Skip to content
2000
image of Benzimidazole Derivatives in Alzheimer’s Therapy: Exploring Multi-Target Pathways

Abstract

Alzheimer’s disease (AD) is a leading cause of dementia worldwide and continues to be one of the most frequently diagnosed neurodegenerative disorders in adults aged 65 and older. While much progress has been made in exploring AD pathophysiology, there remains no current cure, and symptomatic treatment is the current standard at best. As life expectancy continues to rise, the global prevalence of AD is increasing, making it evident that new therapeutic strategies are sorely needed. The etiology of AD is complex and heterogeneous, with cholinergic dysfunction, tau-related dysfunction, amyloid cascade dysfunction, oxidative dysfunction, and neuroinflammation all contributing to the unique pathology. As a result, researchers are focused on safe and effective drug candidates capable of addressing all of these interrelated mechanisms. One group of such multidrug candidates is benzimidazole derivatives, which target numerous molecular targets, such as, but not limited to, cyclin-dependent kinase 5 (CDK5), tau protein, acetylcholinesterase (AChE), beta-secretase 1 (BACE1), serotonin receptor 5-HT4, cannabinoid receptor CB2R, and the gamma-aminobutyric acid receptor A (GABA-A). This study reveals the multitargeting promise of benzimidazole-based compounds that regulate not just symptomatic pathways but also pathways that are responsible for modifying AD disease activity. Ongoing studies in this area may lead to the discovery of new drugs that can not only manage the symptoms but also change the trajectory of this serious disease and provide hope to millions of AD patients.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037387954250901202157
2025-09-22
2025-12-14
Loading full text...

Full text loading...

References

  1. Folch J. Petrov D. Ettcheto M. Abad S. Sánchez-López E. García M.L. Olloquequi J. Beas-Zarate C. Auladell C. Camins A. Current research therapeutic strategies for alzheimer’s disease treatment. Neural Plast. 2016 2016 1 15 10.1155/2016/8501693 26881137
    [Google Scholar]
  2. Agrawal M. Saraf S. Saraf S. Antimisiaris S.G. Chougule M.B. Shoyele S.A. Alexander A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018 281 139 177 10.1016/j.jconrel.2018.05.011 29772289
    [Google Scholar]
  3. Di Stefano A. Iannitelli A. Laserra S. Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv. 2011 8 5 581 603 10.1517/17425247.2011.561311 21391862
    [Google Scholar]
  4. Abdallah A.E. Review on anti-alzheimer drug development: Approaches, challenges and perspectives. RSC Advances 2024 14 16 11057 11088 10.1039/D3RA08333K 38586442
    [Google Scholar]
  5. Imran M. Shah F.A. Nadeem H. Zeb A. Faheem M. Naz S. Bukhari A. Ali T. Li S. Synthesis and biological evaluation of benzimidazole derivatives as potential neuroprotective agents in an ethanol-induced rodent model. ACS Chem. Neurosci. 2021 12 3 489 505 10.1021/acschemneuro.0c00659 33430586
    [Google Scholar]
  6. Mohammed A.F. Abdel-Moty S.G. Hussein M.A. Abdel-Alim A.A.M. Design, synthesis and molecular docking of some new 1,2,4-triazolobenzimidazol-3-yl acetohydrazide derivatives with anti-inflammatory-analgesic activities. Arch. Pharm. Res. 2013 36 12 1465 1479 10.1007/s12272‑013‑0153‑z 23712380
    [Google Scholar]
  7. Kankate R.S. Gide P.S. Belsare D.P. Design, synthesis and antifungal evaluation of novel benzimidazole tertiary amine type of fluconazole analogues. Arab. J. Chem. 2019 12 8 2224 2235 10.1016/j.arabjc.2015.02.002
    [Google Scholar]
  8. Evans C.W. Atkins C. Pathak A. Gilbert B.E. Noah J.W. Benzimidazole analogs inhibit respiratory syncytial virus G protein function. Antiviral Res. 2015 121 31 38 10.1016/j.antiviral.2015.06.016 26116756
    [Google Scholar]
  9. Mavrova A.T. Wesselinova D. Vassilev N. Tsenov J.A. Design, synthesis and antiproliferative properties of some new 5-substituted-2-iminobenzimidazole derivatives. Eur. J. Med. Chem. 2013 63 696 701 10.1016/j.ejmech.2013.03.010 23567959
    [Google Scholar]
  10. Hranjec M. Pavlović G. Karminski-Zamola G. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2-a]benzimidazoles. J. Mol. Struct. 2012 1007 242 251 10.1016/j.molstruc.2011.10.054
    [Google Scholar]
  11. Sharma M.C. Sharma S. Sahu N.K. Kohli D.V. 3D QSAR kNN-MFA studies on 6-substituted benzimidazoles derivatives as Nonpeptide Angiotensin II Receptor Antagonists: A rational approach to antihypertensive agents. J. Saudi Chem. Soc. 2013 17 2 167 176 10.1016/j.jscs.2011.03.005
    [Google Scholar]
  12. Chen Q. Tian W. Han G. Qi J. Zheng C. Zhou Y. Ding L. Zhao J. Zhu J. Lv J. Sheng C. Design and synthesis of novel benzoheterocyclic derivatives as human acrosin inhibitors by scaffold hopping. Eur. J. Med. Chem. 2013 59 176 182 10.1016/j.ejmech.2012.11.005 23220646
    [Google Scholar]
  13. Zhang Z. Ojo K.K. Johnson S.M. Larson E.T. He P. Geiger J.A. Castellanos-Gonzalez A. White A.C. Parsons M. Merritt E.A. Maly D.J. Verlinde C.L.M.J. Van Voorhis W.C. Fan E. Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1. Bioorg. Med. Chem. Lett. 2012 22 16 5264 5267 10.1016/j.bmcl.2012.06.050 22795629
    [Google Scholar]
  14. Akhtar W. Khan M.F. Verma G. Shaquiquzzaman M. Rizvi M.A. Mehdi S.H. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem. 2017 126 705 753 10.1016/j.ejmech.2016.12.010
    [Google Scholar]
  15. Aromataris E. Riitano D. Systematic reviews. Am. J. Nurs. 2014 114 5 49 56 10.1097/01.NAJ.0000446779.99522.f6 24759479
    [Google Scholar]
  16. Gulcan H.O. Mavideniz A. Sahin M.F. Orhan I.E. Benzimidazole-derived compounds designed for different targets of alzheimer’s disease. Curr. Med. Chem. 2019 26 18 3260 3278 10.2174/0929867326666190124123208 30678614
    [Google Scholar]
  17. Yoon S.S. AhnJo, S-M. Mechanisms of amyloid-β peptide clearance: Potential therapeutic targets for alzheimer’s disease. Biomol. Ther. 2012 20 3 245 255 10.4062/biomolther.2012.20.3.245 24130920
    [Google Scholar]
  18. De Strooper B. Vassar R. Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 2010 6 2 99 107 10.1038/nrneurol.2009.218 20139999
    [Google Scholar]
  19. Ali S. Asad M.H.H.B. Maity S. Zada W. Rizvanov A.A. Iqbal J. Babak B. Hussain I. Fluoro-benzimidazole derivatives to cure Alzheimer’s disease: In-silico studies, synthesis, structure-activity relationship and in vivo evaluation for β secretase enzyme inhibition. Bioorg. Chem. 2019 88 102936 10.1016/j.bioorg.2019.102936 31054426
    [Google Scholar]
  20. Al-Tel T.H. Semreen M.H. Al-Qawasmeh R.A. Schmidt M.F. El-Awadi R. Ardah M. Zaarour R. Rao S.N. El-Agnaf O. Design, synthesis, and qualitative structure-activity evaluations of novel β-secretase inhibitors as potential Alzheimer’s drug leads. J. Med. Chem. 2011 54 24 8373 8385 10.1021/jm201181f 22044119
    [Google Scholar]
  21. Fang Y. Zhou H. Gu Q. Xu J. Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019 167 133 145 10.1016/j.ejmech.2019.02.008 30771601
    [Google Scholar]
  22. Gurjar A.S. Solanki V.S. Meshram A.R. Vishwakarma S.S. Exploring beta amyloid cleavage enzyme‐1 inhibition and neuroprotective role of benzimidazole analogues as anti‐alzheimer agents. J. Chin. Chem. Soc. 2020 67 5 864 873 10.1002/jccs.201900200
    [Google Scholar]
  23. De Tran Q. Bepary S. Lee G.H. Cho H. Park W.K. Lim H.J. Synthesis of (3S,4S)-4-aminopyrrolidine-3-ol derivatives and biological evaluation for their BACE1 inhibitory activities. Bioorg. Med. Chem. Lett. 2016 26 1 51 54 10.1016/j.bmcl.2015.11.033 26608551
    [Google Scholar]
  24. Anand P. Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013 36 4 375 399 10.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  25. Inestrosa N.C. Dinamarca M.C. Alvarez A. Amyloid-cholinesterase interactions. FEBS J. 2008 275 4 625 632 10.1111/j.1742‑4658.2007.06238.x 18205831
    [Google Scholar]
  26. Acar Cevik U. Saglik B.N. Levent S. Osmaniye D. Kaya Cavuşoglu B. Ozkay Y. Kaplancikli Z.A. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules 2019 24 5 861 10.3390/molecules24050861 30823470
    [Google Scholar]
  27. Yoon Y.K. Ali M.A. Wei A.C. Choon T.S. Khaw K.Y. Murugaiyah V. Osman H. Masand V.H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem. 2013 49 33 39 10.1016/j.bioorg.2013.06.008 23886696
    [Google Scholar]
  28. Alpan A.S. Sarıkaya G. Çoban G. Parlar S. Armagan G. Alptüzün V. Mannich-benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: Synthesis, biological evaluations, and molecular docking study. Arch. Pharm. 2017 350 7 1600351 10.1002/ardp.201600351 28379621
    [Google Scholar]
  29. Faraji L. Shahkarami S. Nadri H. Moradi A. Saeedi M. Foroumadi A. Ramazani A. Haririan I. Ganjali M.R. Shafiee A. Khoobi M. Synthesis of novel benzimidazole and benzothiazole derivatives bearing a 1,2,3-triazole ring system and their acetylcholinesterase inhibitory activity. J. Chem. Res. 2017 41 1 30 35 10.3184/174751917X14836231670980
    [Google Scholar]
  30. Can N.Ö. Çevik UA Sağlık BN Özkay Y Atlı Ö Baysal M Özkay ÜD Can ÖD Pharmacological and toxicological screening of novel benzimidazole-morpholine derivatives as dual-acting inhibitors. Molecules 2017 22 8 1374 10.3390/molecules22081374 28825626
    [Google Scholar]
  31. Sarıkaya G. Çoban G. Parlar S. Tarikogullari A.H. Armagan G. Erdoğan M.A. Alptüzün V. Alpan A.S. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: Synthesis, biological evaluations, and docking studies of o/p ‐propoxyphenylsubstituted‐1H‐benzimidazole derivatives. Arch. Pharm. 2018 351 8 1800076 10.1002/ardp.201800076 29984517
    [Google Scholar]
  32. Hussain R. Ullah H. Rahim F. Sarfraz M. Taha M. Iqbal R. Rehman W. Khan S. Shah S.A.A. Hyder S. Alhomrani M. Alamri A.S. Abdulaziz O. Abdelaziz M.A. Multipotent cholinesterase inhibitors for the treatment of alzheimer’s disease: Synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules 2022 27 18 6087 10.3390/molecules27186087 36144820
    [Google Scholar]
  33. Latif A. Bibi S. Ali S. Ammara A. Ahmad M. Khan A. Al-Harrasi A. Ullah F. Ali M. New multitarget directed benzimidazole‐2‐thiol‐based heterocycles as prospective anti‐radical and anti‐Alzheimer 's agents. Drug Dev. Res. 2021 82 2 207 216 10.1002/ddr.21740 32897587
    [Google Scholar]
  34. El Khatabi K. El-Mernissi R. Aanouz I. Ajana M.A. Lakhlifi T. Shahinozzaman M. Benzimidazole derivatives in identifying novel acetylcholinesterase inhibitors: A combination of 3d-qsar, docking and molecular dynamics simulation. Phy. Chem. Res. 2022 10 2 237 249
    [Google Scholar]
  35. Adalat B. Rahim F. Taha M. Alshamrani F.J. Anouar E.H. Uddin N. Shah S.A.A. Ali Z. Zakaria Z.A. Synthesis of benzimidazole-based analogs as anti alzheimer’s disease compounds and their molecular docking studies. Molecules 2020 25 20 4828 10.3390/molecules25204828 33092223
    [Google Scholar]
  36. Meraz-Ríos M.A. Lira-De León K.I. Campos-Peña V. De Anda-Hernández M.A. Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J. Neurochem. 2010 112 6 1353 1367 10.1111/j.1471‑4159.2009.06511.x 19943854
    [Google Scholar]
  37. Xia Y. Prokop S. Gorion K.M.M. Kim J.D. Sorrentino Z.A. Bell B.M. Manaois A.N. Chakrabarty P. Davies P. Giasson B.I. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies. Acta Neuropathol. Commun. 2020 8 1 88 10.1186/s40478‑020‑00967‑w 32571418
    [Google Scholar]
  38. Matsumura K. Ono M. Yoshimura M. Kimura H. Watanabe H. Okamoto Y. Ihara M. Takahashi R. Saji H. Synthesis and biological evaluation of novel styryl benzimidazole derivatives as probes for imaging of neurofibrillary tangles in Alzheimer’s disease. Bioorg. Med. Chem. 2013 21 11 3356 3362 10.1016/j.bmc.2013.02.054 23601814
    [Google Scholar]
  39. Rojo L.E. Alzate-Morales J. Saavedra I.N. Davies P. Maccioni R.B. Selective interaction of lansoprazole and astemizole with tau polymers: Potential new clinical use in diagnosis of Alzheimer’s disease. J. Alzheimers Dis. 2010 19 2 573 589 10.3233/JAD‑2010‑1262 20110603
    [Google Scholar]
  40. Okamura N. Suemoto T. Furumoto S. Suzuki M. Shimadzu H. Akatsu H. Yamamoto T. Fujiwara H. Nemoto M. Maruyama M. Arai H. Yanai K. Sawada T. Kudo Y. Quinoline and benzimidazole derivatives: Candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J. Neurosci. 2005 25 47 10857 10862 10.1523/JNEUROSCI.1738‑05.2005 16306398
    [Google Scholar]
  41. An J Jangili P Lim S Kim YK Verwilst P Kim JS Multichromatic fluorescence towards aberrant proteinaceous aggregates utilizing benzimidazole-based ICT fluorophores. J. Incl. Phenom. Macrocycl. Chem. 2021 101 205 215 10.1007/s10847‑021‑01085‑3
    [Google Scholar]
  42. Tamil S.S. Ravichandar R. Kanta G.K. Mohan A. Mahalakshmi P. Gulyás B. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord. Chem. Rev. 2021 430 213659.0010-8545 10.1016/j.ccr.2020.213659
    [Google Scholar]
  43. Watanabe H. Tatsumi H. Kaide S. Shimizu Y. Iikuni S. Ono M. Structure-activity relationships of radioiodinated 6,5,6-tricyclic compounds for the development of tau imaging probes. ACS Med. Chem. Lett. 2020 11 2 120 126 10.1021/acsmedchemlett.9b00456 32071677
    [Google Scholar]
  44. Betthauser T.J. AD molecular: Imaging tau aggregates with positron emissions tomography. Progress in Molecular Biology and Translational Science. Amsterdam, Netherlands Elsevier 2019 107 138
    [Google Scholar]
  45. Watanabe H. Tarumizu Y. Kaide S. Shimizu Y. Iikuni S. Nakamoto Y. Ono M. Structure-activity and brain kinetics relationships of 18F-labeled benzimidazopyridine derivatives as tau PET tracers. ACS Med. Chem. Lett. 2021 12 2 262 266 10.1021/acsmedchemlett.0c00641 33603973
    [Google Scholar]
  46. Abbas G. Mahmood W. Kabir N. Recent progress on the role of GABAergic neurotransmission in the pathogenesis of Alzheimer’s disease. Rev. Neurosci. 2016 27 4 449 455 10.1515/revneuro‑2015‑0062 26812781
    [Google Scholar]
  47. Marcinkowska M. Fajkis-Zajączkowska N. Szafrańska K. Jończyk J. Siwek A. Mordyl B. Karcz T. Latacz G. Kolaczkowski M. 2-(4-Fluorophenyl)-1 H -benzo[ d]imidazole as a promising template for the development of metabolically robust, α1β2γ2gaba-a receptor-positive allosteric modulators. ACS Chem. Neurosci. 2023 14 6 1166 1180 10.1021/acschemneuro.2c00800 36848624
    [Google Scholar]
  48. Teuber L. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the gabaa receptor complex. WO Patent 2006111517A1 2006
  49. Teuber L. Larsen J.S. Benzimidazole derivatives and their use for modulating the gabaa receptor complex. US Patent 20060148856A1 2006
  50. Larsen J.S. Teuber L. Ahring P.K. Nielsen E.Ø. Mirza N. BBenzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2007065864A1 2007
  51. Hamilton N. Napier S. Easson M. Cooke A. Teuber L. Mirza N. Watjen F. 1,5,7-Trisubstituted benzimidazole derivatives and their use for modulating the GABAA receptor complex. US Patent 20070021482A1 2007
  52. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055124A1 2010
  53. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055125A1 2010
  54. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055126A1 2010
  55. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055127A1 2010
  56. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055128A1 2010
  57. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055129A1 2010
  58. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055130A1 2010
  59. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055131A1 2010
  60. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055132A1 2010
  61. Larsen J.S. Ahring P.K. Nielsen E.Ø. Mirza N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex. WO Patent 2010055133A1 2010
  62. Brodney M.A. Johnson D.E. Sawant-Basak A. Coffman K.J. Drummond E.M. Hudson E.L. Fisher K.E. Noguchi H. Waizumi N. McDowell L.L. Papanikolaou A. Pettersen B.A. Schmidt A.W. Tseng E. Stutzman-Engwall K. Rubitski D.M. Vanase-Frawley M.A. Grimwood S. Identification of multiple 5-HT4 partial agonist clinical candidates for the treatment of Alzheimer’s disease. J. Med. Chem. 2012 55 21 9240 9254 10.1021/jm300953p 22974325
    [Google Scholar]
  63. Courtemanche G. Even L. Defosse G. Bertin J. Bovy P. Benzimidazole derivatives, preparation thereof, and therapeutical uses thereof. WO Patent 1998004546A1 1998
  64. Mckinnell R.M. Gendron R. Jiang L. Choi S.K. Long D.D. Fatheree P.R. Marquess D. Dalziel S.M. Phizackerley K.M. Benzimidazole-carboxamide compounds as 5-HT4 receptor agonists WO Patent 2006127815A2 2006
  65. McKinnell R.M. Benzimidazole-carboxamide compounds as 5HT4 receptor agonists US Patent 11254655 B2 2022
  66. Aso E. Ferrer I. CB2 cannabinoid receptor as potential target against alzheimer’s disease. Front. Neurosci. 2016 10 243 10.3389/fnins.2016.00243
    [Google Scholar]
  67. Verbist B.M.P. De Cleyn M.A.J. Surkyn M. Fraiponts E. Aerssens J. Nijsen M.J.M.A. Gijsen H.J.M. 5-Sulfonyl-benzimidazoles as selective CB2 agonists. Bioorg. Med. Chem. Lett. 2008 18 8 2574 2579 10.1016/j.bmcl.2008.03.048 18394887
    [Google Scholar]
  68. Pagé D. Balaux E. Boisvert L. Liu Z. Milburn C. Tremblay M. Wei Z. Woo S. Luo X. Cheng Y.X. Yang H. Srivastava S. Zhou F. Brown W. Tomaszewski M. Walpole C. Hodzic L. St-Onge S. Godbout C. Salois D. Payza K. Novel benzimidazole derivatives as selective CB2 agonists. Bioorg. Med. Chem. Lett. 2008 18 13 3695 3700 10.1016/j.bmcl.2008.05.073 18522867
    [Google Scholar]
  69. Kato T. Kon-I K. Yuki Y. Ando K. Sulfonyl benzimidazole derivatives. WO Patent 2007102059A1 2007
  70. Kon-I K. Matsumizu M. Shima A. Sulfonyl benzimidazole derivatives. US Patent Application 20060094750A1 2006
  71. Ando K. Iwata Y. N-substituted saturated heterocyclic sulfone compounds with CB2 receptor agonistic activity. WO Patent 2010084767A1 2010
  72. Iwata Y. Ando K. Taniguchi K. Koba N. Sugiura A. Sudo M. Identification of a highly potent and selective CB2 agonist, RQ00202730, for the treatment of irritable bowel syndrome. Bioorg. Med. Chem. Lett. 2015 25 2 236 240 10.1016/j.bmcl.2014.11.062 25499880
    [Google Scholar]
  73. Watson C. Owen D.R. Harding D. Kon-I K. Lewis M.L. Mason H.J. Matsumizu M. Mukaiyama T. Rodriguez-Lens M. Shima A. Takeuchi M. Tran I. Young T. Optimisation of a novel series of selective CNS penetrant CB2 agonists. Bioorg. Med. Chem. Lett 2011 21 14 4284 4287 10.1016/j.bmcl.2011.05.063 21669533
    [Google Scholar]
  74. Gijsen H.J.M. De Cleyn M.A.J. Surkyn M. Van Lommen G.R.E. Verbist B.M.P. Nijsen M.J.M.A. Meert T. Wauwe J.V. Aerssens J. 5-Sulfonyl-benzimidazoles as selective CB2 agonists-Part 2. Bioorg. Med. Chem. Lett. 2012 22 1 547 552 10.1016/j.bmcl.2011.10.091 22130134
    [Google Scholar]
  75. Yu X.H. Cao C.Q. Martino G. Puma C. Morinville A. St-Onge S. Lessard É. Perkins M.N. Laird J.M.A. A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 2010 151 2 337 344 10.1016/j.pain.2010.07.019 20696525
    [Google Scholar]
  76. Nanda K.K. Henze D.A. Della Penna K. Desai R. Leitl M. Lemaire W. White R.B. Yeh S. Brouillette J.N. Hartman G.D. Bilodeau M.T. Trotter B.W. Benzimidazole CB2 agonists: Design, synthesis and SAR. Bioorg. Med. Chem. Lett. 2014 24 4 1218 1221 10.1016/j.bmcl.2013.12.068 24461289
    [Google Scholar]
  77. Romero-Parra J. Mella-Raipán J. Palmieri V. Allarà M. Torres M.J. Pessoa-Mahana H. Iturriaga-Vásquez P. Escobar R. Faúndez M. Di Marzo V. Pessoa-Mahana C.D. Synthesis, binding assays, cytotoxic activity and docking studies of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur. J. Med. Chem. 2016 124 17 35 10.1016/j.ejmech.2016.08.005 27560280
    [Google Scholar]
  78. Gijsen H.J.M. De Cleyn M.A.J. Surkyn M. Verbist B.M.P. Benzimidazole cannabinoid agonists bearing a substituted heterocyclic group. WO Patent 2008003665A1 2008
  79. Gijsen H.J.M. De Cleyn M.A.J. Surkyn M. Benzimidazole cannabinoid agonists. WO Patent 2008119694A1 2008
  80. Gijsen H.J.M. Verbist B.M.P. Surkyn M. Fluoroalkyl substituted benzimidazole cannabinoid agonists WO Patent 2009077533A1 2009
  81. Liu S.L. Wang C. Jiang T. Tan L. Xing A. Yu J.T. The role of Cdk5 in Alzheimer’s disease. Molecular Neurobiology Humana Press Inc.: New Jersey 2016 53 4328 4342
    [Google Scholar]
  82. Jain P. Duquesne scholarship collection electronic theses and dissertations design and synthesis of novel benzimidazoles and aminothiazoles as small molecule inhibitors of CDK5/p25. 2011 Available from: https://dsc.duq.edu/etd
  83. Jain P. Flaherty P.T. Yi S. Chopra I. Bleasdell G. Lipay J. Ferandin Y. Meijer L. Madura J.D. Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg. Med. Chem. 2011 19 1 359 373 10.1016/j.bmc.2010.11.022 21144757
    [Google Scholar]
  84. Helal C.J. Sanner M.A. Cooper C.B. Gant T. Adam M. Lucas J.C. Kang Z. Kupchinsky S. Ahlijanian M.K. Tate B. Menniti F.S. Kelly K. Peterson M. Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2004 14 22 5521 5525 10.1016/j.bmcl.2004.09.006 15482916
    [Google Scholar]
  85. Yi S. Yi S. Duquesne scholarship collection design and synthesis of benzimidazoles as cdk5 inhibitors and progress toward the total synthesis of tubulysin D recommended citation. 2009 Available from: https://dsc.duq.edu/etd/1392
    [Google Scholar]
  86. Saitoh M. Kunitomo J. Kimura E. Hayase Y. Kobayashi H. Uchiyama N. Kawamoto T. Tanaka T. Mol C.D. Dougan D.R. Textor G.S. Snell G.P. Itoh F. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. 2009 17 5 2017 2029 10.1016/j.bmc.2009.01.019 19200745
    [Google Scholar]
  87. Sondhi S.M. Singh N. Kumar A. Lozach O. Meijer L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem. 2006 14 11 3758 3765 10.1016/j.bmc.2006.01.054 16480879
    [Google Scholar]
  88. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3
    [Google Scholar]
  89. Rosales Hernández M.C. Olvera-Valdez M. Velazquez T.J. Mendieta Wejebe J.E. Fragoso M.L.G. Cruz A. Exploring the benzazoles derivatives as pharmacophores for ache, bace1, and as anti-aβ aggregation to find multitarget compounds against alzheimer’s disease. Molecules 2024 29 19 4780 10.3390/molecules29194780
    [Google Scholar]
  90. Ozadali-Sari K. Tüylü K.T. Ayazgok B. Balkan A. Unsal-Tan O. Novel multi-targeted agents for Alzheimer’s disease: Synthesis, biological evaluation, and molecular modeling of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazoles. Bioorg. Chem. 2017 72 208 214 10.1016/j.bioorg.2017.04.018 28478328
    [Google Scholar]
  91. Yeo S.K. Shepelytskyi Y. Grynko V. Albert M.S. Molecular imaging of fluorinated probes for tau protein and amyloid-β detection. Molecules 2020 25 15 3413 10.3390/molecules25153413 32731418
    [Google Scholar]
  92. Passeri E. Elkhoury K. Morsink M. Broersen K. Linder M. Tamayol A. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954
    [Google Scholar]
  93. Plascencia-Villa G. Perry G. Preventive and therapeutic strategies in alzheimer’s disease: Focus on oxidative stress, redox metals, and ferroptosis. Antioxid. Redox Signal. 2021 34 8 591 610 10.1089/ars.2020.8134
    [Google Scholar]
  94. Khan S. Hussain R. Iqbal T. Rahim F. Khan Y. Recent development and strategies towards target interactions: Synthesis, characterization and in silico analysis of benzimidazole based thiadiazole as potential anti-Alzheimer agents. Biochem. Biophys. Res. Commun. 2024 726 150201 10.1016/j.bbrc.2024.150201 38924881
    [Google Scholar]
  95. Dawood D.H. Srour A.M. Omar M.A. Farghaly T.A. El-Shiekh R.A. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch. Pharm. 2024 357 1 2300201 10.1002/ardp.202300201 37937360
    [Google Scholar]
  96. Hussain R. Rahim F. Ullah H. Khan S. Sarfraz M. Iqbal R. Suleman F. Al-Sadoon M.K. Design, synthesis, in vitro biological evaluation and in silico molecular docking study of benzimidazole-based oxazole analogues: A promising acetylcholinesterase and butyrylcholinesterase inhibitors. Molecules 2023 28 20 7015 10.3390/molecules28207015 37894494
    [Google Scholar]
  97. Osmaniye D. Evren A.E. Sağlık B.N. Levent S. Özkay Y. Kaplancıklı Z.A. Design, synthesis, biological activity, molecular docking, and molecular dynamics of novel benzimidazole derivatives as potential AChE/MAO‐B dual inhibitors. Arch. Pharm. 2022 355 3 2100450 10.1002/ardp.202100450 34931332
    [Google Scholar]
  98. Ahmed A. Khan A. Nadeem H. Imran M. Irshad N. Pharmacological evaluation of newly synthesized benzimidazole derivative for anti-Alzheimer potential. Int. J. Neurosci. 2024 134 6 635 651 10.1080/00207454.2022.2138382 36259511
    [Google Scholar]
  99. Faydalı N. Arpacı Ö.T. Benzimidazole and benzoxazole derivatives against alzheimer’s disease. Chem. Biodivers. 2024 21 6 202400123 10.1002/cbdv.202400123 38494443
    [Google Scholar]
  100. Quang De T.; Nguyen, C.Q.; Le Dang, Q.; Nguyen Thi, N.Y.; Trong Tuan, N.; Hoon Suh, D.; Chu, J.; Bepary, S.; Lee, G.H.; Kang, N.S.; Cho, H.; Park, W.K.; Lim, H.J. Rational design of novel diaryl ether-linked benzimidazole derivatives as potent and selective BACE1 inhibitors. Biochem. Biophys. Res. Commun. 2024 698 149538 10.1016/j.bbrc.2024.149538 38271836
    [Google Scholar]
  101. Qiu Y. Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr. Opin. Struct. Biol. 2024 85 102776 10.1016/j.sbi.2024.102776
    [Google Scholar]
  102. Purgatorio R. Gambacorta N. Catto M. de Candia M. Pisani L. Espargaró A. Sabaté R. Cellamare S. Nicolotti O. Altomare C. Pharmacophore modeling and 3D-QSAR study of indole and isatin derivatives as antiamyloidogenic agents targeting Alzheimer’s disease. Molecules 2020 25 23 5773 10.3390/molecules25235773 33297547
    [Google Scholar]
  103. Zhang F. Zhong R.J. Cheng C. Li S. Le W.D. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 2021 42 9 1382 1389 10.1038/s41401‑020‑00565‑5
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037387954250901202157
Loading
/content/journals/cpps/10.2174/0113892037387954250901202157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test