Skip to content
2000
image of Solid-Phase Synthesized Imunofan Confers Clinically Relevant Protection using a Chimeric Protein Vaccine Candidate Against E. coli O157:H7 in BALB/c Mice

Abstract

Introduction/Objective

This study aimed to evaluate the efficacy of Imunofan, a synthetic peptide adjuvant, compared to Freund’s adjuvant. We hypothesized that imunofan would enhance protective immunity while avoiding the adverse effects associated with traditional adjuvants.

Methods

Imunofan (836 Da) was synthesized SPPS, purified by RP-HPLC, and validated by LC-MS. A chimeric antigen (ESI) encoding EspA, StxB, and Intimin was expressed in BL21(DE3) using the pET28-ESI plasmid, induced with IPTG, and purified Ni-NTA chromatography. BALB/c mice (n = 10/group) were immunized with: (1) ESI+Imunofan, (2) ESI+Freund’s adjuvant, (3) ESI alone, or (4) Imunofan alone. IgG titers were measured by ELISA, and protection was assessed bacterial shedding (log CFU/g feces) post-challenge with O157:H7.

Results

ESI+Freund’s adjuvant elicited the highest IgG response (mean ± SEM: 12.3 ± 0.8 log; 0.05 ESI alone). Surprisingly, ESI+Imunofan showed a comparable reduction in bacterial shedding (3.1 ± 0.4 log CFU/g Freund’s adjuvant: 2.9 ± 0.3; 0.1), despite lower IgG (9.1 ± 0.6 log). ESI alone reduced shedding (4.2 ± 0.5 log; 0.01 control), outperforming Imunofan alone (5.8 ± 0.7; 0.05).

Conclusion

Imunofan’s structural authenticity and functional efficacy were demonstrated. Its comparable protection to Freund’s adjuvant, despite weaker humoral responses, suggests a unique role in modulating non-antibody-mediated immunity. These findings support imunofan as a safer alternative to conventional adjuvants.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037405052250926104854
2025-10-15
2026-02-09
Loading full text...

Full text loading...

References

  1. Melinte V. Radu A.M. Văcăroiu C.M. Cismaru M.I. Oprescu Macovei A.M. Mihăilă D.E. Gheorghiță V. A successful approach to diagnosing shiga-like toxin-producing Escherichia coli-induced colitis. Diagnostics 2024 14 8 801 10.3390/diagnostics14080801 38667447
    [Google Scholar]
  2. Hettiarachchi I.T. Hegde M. Planner A.C. John L. Escherichia coli O157:H7 causing hemorrhagic colitis. Gastrointest. Endosc. 2012 75 3 674 675 10.1016/j.gie.2011.11.024 22341117
    [Google Scholar]
  3. Ko H. Maymani H. Rojas-Hernandez C. Hemolytic uremic syndrome associated with Escherichia coli O157:H7 infection in older adults: A case report and review of the literature. J. Med. Case Rep. 2016 10 1 175 10.1186/s13256‑016‑0970‑z 27301547
    [Google Scholar]
  4. Xiong Y. Wang P. Lan R. Ye C. Wang H. Ren J. Jing H. Wang Y. Zhou Z. Bai X. Cui Z. Luo X. Zhao A. Wang Y. Zhang S. Sun H. Wang L. Xu J. A novel Escherichia coli O157:H7 clone causing a major hemolytic uremic syndrome outbreak in China. PLoS One 2012 7 4 e36144 10.1371/journal.pone.0036144 22558360
    [Google Scholar]
  5. Bruyand M. Mariani-Kurkdjian P. Gouali M. de Valk H. King L.A. Le Hello S. Bonacorsi S. Loirat C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med. Mal. Infect. 2018 48 3 167 174 10.1016/j.medmal.2017.09.012 29054297
    [Google Scholar]
  6. Malabadi R.B. Sadiya M.R. Kolkar K.P. Chalannavar R.K. Pathogenic Escherichia coli (E. coli) food borne outbreak: Detection methods and controlling measures. Magna. Sci. Adv. Res. Rev. 2024 10 1 52 85 10.30574/msarr.2024.10.1.0003
    [Google Scholar]
  7. Pokharel P. Dhakal S. Dozois C.M. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms 2023 11 2 344 10.3390/microorganisms11020344 36838308
    [Google Scholar]
  8. Wong C.S. Mooney J.C. Brandt J.R. Staples A.O. Jelacic S. Boster D.R. Watkins S.L. Tarr P.I. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: A multivariable analysis. Clin. Infect. Dis. 2012 55 1 33 41 10.1093/cid/cis299 22431799
    [Google Scholar]
  9. Gambushe S.M. Zishiri O.T. El Zowalaty M.E. Review of Escherichia coli O157: H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective. Infect. Drug Resist. 2022 15 4645 4673 10.2147/IDR.S365269 36039321
    [Google Scholar]
  10. Butt S. Smith-Palmer A. Shand A. McDonald E. Allison L. Maund J. Fernandes A. Vishram B. Greig D.R. Jenkins C. Elson R. Evidence of on-going transmission of Shiga toxin-producing Escherichia coli O157:H7 following a foodborne outbreak. Epidemiol. Infect. 2021 149 e147 10.1017/S0950268821001278 34096488
    [Google Scholar]
  11. Karim Karim Akilimali Aymar Isaac Isiko Oduoye Malik Moradeyo Abdulrahmon Zubairu Abdullahi Muzata Danny Christopher Gloria Chipinga Jones Simiyu Benjamin Diseases transmitted to humans through foodborne microbes in the Global South. Food Safety and Quality in Global South 2024 561 597 10.1007/978‑981‑97‑2428‑4_18
    [Google Scholar]
  12. Hajizade A. Salmanian A.H. Amani J. Ebrahimi F. Arpanaei A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E. coli O157: H7. Artif. Cells Nanomed. Biotechnol. 2018 46 sup3 S1067 S1075 10.1080/21691401.2018.1529676 30638077
    [Google Scholar]
  13. Hajizade A. Firouz Amani J. Arpanaei A. Salmanian A.H. Design and in silico analysis of pentavalent chimeric antigen against three enteropathogenic bacteria: Enterotoxigenic E. coli, enterohemorragic E. coli and Shigella. Biosci. Biotechnol. Res. Commun. 2016 9 2 225 239 10.21786/bbrc/9.1/9
    [Google Scholar]
  14. Orenstein Walter A. Offit Paul A. Edwards Kathryn M. Plotkin Stanley A. Plotkin's Vaccines Elsevier 2023 8th Edition
    [Google Scholar]
  15. Plotkin Stanley A. Orenstein Walter A. Offit Paul A. Vaccines Elsevier Health Sciences 2012 1 1550
    [Google Scholar]
  16. Hajizade A. Ebrahimi F. Salmanian A-H. Arpanaei A. Amani J. Nanoparticles in vaccine development. J. Appl. Biotechnol. Rep. 2014 1 4 125 134
    [Google Scholar]
  17. Lange M.E. Uwiera R.R.E. Inglis G.D. Enteric Escherichia coli O157: H7 in cattle, and the use of mice as a model to elucidate key aspects of the host-pathogen-microbiota interaction: A review. Front. Vet. Sci. 2022 9 937866 10.3389/fvets.2022.937866 35898542
    [Google Scholar]
  18. Shringi S. Sheng H. Potter A.A. Minnich S.A. Hovde C.J. Besser T.E. Repeated oral vaccination of cattle with Shiga toxin-negative Escherichia coli O157: H7 reduces carriage of wild-type E. coli O157: H7 after challenge. Appl. Environ. Microbiol. 2021 87 2 e02183-20 10.1128/AEM.02183‑20 33158889
    [Google Scholar]
  19. Samiei H. Nazarian S. Hajizade A. Kordbacheh E. In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157:H7. Int. Immunopharmacol. 2023 114 109464 10.1016/j.intimp.2022.109464 36450206
    [Google Scholar]
  20. Gupta S. Pellett S. Recent developments in vaccine design: From live vaccines to recombinant toxin vaccines. Toxins 2023 15 9 563 10.3390/toxins15090563 37755989
    [Google Scholar]
  21. Apostolopoulos Vasso Chavda Vivek P. Subunit protein-based vaccines. Advanced Vaccination Technologies for Infectious and Chronic Diseases: A Guide to Vaccinology, Developments in Immunology Elsevier 2024 51 62 10.1016/B978‑0‑443‑18564‑9.00011‑4
    [Google Scholar]
  22. Reed S.G. Orr M.T. Fox C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013 19 12 1597 1608 10.1038/nm.3409 24309663
    [Google Scholar]
  23. O’Hagan D.T. Fox C.B. New generation adjuvants – From empiricism to rational design. Vaccine 2015 33 B14 B20 10.1016/j.vaccine.2015.01.088 26022561
    [Google Scholar]
  24. Khalifa A.Z. Perrie Y. Shahiwala A. Subunit antigen delivery: Emulsion and liposomal adjuvants for next-generation vaccines. Expert. Opin. Drug Deliv. 2025 22 4 583 597 10.1080/17425247.2025.2474088 40021342
    [Google Scholar]
  25. Didierlaurent A.M. Laupèze B. Di Pasquale A. Hergli N. Collignon C. Garçon N. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert. Rev. Vaccines 2017 16 1 55 63 10.1080/14760584.2016.1213632 27448771
    [Google Scholar]
  26. Schijns V.E.J.C. Lavelle E.C. Trends in vaccine adjuvants. Expert. Rev. Vaccines 2011 10 4 539 550 10.1586/erv.11.21 21506650
    [Google Scholar]
  27. Leenaars M. Adjuvants in Laboratory Animals: Evaluation of immunostimulating properties and side effects of Freund's complete adjuvant and alternative adjuvants in immunization procedures. Radboud University Medical Centre (Radboudumc) 1997
    [Google Scholar]
  28. Facciolà A. Visalli G. Laganà A. Di Pietro A. An overview of vaccine adjuvants: Current evidence and future perspectives. Vaccines 2022 10 5 819 10.3390/vaccines10050819 35632575
    [Google Scholar]
  29. Karati D. Meur S. Das S. Adak A. Mukherjee S. Peptide-based drugs in immunotherapy: Current advances and future prospects. Med. Oncol. 2025 42 5 177 10.1007/s12032‑025‑02739‑9 40266466
    [Google Scholar]
  30. Ashaolu T.J. Zarei M. Agrawal H. Kharazmi M.S. Jafari S.M. A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Crit. Rev. Food Sci. Nutr. 2024 64 20 7220 7236 10.1080/10408398.2023.2183380 36855310
    [Google Scholar]
  31. Hemmati S. Saeidikia Z. Seradj H. Mohagheghzadeh A. Immunomodulatory peptides as vaccine adjuvants and antimicrobial agents. Pharmaceuticals 2024 17 2 201 10.3390/ph17020201 38399416
    [Google Scholar]
  32. Li Z. Rana I. Park G. Lee J. Park C.E. Nam J. Pattern recognition receptors and their nano-adjuvants for cancer immunotherapy. J. Pharm. Investig. 2023 53 5 685 706 10.1007/s40005‑023‑00633‑y
    [Google Scholar]
  33. Tsukidate T. Hespen C.W. Hang H.C. Small molecule modulators of immune pattern recognition receptors. RSC Chem. Biol. 2023 4 12 1014 1036 10.1039/D3CB00096F 38033733
    [Google Scholar]
  34. Janež Š. Guzelj S. Šišić M. Frkanec R. Pajk S. Burgmeijer L. Slütter B. Jakopin Ž. Probing immune signatures of conjugated pattern recognition receptor ligands identifies chimeras with adjuvant and antitumor activity. bioRxiv 2025 10.1101/2025.04.07.647694
    [Google Scholar]
  35. Xia P. Wu Y. Lian S. Yan L. Meng X. Duan Q. Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl. Microbiol. Biotechnol. 2021 105 13 5341 5355 10.1007/s00253‑021‑11406‑8 34180006
    [Google Scholar]
  36. Shen H. Tesar B.M. Walker W.E. Goldstein D.R. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J. Immunol. 2008 181 3 1849 1858 10.4049/jimmunol.181.3.1849 18641322
    [Google Scholar]
  37. Cao R. Zhou J. Liu J. Wang Y. Dai Y. Jiang Y. Yamauchi A. Atlas D. Jin T. Zhou J. Wang C. Tan Q. Chen Y. Yodoi J. Tian H. TXM-CB13 improves the intestinal mucosal barrier and alleviates colitis by inhibiting the ROS/TXNIP/TRX/NLRP3 and TLR4/MyD88/NF-κB/NLRP3 pathways. Inflammation 2025 1 13 10.1007/s10753‑025‑02282‑9 40085192
    [Google Scholar]
  38. Kelley N. Jeltema D. Duan Y. He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019 20 13 3328 10.3390/ijms20133328 31284572
    [Google Scholar]
  39. Silin D. Lyubomska O. Ershov F. Frolov V. Kutsyna G. Synthetic and natural immunomodulators acting as interferon inducers. Curr. Pharm. Des. 2009 15 11 1238 1247 10.2174/138161209787846847 19355963
    [Google Scholar]
  40. Sawicka J. Dzierżyńska M. Wardowska A. Deptuła M. Rogujski P. Sosnowski P. Filipowicz N. Mieczkowska A. Sass P. Pawlik A. Hać A. Schumacher A. Gucwa M. Karska N. Kamińska J. Płatek R. Mazuryk J. Zieliński J. Kondej K. Młynarz P. Mucha P. Skowron P. Janus Ł. Herman-Antosiewicz A. Sachadyn P. Czupryn A. Piotrowski A. Pikuła M. Rodziewicz-Motowidło S. Imunofan—RDKVYR peptide—stimulates skin cell proliferation and promotes tissue repair. Molecules 2020 25 12 2884 10.3390/molecules25122884 32585846
    [Google Scholar]
  41. Besman M. Zambrowicz A. Matwiejczyk M. Review of thymic peptides and hormones: from their properties to clinical application. Int. J. Pept. Res. Ther. 2025 31 10 10.1007/s10989‑024‑10666‑y
    [Google Scholar]
  42. Goldstein G. Audhya T.K. Thymopoietin to thymopentin: Experimental studies. Surv. Immunol. Res. 1985 4 S1 1 10 Suppl. 1 10.1007/BF02919050 2994196
    [Google Scholar]
  43. Lebedev, V.V. Modern aspects of peptide immuno-modulating agent use in the system of vaccinal prevention and vaccinal therapy. Preprint. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q= Lebedev%2C+V.+Modern+aspects+of+peptide+immuno-modulating+agent+use+in+the+system+of+vaccinal+prevention+and+vaccinal+therapy.&btnG=
  44. Yustiniyanova B. Georgieva M. Nanova B. Immunofan-characterization and significance as immunomodulator in malignant diseases. Scripta Scientifica Pharmaceutica 2014 1 17 10.14748/ssp.v1i0.2516
    [Google Scholar]
  45. Bobrysheva I.V. Immunomodulator Imunofan affects cell profile of morphofunctional zones of rat thymus and delays its age-related involution. Bull. Russ. State Med. Univ. 2016 3 34 38 10.24075/brsmu.2016‑03‑05
    [Google Scholar]
  46. Taheri M. Nazarian S. Ebrahimi F. Bakhshi M. Fathi J. Immunogenic evaluation of recombinant chimeric protein containing EspA-Stx2b-Intimin against E. coli O157 H7. Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Kurdistan 2018 22 6 49 62
    [Google Scholar]
  47. Hansen P.R. Oddo A. Fmoc solid-phase peptide synthesis. Methods Mol. Biol. 2015 1348 33 50 10.1007/978‑1‑4939‑2999‑3_5 26424261
    [Google Scholar]
  48. Reddy M.P. Voelker P.J. Novel method for monitoring the coupling efficiency in solid phase peptide synthesis. Int. J. Pept. Protein Res. 1988 31 3 345 348 10.1111/j.1399‑3011.1988.tb00043.x
    [Google Scholar]
  49. Hosseini S.A. Nazarian S. Ebrahimi F. Hajizade A. Immunogenicity evaluation of recombinant staphylococcus aureus enterotoxin B (rSEB) and rSEB-loaded chitosan nanoparticles following nasal administration. Iran J. Allergy Asthma Immunol. 2020 19 2 159 171 10.18502/ijaai.v19i2.2767 32372629
    [Google Scholar]
  50. Namvar A. Hajizade A. Nazarian S. Sadeghi D. Akbari M.R. Tarverdizade Y. Design and recombinant expression of a multiepitope vaccine candidate against pathogenic species of shigella. Vaccine Rep. 2021 8 1 18 22 10.52547/vacres.8.1.18
    [Google Scholar]
  51. Selinsky Barry S. Membrane Protein Protocols: Expression, Purification, and Characterization Totowa, NJ Humana 2003 1st Edition 10.1385/159259400X
    [Google Scholar]
  52. Walker John M. The Protein Protocols Handbook Totowa, NJ Humana 2009 3rd Edition 10.1007/978‑1‑59745‑198‑7
    [Google Scholar]
  53. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020 40 9 1769 1777 10.1177/0271678X20943823 32663096
    [Google Scholar]
  54. Al-Aneed B. Masoudi A.A. Katalani C. Ahmadian G. Hajizade A. Razmyar J. Evaluation of the expression of IFN-γ, IL-4, IL-17, and IL-22 cytokines in birds immunized with a recombinant chimeric vaccine containing Alpha Toxin, NetB, and ZMP against Necrotic enteritis. J. Appl. Biotechnol. Rep. 2024 11 1 1229 1235 10.30491/jabr.2023.388739.1613
    [Google Scholar]
  55. Verma J. Saxena S. Babu S.G. ELISA-based identification and detection of microbes. Analyzing Microbes: Manual of Molecular Biology Techniques Springer 2012 169 186 10.1007/978‑3‑642‑34410‑7_13
    [Google Scholar]
  56. Vansofla A.N. Hajizade A. Nazarian S. Tarverdizadeh Y. Shahmaleki A. An in-silico-designed multiepitope vaccine candidate can efficiently protect mice against pathogenic species of Shigella. J. Immunol. Methods 2025 542 113905 10.1016/j.jim.2025.113905 40681015
    [Google Scholar]
  57. Bibbal D. Ruiz P. Sapountzis P. Mazuy-Cruchaudet C. Loukiadis E. Auvray F. Forano E. Brugère H. Persistent circulation of enterohemorrhagic Escherichia coli (EHEC) O157: H7 in cattle farms: Characterization of enterohemorrhagic Escherichia coli O157: H7 strains and fecal microbial communities of bovine shedders and non-shedders. Front. Vet. Sci. 2022 9 852475 10.3389/fvets.2022.852475 35411306
    [Google Scholar]
  58. Won G. Chi N.K. Park Y. The effectiveness of commercial vaccination against Lawsonia intracellularis in mitigating the reduction in ADWG, the increased mortality and fecal shedding of the vaccinated pigs: A systematic review and Meta-analysis. Vet. Sci. 2022 9 10 536 10.3390/vetsci9100536 36288149
    [Google Scholar]
  59. Khoury D.S. Schlub T.E. Cromer D. Steain M. Fong Y. Gilbert P.B. Subbarao K. Triccas J.A. Kent S.J. Davenport M.P. Correlates of protection, thresholds of protection, and immunobridging among persons with SARS-CoV-2 infection. Emerg. Infect. Dis. 2023 29 2 381 388 10.3201/eid2902.221422 36692375
    [Google Scholar]
  60. Kalkan Yazıcı M. Koç M.M. Çetin N.S. Karaaslan E. Okay G. Durdu B. Sümbül B. Doymaz M.Z. Discordance between serum neutralizing antibody titers and the recovery from COVID-19. J. Immunol. 2020 205 10 2719 2725 10.4049/jimmunol.2000840 32978281
    [Google Scholar]
  61. Qin L. Gilbert P.B. Corey L. McElrath M.J. Self S.G. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis. 2007 196 9 1304 1312 10.1086/522428 17922394
    [Google Scholar]
  62. Garimano N. Scalise M.L. Gómez F. Amaral M.M. Ibarra C. Intestinal mucus-derived metabolites modulate virulence of a clade 8 enterohemorrhagic Escherichia coli O157:H7. Front. Cell Infect. Microbiol. 2022 12 975173 10.3389/fcimb.2022.975173 36004327
    [Google Scholar]
  63. Jiang L. Yang W. Jiang X. Yao T. Wang L. Yang B. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut. Microbes. 2021 13 1 1992237 10.1080/19490976.2021.1992237 34711138
    [Google Scholar]
  64. Guo Y.N. Mou R.W. Lu M.H. Liang S.S. He Y.M. Tang L.P. Three different routes of EHEC O157:H7 infection were used to establish EHEC broiler model. Poult. Sci. 2024 103 4 103561 10.1016/j.psj.2024.103561 38417337
    [Google Scholar]
  65. Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013 4 185 10.3389/fimmu.2013.00185 23874333
    [Google Scholar]
  66. Corthésy B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun. Rev. 2013 12 6 661 665 10.1016/j.autrev.2012.10.012 23201924
    [Google Scholar]
  67. Woof J.M. Kerr M.A. The function of immunoglobulin A in immunity. J. Pathol. 2006 208 2 270 282 10.1002/path.1877 16362985
    [Google Scholar]
  68. Macpherson A.J. McCoy K.D. Johansen F-E. Brandtzaeg P. The immune geography of IgA induction and function. Mucosal. Immunol. 2008 1 1 11 22 10.1038/mi.2007.6 19079156
    [Google Scholar]
  69. Stils H.F. Adjuvants and antibody production: Dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J. 2005 46 3 280 293 10.1093/ilar.46.3.280 15953835
    [Google Scholar]
  70. Shah R.R. Hassett K.J. Brito L.A. Overview of vaccine adjuvants: Introduction, history, and current status. Methods Mol. Biol. 2017 1494 1 13 10.1007/978‑1‑4939‑6445‑1_1 27718182
    [Google Scholar]
  71. Greenfield E.A. Immunizing animals. Cold Spring Harb Protoc 2022 2022 7 Pdb.top100180 10.1101/pdb.top100180 35820791
    [Google Scholar]
  72. Singleton K.L. Joffe A. Leitner W.W. Review: Current trends, challenges, and success stories in adjuvant research. Front. Immunol. 2023 14 1105655 10.3389/fimmu.2023.1105655 36742311
    [Google Scholar]
  73. Lai R.P.J. Seaman M.S. Tonks P. Wegmann F. Seilly D.J. Frost S.D.W. LaBranche C.C. Montefiori D.C. Dey A.K. Srivastava I.K. Sattentau Q. Barnett S.W. Heeney J.L. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund’s adjuvants. PLoS One 2012 7 4 e35083 10.1371/journal.pone.0035083 22509385
    [Google Scholar]
  74. Bergmann-Leitner E. Leitner W. Adjuvants in the driver’s seat: How magnitude, type, fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccines 2014 2 2 252 296 10.3390/vaccines2020252 26344620
    [Google Scholar]
  75. Akache B. Stark F.C. Agbayani G. Renner T.M. McCluskie M.J. Adjuvants: Engineering protective immune responses in human and veterinary vaccines. Methods Mol. Biol. 2022 2412 179 231 10.1007/978‑1‑0716‑1892‑9_9 34918246
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037405052250926104854
Loading
/content/journals/cpps/10.2174/0113892037405052250926104854
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: adjuvant ; immunomodulation ; vaccine ; bacterial shedding ; Imunofan ; Escherichia coli O157:H7
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test