Full text loading...
Sciatic nerve injury represents a prevalent and incapacitating condition characterized by denervation, muscular atrophy, and compromised functionality. The Protein Kinase B (PKB)/Akt signaling cascade serves as a vital modulator of skeletal muscle hypertrophy, metabolic processes, and regenerative capabilities. Subsequent to sciatic nerve injury, the PI3K/Akt signaling pathway exhibits dysregulation, exacerbating muscle atrophy and hindering recovery processes due to feedback inhibition of PKB/Akt phosphorylation by mTORC1, which consequently increases the expression of E3 ubiquitin ligases and causes muscle atrophy. Additionally, a multitude of other variables, encompassing neurotrophic factors, intracellular calcium ion concentrations, carboxyl-terminal modulator proteins, connexins, and tumor necrosis factor-α, either exert regulatory influences on Akt or are subject to regulation by Akt in a multifaceted manner. Hence, this review discusses the complex role of the PI3K/Akt signaling pathway in skeletal muscle dynamics following sciatic nerve injury, emphasizing its regulatory mechanisms and downstream effectors, and highlights strategies to target this pathway to enhance muscle regeneration and restore functional capabilities.
Article metrics loading...
Full text loading...
References
Data & Media loading...