen peptide-based hydrogel with desirable antibacterial, self-healing and wound-healing properties based on multiple-dynamic crosslinking. Int. J. Biol. Macromol. 2024 259 Pt 1 129006 10.1016/j.ijbiomac.2023.129006 38176492
    [Google Scholar]
  124. Uchio Y. Ochi M. Matsusaki M. Kurioka H. Katsube K. Human chondrocyte proliferation and matrix synthesis cultured in Atelocollagen-gel. J. Biomed. Mater. Res. 2000 50 2 138 143 10.1002/(SICI)1097‑4636(200005)50:2<138::AID‑JBM7>3.0.CO;2‑K 10679677
    [Google Scholar]
  125. Ghica M.V. Albu M.G. Leca M. Popa L. Moisescu S.T. Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Pharmazie 2011 66 11 853 861 22204131
    [Google Scholar]
  126. Park R.K. Kim S. An J. Lee M.C. Yang Y.P. Valdez T.A. Injectable alginate/collagen clindamycin hydrogel for treatment of surgical site infections. Sci. Rep. 2025 15 1 7964 10.1038/s41598‑025‑92294‑0 40055420
    [Google Scholar]
  127. van Setten G.B. The clinical use of contact lenses and collagen shields. Curr. Opin. Ophthalmol. 1996 7 4 17 21 10.1097/00055735‑199608000‑00004 10163633
    [Google Scholar]
  128. Zhou S. Hunt K.M. Grewal A.S. Brothers K.M. Dhaliwal D.K. Shanks R.M.Q. Release of moxifloxacin from corneal collagen shields. Eye Contact Lens 2018 44 2 Suppl. 2 S143 S147 10.1097/ICL.0000000000000421 28945653
    [Google Scholar]
  129. Weinstock F.J. Contact lenses and collagen shields. Curr. Opin. Ophthalmol. 1994 5 4 19 24 10.1097/00055735‑199408000‑00004 10147331
    [Google Scholar]
  130. Agban Y. Lian J. Prabakar S. Seyfoddin A. Rupenthal I.D. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. Int. J. Pharm. 2016 501 1-2 96 101 10.1016/j.ijpharm.2016.01.069 26828672
    [Google Scholar]
  131. Abouelatta S.M. Sheta A.I. Ibrahim R.R. Optimized molecular imprints in gamma-irradiated collagen shields of an antifungal drug: In vitro characterization, in-vivo bioavailability enhancement. Eur. J. Pharm. Biopharm. 2021 166 135 143 10.1016/j.ejpb.2021.06.008 34166761
    [Google Scholar]
  132. Shen X.R. Chen X.L. Xie H.X. He Y. Chen W. Luo Q. Yuan W.H. Tang X. Hou D.Y. Jiang D.W. Wang Q.R. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing. Mil. Med. Res. 2017 4 1 33 10.1186/s40779‑017‑0143‑4 29502521
    [Google Scholar]
  133. Chan E.C. Kuo S.M. Kong A.M. Morrison W.A. Dusting G.J. Mitchell G.M. Lim S.Y. Liu G.S. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS One 2016 11 2 e0149799 10.1371/journal.pone.0149799 26900837
    [Google Scholar]
  134. Huang J.Y. Wong T.Y. Tu T.Y. Tang M.J. Lin H.H. Hsueh Y.Y. Assessment of tilapia skin collagen for biomedical research applications in comparison with mammalian collagen. Molecules 2024 29 2 402 10.3390/molecules29020402 38257315
    [Google Scholar]
  135. Zhou T. Wang N. Xue Y. Ding T. Liu X. Mo X. Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf. B Biointerfaces 2016 143 415 422 10.1016/j.colsurfb.2016.03.052 27037778
    [Google Scholar]
  136. Mukasheva F. Adilova L. Dyussenbinov A. Yernaimanova B. Abilev M. Akilbekova D. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 2024 12 1444986 10.3389/fbioe.2024.1444986 39600888
    [Google Scholar]
  137. D’Amico E. Pierfelice T.V. Lepore S. Iezzi G. D’Arcangelo C. Piattelli A. Covani U. Petrini M. Hemostatic collagen sponge with high porosity promotes the proliferation and adhesion of fibroblasts and osteoblasts. Int. J. Mol. Sci. 2023 24 9 7749 10.3390/ijms24097749 37175457
    [Google Scholar]
  138. Haukipuro K. Melkkocand J. Risteli L. Kairaluoma M. Risteli J. Synthesis of type I collagen in healing wounds in humans. Ann. Surg. 1991 213 1 75 80 10.1097/00000658‑199101000‑00013 1985542
    [Google Scholar]
  139. Das S. De A. Das B. Mukherjee B. Samanta A. Development of gum odina-gelatin based antimicrobial loaded biodegradable spongy scaffold: A promising wound care tool. J. Appl. Polym. Sci. 2021 138 12 50057 10.1002/app.50057
    [Google Scholar]
  140. Das S. Dey T.K. De A. Banerjee A. Chakraborty S. Das B. Mukhopadhyay A.K. Mukherjee B. Samanta A. Antimicrobial loaded gum odina - gelatin based biomimetic spongy scaffold for accelerated wound healing with complete cutaneous texture. Int. J. Pharm. 2021 606 120892 10.1016/j.ijpharm.2021.120892 34274455
    [Google Scholar]
  141. AlSalem H.S. Bukhari A.A.H. Biodegradable wound dressing-based collagen/hyaluronic acid loaded antibacterial agents for wound healing application. Int. J. Biol. Macromol. 2023 242 Pt 1 124700 10.1016/j.ijbiomac.2023.124700 37160173
    [Google Scholar]
  142. Zhang M.X. Zhao W.Y. Fang Q.Q. Wang X.F. Chen C.Y. Shi B.H. Zheng B. Wang S.J. Tan W.Q. Wu L.H. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. J. Appl. Biomater. Funct. Mater. 2021 19 2280800021989698 10.1177/2280800021989698 33560909
    [Google Scholar]
  143. Sun L. Li L. Wang Y. Li M. Xu S. Zhang C. A collagen-based bi-layered composite dressing for accelerated wound healing. J. Tissue Viability 2022 31 1 180 189 10.1016/j.jtv.2021.09.003 34538555
    [Google Scholar]
  144. Ge B. Wang H. Li J. Liu H. Yin Y. Zhang N. Qin S. Comprehensive assessment of nile tilapia skin (Oreochromis niloticus) collagen hydrogels for wound dressings. Mar. Drugs 2020 18 4 178 10.3390/md18040178 32218368
    [Google Scholar]
  145. Vijayalekha A. Anandasadagopan S.K. Pandurangan A.K. An overview of collagen-based composite scaffold for bone tissue engineering. Appl. Biochem. Biotechnol. 2023 195 7 4617 4636 10.1007/s12010‑023‑04318‑y 36652090
    [Google Scholar]
  146. Abdelaziz A.G. Nageh H. Abdo S.M. Abdalla M.S. Amer A.A. Abdal-hay A. Barhoum A. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering 2023 10 2 204 10.3390/bioengineering10020204 36829698
    [Google Scholar]
  147. Garg T. Singh O. Arora S. Murthy R.S.R. Scaffold: A novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2012 29 1 1 63 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10 22356721
    [Google Scholar]
  148. Lamparelli E.P. Casagranda V. Pressato D. Maffulli N. Della Porta G. Bellini D. Synthesis and characterization of a novel composite scaffold based on hyaluronic acid and equine type I collagen. Pharmaceutics 2022 14 9 1752 10.3390/pharmaceutics14091752 36145500
    [Google Scholar]
  149. Chen X. Meng J. Xu H. Shinoda M. Kishimoto M. Sakurai S. Yamane H. Fabrication and properties of electrospun collagen tubular scaffold crosslinked by physical and chemical treatments. Polymers 2021 13 5 755 10.3390/polym13050755 33670963
    [Google Scholar]
  150. Sharma A. Brand D. Fairbank J. Ye H. Lavy C. Czernuszka J. A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal fusion. J. Mater. Sci. 2017 52 21 12574 12592 10.1007/s10853‑017‑1229‑9 29977095
    [Google Scholar]
  151. Aminatun Hanum S F. Izak R D. Hadi S. Amrillah T. Che Abdullah C.A. Fabrication and compatibility evaluation of polycaprolactone/hydroxyapatite/collagen-based fiber scaffold for anterior cruciate ligament injury. RSC Advances 2023 13 16 10459 10467 10.1039/D2RA07756F 37021102
    [Google Scholar]
  152. Liu Y.Y. Intini C. Dobricic M. O’Brien F.J. LLorca J. Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int. J. Biol. Macromol. 2024 280 Pt 2 135827 10.1016/j.ijbiomac.2024.135827 39306177
    [Google Scholar]
  153. Zhang Q. Nakamoto T. Chen S. Kawazoe N. Lin K. Chang J. Chen G. Collagen/Wollastonite nanowire hybrid scaffolds promoting osteogenic differentiation and angiogenic factor expression of mesenchymal stem cells. J. Nanosci. Nanotechnol. 2014 14 4 3221 3227 10.1166/jnn.2014.8607 24734758
    [Google Scholar]
  154. Kontakis MG Moulin M Andersson B Norein N Samanta A Stelzl C Engberg A Diez-Escudero A Kreuger J Hailer NP Trabecular-bone mimicking osteoconductive collagen scaffolds: An optimized 3D printing approach using freeform reversible embedding of suspended hydrogels. 3D Print. Med. 2025 11 1 11 10.1186/s41205‑025‑00255‑0 40064747
    [Google Scholar]
  155. Bahrami S. Baheiraei N. Shahrezaee M. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci. Rep. 2021 11 1 16783 10.1038/s41598‑021‑96271‑1 34408206
    [Google Scholar]
  156. Chen G. Lv Y. Dong C. Yang L. Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2015 10 2 99 108 10.2174/1574888X09666140812112631 25116448
    [Google Scholar]
  157. Long T. Yang J. Shi S.S. Guo Y.P. Ke Q.F. Zhu Z.A. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2015 103 7 1455 1464 10.1002/jbm.b.33328 25430707
    [Google Scholar]
  158. Xu C. Su P. Chen X. Meng Y. Yu W. Xiang A.P. Wang Y. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 2011 32 4 1051 1058 10.1016/j.biomaterials.2010.09.068 20980051
    [Google Scholar]
  159. Mahesh L. Kurtzman G.M. Shukla S. Regeneration in periodontics: Collagen-A review of its properties and applications in dentistry. Compend. Contin. Educ. Dent. 2015 36 5 358 363 26053639
    [Google Scholar]
  160. Patino M.G. Neiders M.E. Andreana S. Noble B. Cohen R.E. Collagen as an implantable material in medicine and dentistry. J. Oral Implantol. 2002 28 5 220 225 10.1563/1548‑1336(2002)028<0220:CAAIMI>2.3.CO;2 12498470
    [Google Scholar]
  161. Sheikh Z. Qureshi J. Alshahrani A.M. Nassar H. Ikeda Y. Glogauer M. Ganss B. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology 2017 105 1 1 12 10.1007/s10266‑016‑0267‑0 27613193
    [Google Scholar]
  162. Kumari C.B.N. Ramakrishnan T. Devadoss P. Vijayalakshmi R. Alzahrani K.J. Almasri M.A. Al-Ahmari M.M. Al Dira H.S. Suhluli M. Bhati A.K. Ahmad Z.H. Raj A.T. Bhandi S. Patil S. Use of collagen membrane in the treatment of periodontal defects distal to mandibular second molars following surgical removal of impacted mandibular third molars: A comparative clinical study. Biology 2021 10 12 1348 10.3390/biology10121348 34943263
    [Google Scholar]
  163. Nakashima M. Iohara K. Murakami M. Nakamura H. Sato Y. Ariji Y. Matsushita K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res. Ther. 2017 8 1 61 10.1186/s13287‑017‑0506‑5 28279187
    [Google Scholar]
  164. Smith P.C. Martínez C. Martínez J. McCulloch C.A. Role of fibroblast populations in periodontal wound healing and tissue remodeling. Front. Physiol. 2019 10 270 10.3389/fphys.2019.00270 31068825
    [Google Scholar]
  165. Santosh Kumar B.B. Aruna D.R. Gowda S.V. Galagali R.S. Evaluation of a bioresorbable collagen membrane of fish origin in the treatment of periodontal intrabony defects: A prospective clinical study. Dent. Res. J. 2013 10 2 225 231 10.4103/1735‑3327.113353 23946741
    [Google Scholar]
  166. Imber J.C. Roccuzzo A. Stähli A. Saulacic N. Deschner J. Sculean A. Bosshardt D.D. Immunohistochemical evaluation of periodontal regeneration using a porous collagen scaffold. Int. J. Mol. Sci. 2021 22 20 10915 10.3390/ijms222010915 34681574
    [Google Scholar]
  167. Teodora Tihan G. Ungureanu C. Constantin Barbaresso R. Gabriela Zgârian R. Rău I. Meghea A. Georgiana Albu M. Violeta Ghica M. Chloramphenicol collagen sponges for local drug delivery in dentistry. C. R. Chim. 2015 18 9 986 992 10.1016/j.crci.2015.06.004
    [Google Scholar]
  168. Marques C.F. Diogo G.S. Pina S. Oliveira J.M. Silva T.H. Reis R.L. Collagen-based bio-inks for hard tissue engineering applications: A comprehensive review. J. Mater. Sci. Mater. Med. 2019 30 3 32 10.1007/s10856‑019‑6234‑x 30840132
    [Google Scholar]
  169. Chimene D. Lennox K.K. Kaunas R.R. Gaharwar A.K. Advanced bio-inks for 3D printing: A materials science perspective. Ann. Biomed. Eng. 2016 44 6 2090 2102 10.1007/s10439‑016‑1638‑y 27184494
    [Google Scholar]
  170. Hashim P. Ridzwan M.M. Bakar J. Hashim M.D. Collagen in food and beverage industries. Int. Food Res. J. 2015 22 1 8
    [Google Scholar]
  171. Islam J. Mis Solval K.E. Recent advancements in marine collagen: Exploring new sources, processing approaches, and nutritional applications. Mar. Drugs 2025 23 5 190 10.3390/md23050190 40422780
    [Google Scholar]
  172. Lukin A. On the possibility of obtaining high-quality lyophilized collagen hydrolysate and its applicability in the sausage production. Food Sci. Technol. 2020 40 3 721 728 10.1590/fst.19719
    [Google Scholar]
  173. Al Hajj W. Salla M. Krayem M. Khaled S. Hassan H.F. El Khatib S. Hydrolyzed collagen: Exploring its applications in the food and beverage industries and assessing its impact on human health – A comprehensive review. Heliyon 2024 10 16 e36433 10.1016/j.heliyon.2024.e36433 39253251
    [Google Scholar]
  174. Santana C.R. Sato K.A.C. Cunha L.R. Emulsions stabilized by heat-treated collagen fibers. Food Hydrocoll. 2012 26 1 73 81 10.1016/j.foodhyd.2011.04.006
    [Google Scholar]
  175. Santana R.C. Perrechil F.A. Sato A.C.K. Cunha R.L. Emulsifying properties of collagen fibers: Effect of pH, protein concentration and homogenization pressure. Food Hydrocoll. 2011 25 4 604 612 10.1016/j.foodhyd.2010.07.018
    [Google Scholar]
  176. Choi F.D. Sung C.T. Juhasz M.L.W. Mesinkovsk N.A. Oral collagen supplementation: A systematic review of dermatological applications. J. Drugs Dermatol. 2019 18 1 9 16 30681787
    [Google Scholar]
  177. Pu S.Y. Huang Y.L. Pu C.M. Kang Y.N. Hoang K.D. Chen K.H. Chen C. Effects of oral collagen for skin anti-aging: A systematic review and meta-analysis. Nutrients 2023 15 9 2080 10.3390/nu15092080 37432180
    [Google Scholar]
  178. Khatri M. Naughton R.J. Clifford T. Harper L.D. Corr L. The effects of collagen peptide supplementation on body composition, collagen synthesis, and recovery from joint injury and exercise: A systematic review. Amino Acids 2021 53 10 1493 1506 10.1007/s00726‑021‑03072‑x 34491424
    [Google Scholar]
  179. Woo T. Lau L. Cheng N. Chan P. Tan K. Gardner A. Efficacy of oral collagen in joint pain-osteoarthritis and rheumatoid arthritis. J. Arthritis 2017 6 2 233 10.4172/2167‑7921.1000233
    [Google Scholar]
  180. Kalden J.R. Sieper J. Oral collagen in the treatment of rheumatoid arthritis. Arthritis Rheum. 1998 41 2 191 194 10.1002/1529‑0131(199802)41:2<191::AID‑ART2>3.0.CO;2‑C 9485076
    [Google Scholar]
  181. Kim D.U. Chung H.C. Choi J. Sakai Y. Lee B.Y. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: A randomized, double-blind, placebo-controlled study. Nutrients 2018 10 7 826 10.3390/nu10070826 29949889
    [Google Scholar]
  182. Soo T. Tan M. Vitagen collagen: A strategic innovation. Food Beverage Asia, Malaysia Malaysia Dairy Industries Pte Ltd. 2009
    [Google Scholar]
  183. Khan M.I. Adrees M.N. Tariq M.R. Sohaib M. Application of edible coating for improving meat quality: A review. Pak. J. Food Sci. 2013 23 2 71 79
    [Google Scholar]
  184. Suurs P. Barbut S. Collagen use for co-extruded sausage casings – A review. Trends Food Sci. Technol. 2020 102 91 101 10.1016/j.tifs.2020.06.011
    [Google Scholar]
  185. Alizadeh A. Behfar S. Properties of collagen based edible films in food packaging: A review. Ann. Biol. Res. 2013 4 2 253 256
    [Google Scholar]
  186. León-López A. Morales-Peñaloza A. Martínez-Juárez V.M. Vargas-Torres A. Zeugolis D.I. Aguirre-Álvarez G. Hydrolyzed collagen-sources and applications. Molecules 2019 24 22 4031 10.3390/molecules24224031 31703345
    [Google Scholar]
  187. Bianchi F.M. Angelinetta C. Rizzi G. Praticò A. Villa R. Evaluation of the efficacy of a hydrolyzed collagen supplement for improving skin moisturization, smoothness, and wrinkles. J. Clin. Aesthet. Dermatol. 2022 15 3 48 52 35342502
    [Google Scholar]
  188. Veeruraj A. Arumugam M. Ajithkumar T. Balasubramanian T. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis). Food Hydrocoll. 2015 43 708 716 10.1016/j.foodhyd.2014.07.025
    [Google Scholar]
  189. Tamilmozhi S. Veeruraj A. Arumugam M. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Res. Int. 2013 54 2 1499 1505 10.1016/j.foodres.2013.10.002
    [Google Scholar]
  190. Aguirre-Cruz G. León-López A. Cruz-Gómez V. Jiménez-Alvarado R. Aguirre-Álvarez G. Collagen hydrolysates for skin protection: Oral administration and topical formulation. Antioxidants 2020 9 2 181 10.3390/antiox9020181 32098294
    [Google Scholar]
  191. Zhuang Y. Hou H. Zhao X. Zhang Z. Li B. Effects of collagen and collagen hydrolysate from jellyfish ( Rhopilema esculentum ) on mice skin photoaging induced by UV irradiation. J. Food Sci. 2009 74 6 H183 H188 10.1111/j.1750‑3841.2009.01236.x 19723203
    [Google Scholar]
  192. Lucey P. Goldberg D. Complications of collagen fillers. Facial Plast. Surg. 2014 30 6 615 622 10.1055/s‑0034‑1396904 25536127
    [Google Scholar]
  193. Almukhadeb E. Binkhonain F. Alkahtani A. Alhunaif S. Altukhaim F. Alekrish K. Dermal fillers in the treatment of acne scars: A review. Ann. Dermatol. 2023 35 6 400 407 10.5021/ad.22.230 38086353
    [Google Scholar]
  194. Global collagen market forecast to 2030: Growth in application of collagen in medical and pharmaceutical industries. 2024 Available from: https://ians.in/pr-wire-detail/global-collagen-market-forecast-to-2030-growth-in-application-of-collagen-in-medical-and-pharmaceutical-industries-07-02-2024
  195. Collagen market by type (gelatin, collagen peptide, and native collagen), source (porcine, bovine, marine, chicken, and sheep), and application (food & beverage, pharmaceuticals, nutraceuticals, and healthcare) - Global forecasts to 2029. 2022 Available from: https://www.meticulousresearch.com/product/collagen-market-5121
  196. Collagen Market Size, Share & Trends Analysis Report By Product (Gelatin, Hydrolyzed Collagen), By Source (Bovine, Porcine), By Application (Food & Beverages, Healthcare), By Region, And Segment Forecasts, 2025 – 2030. Available from: https://www.grandviewresearch.com/industry-analysis/collagen-market#:~:text=Collagen%20Market%20Size%20&%20Trends,along%20with%20expanding%20application%20areas
  197. Collagen Market in India Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030) Source: https://www.mordorintelligence.com/industry-reports/india-collagen-market. 2025 Available from: https://www.mordorintelligence.com/industry-reports/india-collagen-market
  198. Collagen Market to Grow by USD 3.22 Billion (2024-2028), Driven by Cosmetic & Personal Care Applications, AI Impact on Market Landscape - Technavio. 2025 Available from: https://www.prnewswire.com/news-releases/collagen-market-to-grow-by-usd-3-22-billion-2024-2028-driven-by-cosmetic--personal-care-applications-ai-impact-on-market-landscape---technavio-302315561.html#:~:text=Collagen%2C%20a%20popular%20supplement%20sourced,alternatives%20is%20on%20the%20rise
  199. Rutschmann C. Baumann S. Cabalzar J. Luther K.B. Hennet T. Recombinant expression of hydroxylated human collagen in Escherichia coli. Appl. Microbiol. Biotechnol. 2014 98 10 4445 4455 10.1007/s00253‑013‑5447‑z 24362857
    [Google Scholar]
  200. Myllyharju J. Recombinant collagen trimers from insect cells and yeast. Extracellular Matrix Protocols. Humana Press Even-Ram S. Artym V. 2009 Vol. 522 10.1007/978‑1‑59745‑413‑1_3
    [Google Scholar]
  201. Rasala B.A. Muto M. Lee P.A. Jager M. Cardoso R.M.F. Behnke C.A. Kirk P. Hokanson C.A. Crea R. Mendez M. Mayfield S.P. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii . Plant Biotechnol. J. 2010 8 6 719 733 10.1111/j.1467‑7652.2010.00503.x 20230484
    [Google Scholar]
  202. Jiang R. Tran M. Lönnerdal B. Recombinant bovine and human osteopontin generated by Chlamydomonas reinhardtii exhibit bioactivities similar to bovine milk osteopontin when assessed in mouse pups fed osteopontin-deficient milk. Mol. Nutr. Food Res. 2021 65 16 2000644 10.1002/mnfr.202000644 34050612
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037405587250911064729
Loading
/content/journals/cpps/10.2174/0113892037405587250911064729
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: food ; cosmetics ; anti-aging properties ; Collagen ; biopolymer ; biomedical applications
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test