Skip to content
2000
image of Plant Protein Essentials: From Source to Production

Abstract

Plant-based proteins are receiving increasing attention as sustainable and health-conscious alternatives to animal-derived proteins, addressing both environmental concerns and growing consumer demand. This review explores key plant protein sources-including cereals, legumes, pseudocereals, nuts, and seeds-which often provide protein content comparable to or greater than that of milk and meat. The review highlights various production techniques such as extrusion processing for meat-like textures and traditional fermentation methods. Plant molecular farming, using microalgae, plant cells, and whole plants, has emerged as a promising strategy for recombinant protein production. Extraction methods-mechanical, solvent-based, and enzyme-assisted-are also discussed, along with recent innovations like ultrasound- and microwave-assisted extraction. By examining the nutritional quality, processing methods, and potential applications of plant proteins, this review underscores their significance in achieving global food security and promoting sustainable dietary practices.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037416124251202091550
2026-01-15
2026-01-29
Loading full text...

Full text loading...

References

  1. Hertzler S.R. Lieblein-Boff J.C. Weiler M. Allgeier C. Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients 2020 12 12 3704 10.3390/nu12123704 33266120
    [Google Scholar]
  2. Akharume F.U. Aluko R.E. Adedeji A.A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 2021 20 1 198 224 10.1111/1541‑4337.12688 33393195
    [Google Scholar]
  3. Ahnen R.T. Jonnalagadda S.S. Slavin J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019 77 11 735 747 10.1093/nutrit/nuz028 31322670
    [Google Scholar]
  4. Rizzo G. Baroni L. Soy, soy foods and their role in vegetarian diets. Nutrients 2018 10 1 43 10.3390/nu10010043 29304010
    [Google Scholar]
  5. Natarajan S. Luthria D. Bae H. Lakshman D. Mitra A. Transgenic soybeans and soybean protein analysis: An overview. J. Agric. Food Chem. 2013 61 48 11736 11743 10.1021/jf402148e 24099420
    [Google Scholar]
  6. Sui X. Zhang T. Jiang L. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annu. Rev. Food Sci. Technol. 2021 12 1 119 147 10.1146/annurev‑food‑062220‑104405 33317319
    [Google Scholar]
  7. Stagnari F. Maggio A. Galieni A. Pisante M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017 4 1 2 10.1186/s40538‑016‑0085‑1
    [Google Scholar]
  8. Costa M.P. Reckling M. Chadwick D. Rees R.M. Saget S. Williams M. Styles D. Legume-Modified rotations deliver nutrition with lower environmental impact. Front. Sustain. Food Syst. 2021 5 656005 10.3389/fsufs.2021.656005
    [Google Scholar]
  9. Langyan S. Yadava P. Khan F.N. Dar Z.A. Singh R. Kumar A. Sustaining protein nutrition through plant-based foods. Front. Nutr. 2022 8 772573 10.3389/fnut.2021.772573 35118103
    [Google Scholar]
  10. Sidharthan C. Is green leaf biomass a viable and sustainable source of protein? 2023 Available from: https://www.news-medical.net/news/20230314/Is-green-leaf-biomass-a-viable-and-sustainable-source-of-protein.aspx
    [Google Scholar]
  11. Domokos-Szabolcsy É. Yavuz S.R. Picoli E. Fári M.G. Kovács Z. Tóth C. Kaszás L. Alshaal T. Elhawat N. Green biomass-based protein for sustainable feed and food supply: An overview of current and future prospective. Life 2023 13 2 307 10.3390/life13020307 36836666
    [Google Scholar]
  12. Song Y. Hu Z. Liu S. Luo S. He R. Yang X. Li S. Yang X. An Y. Lu Y. Utilization of microalgae and duckweed as sustainable protein sources for food and feed: Nutritional potential and functional applications. J. Agric. Food Chem. 2025 73 8 4466 4482 10.1021/acs.jafc.4c11610 39879156
    [Google Scholar]
  13. Millward D.J. Layman D.K. Tomé D. Schaafsma G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008 87 5 1576S 1581S 10.1093/ajcn/87.5.1576S 18469291
    [Google Scholar]
  14. Wilson J. Wilson G.J. Contemporary issues in protein requirements and consumption for resistance trained athletes. J. Int. Soc. Sports Nutr. 2006 3 1 7 27 10.1186/1550‑2783‑3‑1‑7 18500966
    [Google Scholar]
  15. Gilani G.S. Cockell K.A. Sepehr E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005 88 3 967 987 10.1093/jaoac/88.3.967 16001874
    [Google Scholar]
  16. Jafari S.M. Sedaghat Doost A. Nikbakht Nasrabadi M. Boostani S. Van der Meeren P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci. Technol. 2020 98 117 128 10.1016/j.tifs.2020.02.008
    [Google Scholar]
  17. Nikbakht Nasrabadi M. Goli S.A.H. Sedaghat Doost A. Roman B. Dewettinck K. Stevens C.V. Van der Meeren P. Plant based Pickering stabilization of emulsions using soluble flaxseed protein and mucilage nano-assemblies. Colloids Surf. A Physicochem. Eng. Asp. 2019 563 170 182 10.1016/j.colsurfa.2018.12.004
    [Google Scholar]
  18. Li W. Zhao H. He Z. Zeng M. Qin F. Chen J. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties. Colloids Surf. B Biointerfaces 2016 138 70 77 10.1016/j.colsurfb.2015.11.038 26655794
    [Google Scholar]
  19. Adal E. Sadeghpour A. Connell S. Rappolt M. Ibanoglu E. Sarkar A. Heteroprotein complex formation of bovine lactoferrin and pea protein isolate: A multiscale structural analysis. Biomacromolecules 2017 18 2 625 635 10.1021/acs.biomac.6b01857 28080032
    [Google Scholar]
  20. Tomar M. Bhardwaj R. Kumar M. Pal Singh S. Krishnan V. Kansal R. Verma R. Yadav V.K. dahuja, A.; Ahlawat, S.P.; Rana, J.C.; Bollinedi, H.; Ranjan Kumar, R.; Goswami, S.; T, V.; Satyavathi, C.T.; Praveen, S.; Sachdev, A. Nutritional composition patterns and application of multivariate analysis to evaluate indigenous Pearl millet ((Pennisetum glaucum (L.) R. Br.) germplasm. J. Food Compos. Anal. 2021 103 104086 10.1016/j.jfca.2021.104086
    [Google Scholar]
  21. Singh A. Extrusion texturization of air-classified barley protein: A sustainable plant-based meat alternative. 2024 Available from: https://mspace.lib.umanitoba.ca/items/6e824ec4-fee5-441a-8e7a-084dd51978d2
    [Google Scholar]
  22. Vatansever S. Tulbek M.C. Riaz M.N. Low-and high-moisture extrusion of pulse proteins as plant-based meat ingredients: A review. Cereal Foods World 2020 65 4 12 14
    [Google Scholar]
  23. Zhang J. Liu L. Liu H. Yoon A. Rizvi S.S.H. Wang Q. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit. Rev. Food Sci. Nutr. 2019 59 20 3267 3280 10.1080/10408398.2018.1487383 29894200
    [Google Scholar]
  24. Tamang J.P. Kailasapathy K. Fermented foods and beverages of the world. CRC press 2010 10.1201/EBK1420094954
    [Google Scholar]
  25. Alrosan M. Tan T.C. Koh W.Y. Easa A.M. Gammoh S. Alu’datt M.H. Overview of fermentation process: Structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Crit. Rev. Food Sci. Nutr. 2023 63 25 7677 7691 10.1080/10408398.2022.2049200 35266840
    [Google Scholar]
  26. Kårlund A. Gómez-Gallego C. Korhonen J. Palo-oja O.M. El-Nezami H. Kolehmainen M. Harnessing microbes for sustainable development: Food fermentation as a tool for improving the nutritional quality of alternative protein sources. Nutrients 2020 12 4 1020 10.3390/nu12041020 32276384
    [Google Scholar]
  27. Malla A. Rosales-Mendoza S. Phoolcharoen W. Vimolmangkang S. Efficient transient expression of recombinant proteins using DNA viral vectors in freshwater microalgal species. Front. Plant. Sci. 2021 12 650820 10.3389/fpls.2021.650820 33897742
    [Google Scholar]
  28. Bañuelos-Hernández B. Beltrán-López J.I. Rosales-Mendoza S. Production of biopharmaceuticals in microalgae. Handbook of marine microalgae biotechnology advances. Kim S.K. Academic Press 2015 281 298 10.1016/B978‑0‑12‑800776‑1.00018‑2
    [Google Scholar]
  29. Bapat V.A. Kavi Kishor P.B. Jalaja N. Jain S.M. Penna S. Plant cell cultures: Biofactories for the production of bioactive compounds. Agronomy 2023 13 3 858 10.3390/agronomy13030858
    [Google Scholar]
  30. Chen X. Hu R. Hu L. Huang Y. Shi W. Wei Q. Li Z. Portable analytical techniques for monitoring volatile organic chemicals in biomanufacturing processes: Recent advances and limitations. Front Chem. 2020 8 837 10.3389/fchem.2020.00837 33024746
    [Google Scholar]
  31. Sandhu N. Sethi M. Kumar A. Dang D. Singh J. Chhuneja P. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A review. Front. Plant Sci. 2021 12 657629 10.3389/fpls.2021.657629 34149755
    [Google Scholar]
  32. Obembe O.O. Popoola J.O. Leelavathi S. Reddy S.V. Advances in plant molecular farming. Biotechnol. Adv. 2011 29 2 210 222 10.1016/j.biotechadv.2010.11.004 21115109
    [Google Scholar]
  33. Bose U. Broadbent J.A. Byrne K. Hasan S. Howitt C.A. Colgrave M.L. Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. J. Proteomics 2019 197 23 33 10.1016/j.jprot.2019.02.009 30776456
    [Google Scholar]
  34. Lee S.Y. Show P.L. Ling T.C. Chang J.S. Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochem. Eng. J. 2017 124 26 35 10.1016/j.bej.2017.04.009
    [Google Scholar]
  35. Chen R. Wang X.J. Zhang Y.Y. Xing Y. Yang L. Ni H. Li H.H. Simultaneous extraction and separation of oil, proteins, and glucosinolates from Moringa oleifera seeds. Food Chem. 2019 300 125162 10.1016/j.foodchem.2019.125162 31325745
    [Google Scholar]
  36. Watchararuji K. Goto M. Sasaki M. Shotipruk A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour. Technol. 2008 99 14 6207 6213 10.1016/j.biortech.2007.12.021 18221870
    [Google Scholar]
  37. Cui Q. Ni X. Zeng L. Tu Z. Li J. Sun K. Chen X. Li X. Optimization of protein extraction and decoloration conditions for tea residues. Hortic. Plant J. 2017 3 4 172 176 10.1016/j.hpj.2017.06.003
    [Google Scholar]
  38. Salgado P.R. Drago S.R. Molina Ortiz S.E. Petruccelli S. Andrich O. González R.J. Mauri A.N. Production and characterization of sunflower (Helianthus annuus L.) protein-enriched products obtained at pilot plant scale. Lebensm. Wiss. Technol. 2012 45 1 65 72 10.1016/j.lwt.2011.07.021
    [Google Scholar]
  39. Xiang Y. Xiang Y. Wang L. Kinetics of activated sludge protein extraction by thermal alkaline treatment. J. Environ. Chem. Eng. 2017 5 6 5352 5357 10.1016/j.jece.2017.09.062
    [Google Scholar]
  40. Görgüç A. Bircan C. Yılmaz F.M. Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chem. 2019 283 637 645 10.1016/j.foodchem.2019.01.077 30722922
    [Google Scholar]
  41. Tirgar M. Silcock P. Carne A. Birch E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017 215 417 424 10.1016/j.foodchem.2016.08.002 27542494
    [Google Scholar]
  42. Rommi K. Hakala T.K. Holopainen U. Nordlund E. Poutanen K. Lantto R. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes. J. Agric. Food Chem. 2014 62 32 7989 7997 10.1021/jf501802e 25039585
    [Google Scholar]
  43. Fu X. Belwal T. Cravotto G. Luo Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrason. Sonochem. 2020 60 104726 10.1016/j.ultsonch.2019.104726 31541966
    [Google Scholar]
  44. Lupatini A.L. de Oliveira Bispo L. Colla L.M. Costa J.A.V. Canan C. Colla E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res. Int. 2017 99 Pt 3 1028 1035 10.1016/j.foodres.2016.11.036 28865613
    [Google Scholar]
  45. Dong X. Zhao M. Shi J. Yang B. Li J. Luo D. Jiang G. Jiang Y. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innov. Food Sci. Emerg. Technol. 2011 12 4 478 483 10.1016/j.ifset.2011.07.002
    [Google Scholar]
  46. Chemat F. Rombaut N. Sicaire A.G. Meullemiestre A. Fabiano-Tixier A.S. Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017 34 540 560 10.1016/j.ultsonch.2016.06.035 27773280
    [Google Scholar]
  47. Firatligil-Durmus E. Evranuz O. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). Lebensm. Wiss. Technol. 2010 43 2 226 231 10.1016/j.lwt.2009.08.017
    [Google Scholar]
  48. Golberg A. Sack M. Teissie J. Pataro G. Pliquett U. Saulis G. Stefan T. Miklavcic D. Vorobiev E. Frey W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels 2016 9 1 94 10.1186/s13068‑016‑0508‑z 27127539
    [Google Scholar]
  49. Yu X. Gouyo T. Grimi N. Bals O. Vorobiev E. Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery. Bioresour. Technol. 2016 199 194 201 10.1016/j.biortech.2015.08.073 26341008
    [Google Scholar]
  50. Phongthai S. Lim S.T. Rawdkuen S. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 2016 70 146 154 10.1016/j.jcs.2016.06.001
    [Google Scholar]
  51. Huang H.W. Hsu C.P. Yang B.B. Wang C.Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013 33 1 54 62 10.1016/j.tifs.2013.07.001
    [Google Scholar]
  52. Lo M. Fu H. Methods for recovery of leaf proteins. USPatent9321806B2, 2008
    [Google Scholar]
  53. Jong D. Donald W. Coagulation method for preparing leaf protein concentrates (LPC) from plant foliage. USPatent4333871A, 1981
    [Google Scholar]
  54. Partain N. Morton J.D. Bratcher B. Mua J.P. Ford K. Plantderived rubisco protein purification. WO2020148704A1, 2020
  55. Kohler G. Bickoff E. Preparation of edible protein from leafy green crops such as alfalfa. USPatent3823128A, 1973
    [Google Scholar]
  56. Brown; Melvin, H. Protein extraction from green crops. USPatent4359530A 1980
    [Google Scholar]
  57. Stahmann, ; Mark, A. Coagulation of protein from the juices of green plants by fermentation and the preservation there of. USPatent3975546A, 1975
    [Google Scholar]
  58. Ransohoff T. Protein purification. USPatent20040029164A1, 2000
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037416124251202091550
Loading
/content/journals/cpps/10.2174/0113892037416124251202091550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test