Skip to content
2000
image of Enzymatic Characterization of Alkaline Protease from a Novel Microorganism Isolated from a Halophilic Environment

Abstract

Introduction

Microbial enzymes, especially bacterial alkaline proteases, are essential to many industrial processes, including the manufacturing of detergents, food processing, bioremediation, medicines, and tanneries. Because of its possible industrial benefits, this study focuses on the purification and characterisation of a halophilic alkaline protease generated by sp. strain SPII-4.

Methods

The bacteria SPII-4's 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Casein was used as a substrate to measure the extracellular crude enzyme's proteolytic activity. Temperature, pH, salinity, metal ions, and chemical solvents were all used to assess enzymatic activity. Every experiment was run in triplicate, and Student's t-tests with unequal variances in Microsoft Excel were used to assess statistical significance.

Results

The 16S rRNA sequencing matched sp. strain 2S4 with 100% identity and 99% coverage. The protease was most active at 40°C, in the alkaline pH range of 9-11, and at concentrations of up to 5% NaCl. The enzyme had the maximum activity (14.64 U/mg) among the metal ions examined when BaCl was present. Additionally, it maintained its activity in the presence of the surfactant Triton-X and in a variety of chemical solvents. The observed differences were statistically significant ( 0.001).

Discussion

The SPII-4 protease showed exceptional stability and activity in the presence of surfactants and solvents, as well as in extremely high and low salinity and alkalinity conditions. These characteristics point to the protease's potential for widespread industrial use and are in line with research on related halophilic bacterial enzymes. To maximize its commercial usage, more purification and scale-up research are necessary.

Conclusion

sp. SPII-4's halo-alkaline protease exhibits considerable industrial promise because of its stability in conditions that are high in salt, alkalinity, and solvents. These qualities make it a viable option for use in the food, detergent, and pharmaceutical sectors as well as in bioremediation.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037384859250922101245
2025-10-15
2025-12-14
Loading full text...

Full text loading...

References

  1. Ilesanmi O.I. Adekunle A.E. Omolaiye J.A. Olorode E.M. Ogunkanmi A.L. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci. Afr. 2020 8 00279 10.1016/j.sciaf.2020.e00279
    [Google Scholar]
  2. Parthasarathy M. Gnanadoss J.J. Purification and characterization of extracellular alkaline protease from Streptomyces sp. LCJ12A isolated from Pichavaram mangroves. J. Appl. Biol. Biotechnol. 2020 8 1 15 20 10.7324/JABB.2020.80103
    [Google Scholar]
  3. Oztas G.E. Gormez A. Characterization and biotechnological application of protease from thermophilic Thermomonas haemolytica. Arch. Microbiol. 2020 202 1 153 159 10.1007/s00203‑019‑01728‑7 31541265
    [Google Scholar]
  4. Iqbalsyah T.M. Malahayati A.F. Purification and partial characterization of a thermo-halostable protease produced by Geobacillus sp. strain PLS A isolated from undersea fumaroles. J. Taibah Univ. Sci. 2019 13 1 850 857 10.1080/16583655.2019.1650489
    [Google Scholar]
  5. Sinha R. Khare S.K. Thermostable proteases. Thermophilic microbes in environmental and industrial industrial biotechnology. Satyanarayana T. Littlechild J. Kawarabayasi Y. Netherlands Springer 2013 859 880
    [Google Scholar]
  6. Jisha V.N. Smitha R.B. Pradeep S. Versatility of microbial proteases. Adv. Enzyme Res. 2013 1 39 51 10.4236/aer.2013.13005
    [Google Scholar]
  7. Contesini F.J. Melo R.R. Sato H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol. 2018 38 3 321 334 10.1080/07388551.2017.1354354 28789570
    [Google Scholar]
  8. Gupta R. Beg Q. Lorenz P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2002 59 1 15 32 10.1007/s00253‑002‑0975‑y 12073127
    [Google Scholar]
  9. Singh S.K. Tripathi V.R. Jain R.K. Vikram S. Garg S.K. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microb. Cell Fact. 2010 9 1 59 10.1186/1475‑2859‑9‑59 20646325
    [Google Scholar]
  10. Ban O.H. Han S.S. Lee Y.N. Identification of a potent protease-producing bacterial isolate, Bacillus amyloliquefaciens CMB01. Ann. Microbiol. 2003 53 1 95 103
    [Google Scholar]
  11. Sarkar G. Prem A.K. Jayasri M.A. Suthindhiran K. Process optimization and extraction of alkaline protease from halotolerant Streptomyces sp. VITGS3 and its use as a contact lens cleaner. J. Genet. Eng. Biotechnol. 2025 23 1 100459 10.1016/j.jgeb.2025.100459 40074433
    [Google Scholar]
  12. Maurer K. Detergent proteases. Curr. Opin. Biotechnol. 2004 15 4 330 334 10.1016/j.copbio.2004.06.005 15296930
    [Google Scholar]
  13. Saeki K. Ozaki K. Kobayashi T. Ito S. Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 2007 103 6 501 508 10.1263/jbb.103.501 17630120
    [Google Scholar]
  14. Srinath R.R. Kumar K.S. Pindi P.K. Isolation and characterization of protease producing novel Burkholderia sp.PS1 from soil sample and its protease production optimization studies. Curr. Trends Biotechnol. Pharm. 2024 18 4 1977 1983 10.5530/ctbp.2024.4.43
    [Google Scholar]
  15. Setyorini E. Takenaka S. Murakami S. Aoki K. Purification and characterization of two novel halotolerant extracellular proteases from Bacillus subtilis strain FP-133. Biosci. Biotechnol. Biochem. 2006 70 2 433 440 10.1271/bbb.70.433 16495660
    [Google Scholar]
  16. Shivanand P. Jayaraman G. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem. 2009 44 10 1088 1094 10.1016/j.procbio.2009.05.010
    [Google Scholar]
  17. Namwong S. Hiraga K. Takada K. Tsunemi M. Tanasupawat S. Oda K. A halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization. Biosci. Biotechnol. Biochem. 2006 70 6 1395 1401 10.1271/bbb.50658 16794319
    [Google Scholar]
  18. Karbalaei-Heidari H.R. Amoozegar M.A. Hajighasemi M. Ziaee A.A. Ventosa A. Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J. Ind. Microbiol. Biotechnol. 2009 36 1 21 27 10.1007/s10295‑008‑0466‑y 18781348
    [Google Scholar]
  19. Sinsuwan S. Rodtong S. Yongsawatdigul J. A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Food Chem. 2010 119 2 573 579 10.1016/j.foodchem.2009.06.064
    [Google Scholar]
  20. Elibol M. Moreira A.R. Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochem. 2005 40 5 1951 1956 10.1016/j.procbio.2004.07.010
    [Google Scholar]
  21. Cheng S.W. Wang Y.F. Wang M.L. Statistical optimization of medium compositions for alkaline protease production by newly isolated Bacillus amyloliquefaciens. Chem. Biochem. Eng. Q. 2012 26 225 231
    [Google Scholar]
  22. Singhal P. Nigam V.K. Vidyarthi A.S. Studies on production, characterization and applications of microbial alkaline proteases. Int. J. Adv. Biotechnol. Res. 2012 3 653 669
    [Google Scholar]
  23. Nigam V.K. Vimal A. Vidyarthi A.S. Mohan M.K. Studies on applicability of alkaline protease from halophilic bacteria in detergent formulations. Int. J. Appl. Res. 2013 3 47 50
    [Google Scholar]
  24. Nadeem M. Qazi J.I. Baig S. Effect of aeration and agitation rates on alkaline protease production by Bacillus licheniformis UV-9 Mutant. Turk J Biochem. 2009 34 89 96
    [Google Scholar]
  25. Doddapaneni K.K. Tatineni R. Vellanki R.N. Rachcha S. Anabrolu N. Narakuti V. Mangamoori L.N. Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiol. Res. 2009 164 4 383 390 10.1016/j.micres.2007.04.005 17616381
    [Google Scholar]
  26. Song P. Zhang X. Wang S. Xu W. Wang F. Fu R. Wei F. Microbial proteases and their applications. Front. Microbiol. 2023 14 1236368 10.3389/fmicb.2023.1236368 37779686
    [Google Scholar]
  27. Syed W. Menaka M. Parimalakrishnan S. Yamasani V.V. A study on diabetes-related self-care plan and its determinants among diabetes patients in a Warangal region, Telangana, India. Braz. J. Pharm. Sci. 2022 58 21266 10.1590/s2175‑97902022e21266
    [Google Scholar]
  28. Chernyshov S.V. Tsvetkova D.V. Mikoulinskaia G.V. A rapid and efficient technique for the isolation of Bacillus genomic DNA using a cocktail of peptidoglycan hydrolases of different type. World J. Microbiol. Biotechnol. 2023 39 1 31 10.1007/s11274‑022‑03475‑2 36454347
    [Google Scholar]
  29. Kotb E. Alabdalall A.H. Alsayed M.A. Alghamdi A.I. Alkhaldi E. AbdulAzeez S. Borgio J.F. Isolation, screening, and identification of alkaline protease-producing bacteria and application of the most potent enzyme from Bacillus sp. Mar64. Fermentation 2023 9 7 637 10.3390/fermentation9070637
    [Google Scholar]
  30. Maruthiah T. Esakkiraj P. Prabakaran G. Palavesam A. Immanuel G. Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP-MSU 6. Biocatal. Agric. Biotechnol. 2013 2 2 116 119 10.1016/j.bcab.2013.03.001
    [Google Scholar]
  31. Miller G.L. Use of dinitrosalicyclic acid reagent for the determination of reducing sugar. Anal. Chem. 1959 31 3 426 428 10.1021/ac60147a030
    [Google Scholar]
  32. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  33. Kumar R. Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Appl. Sci. J. 2012 16 940 948
    [Google Scholar]
  34. Iqbalsyah T.M. Amna U. Utami R.S. Oesman F. Concomitant cellulase and amylase production by a thermophilic bacterial isolate in a solid-state fermentation using rice husks. Agric. Nat. Resour. 2019 53 327 333
    [Google Scholar]
  35. Elbanna K. Ibrahim I.M. Revol-Junelles A.M. Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles 2015 19 4 763 774 10.1007/s00792‑015‑0752‑3 25982741
    [Google Scholar]
  36. Guven K. Fitriani S. Isolation, screening, partial purification and characterization of protease from halophilic bacteria isolated from Indonesian fermented food. Anadolu Univ. J. Sci. Technol. C Life Sci. Biotechnol. 2018 7 2 1 1 10.18036/aubtdc.322711
    [Google Scholar]
  37. Gomri M. Rico-Díaz A. Escuder-Rodríguez J.J. El Moulouk K.T. González-Siso M.I. Kharroub K. Production and characterization of an extracellular acid protease from thermophilic Brevibacillus sp. OA30 isolated from an algerian hot spring. Microorganisms 2018 6 2 31 10.3390/microorganisms6020031 29649122
    [Google Scholar]
  38. Baker G.C. Smith J.J. Cowan D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 2003 55 3 541 555 10.1016/j.mimet.2003.08.009 14607398
    [Google Scholar]
  39. Hall B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013 30 5 1229 1235 10.1093/molbev/mst012 23486614
    [Google Scholar]
  40. Ventosa A. Nieto J.J. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 1995 11 1 85 94 10.1007/BF00339138 24414413
    [Google Scholar]
  41. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 2010 31 8-9 825 834 10.1080/09593330903370026 20662374
    [Google Scholar]
  42. Liu C. Baffoe D.K. Zhan Y. Zhang M. Li Y. Zhang G. Halophile, an essential platform for bioproduction. J. Microbiol. Methods 2019 166 105704 10.1016/j.mimet.2019.105704 31494180
    [Google Scholar]
  43. Pant G. Prakash A. Pavani J.V.P. Bera S. Deviram G.V.N.S. Kumar A. Panchpuri M. Prasuna R.G. Production, optimization and partial purification of protease from Bacillus subtilis. J. Taibah Univ. Sci. 2015 9 1 50 55 10.1016/j.jtusci.2014.04.010
    [Google Scholar]
  44. Annamalai N. Rajeswari M.V. Balasubramanian T. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food Bioprod. Process. 2014 92 4 335 342 10.1016/j.fbp.2013.08.009
    [Google Scholar]
  45. Dodia M.S. Rawal C.M. Bhimani H.G. Joshi R.H. Khare S.K. Singh S.P. Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J. Ind. Microbiol. Biotechnol. 2008 35 2 121 131 10.1007/s10295‑007‑0273‑x 17994257
    [Google Scholar]
  46. Ahmetoglu N. Bekler F.M. Acer O. Guven R.G. Guven K. Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5. EurAsian J. BioSci. 2015 9 1 11 10.5053/ejobios.2015.9.0.1
    [Google Scholar]
  47. Thakur N. Kumar A. Sharma A. Bhalla T.C. Kumar D. Purification and characterization of alkaline, thermostable and organic solvent stable protease from a mutant of Bacillus sp. Biocatal. Agric. Biotechnol. 2018 16 217 224 10.1016/j.bcab.2018.08.005
    [Google Scholar]
  48. Kamran A. Ur Rehman H. Ul Qader S.A. Baloch A.H. Kamal M. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp. J. Genet. Eng. Biotechnol. 2015 13 1 59 64 10.1016/j.jgeb.2015.01.002 30647567
    [Google Scholar]
  49. Pandey S. Rakholiya K.D. Raval V.H. Singh S.P. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. J. Biosci. Bioeng. 2012 114 3 251 256 10.1016/j.jbiosc.2012.03.003 22727739
    [Google Scholar]
  50. Karan R. Khare S.K. Purification and characterization of a solvent‐stable protease from Geomicrobium sp. EMB2. Environ. Technol. 2010 31 10 1061 1072 10.1080/09593331003674556 20718288
    [Google Scholar]
  51. Vidyasagar M. Prakash S.B. Sreeramulu K. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett. Appl. Microbiol. 2006 43 4 385 391 10.1111/j.1472‑765X.2006.01980.x 16965368
    [Google Scholar]
  52. Karray A. Alonazi M. Horchani H. Ben B.A. A novel thermostable and alkaline protease produced from Bacillus stearothermophilus isolated from olive oil mill sols suitable to industrial biotechnology. Molecules 2021 26 4 1139 10.3390/molecules26041139 33672726
    [Google Scholar]
  53. Hassan M.A. Haroun B.M. Amara A.A. Serour E.A. Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem. BioMed Res. Int. 2013 2013 1 14 10.1155/2013/175012 23936776
    [Google Scholar]
  54. Mothe T. Sultanpuram V.R. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech 2016 6 1 1
    [Google Scholar]
  55. Shikha Sharan A. Darmwal N. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresour. Technol. 2007 98 4 881 885 10.1016/j.biortech.2006.03.023 16765594
    [Google Scholar]
  56. Gupta A. Roy I. Patel R.K. Singh S.P. Khare S.K. Gupta M.N. One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J. Chromatogr. A 2005 1075 1–2 103 108
    [Google Scholar]
  57. Sánchez-Porro C. Martín S. Mellado E. Ventosa A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 2003 94 2 295 300 10.1046/j.1365‑2672.2003.01834.x 12534822
    [Google Scholar]
  58. Rohban R. Amoozegar M.A. Ventosa A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 2009 36 3 333 340 10.1007/s10295‑008‑0500‑0 19037673
    [Google Scholar]
  59. Menasria T. Aguilera M. Hocine H. Benammar L. Ayachi A. Si Bachir A. Dekak A. Monteoliva-Sánchez M. Diversity and bioprospecting of extremely Halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol. Res. 2018 207 289 298 10.1016/j.micres.2017.12.011 29458865
    [Google Scholar]
  60. Amoozegar M.A. Safarpour A. Noghabi K.A. Bakhtiary T. Ventosa A. Halophiles and their vast potential in biofuel production. Front. Microbiol. 2019 10 1895 10.3389/fmicb.2019.01895 31507545
    [Google Scholar]
  61. Drissi K.L.B. Anissi J. Sendide K. El Hassouni M. Diversity of hydrolase-producing halophilic bacteria and evaluation of their enzymatic activities in submerged cultures. Ann. Microbiol. 2020 70 1 33 10.1186/s13213‑020‑01570‑z
    [Google Scholar]
  62. Vijay A.S. Production and optimization of haloalkaliphilic protease by an extremophile- Halobacterium Sp. Js1, isolated from thalassohaline environment. Arab J. Basic Appl. Sci. 2009 1 49 54
    [Google Scholar]
  63. Sellami-Kamoun A. Haddar A. Ali N.E.H. Ghorbel-Frikha B. Kanoun S. Nasri M. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 2008 163 3 299 306 10.1016/j.micres.2006.06.001 16872818
    [Google Scholar]
  64. Ghorbel B. Sellami-Kamoun A. Nasri M. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 2003 32 5 513 518 10.1016/S0141‑0229(03)00004‑8
    [Google Scholar]
  65. Patel R. Dodia M. Singh S.P. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Production and optimization. Process Biochem. 2005 40 11 3569 3575 10.1016/j.procbio.2005.03.049
    [Google Scholar]
  66. Sneha S. Isolation, characterization and application of protease enzyme from marine bacteria. Res. J. Pharm. Technol. 2021 14 8 4236
    [Google Scholar]
  67. Selim S. Hagagy N. Aziz M.A. El-Meleigy E.S. Pessione E. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat. Prod. Res. 2014 28 18 1476 1479 10.1080/14786419.2014.907288 24716669
    [Google Scholar]
  68. Vidyasagar M. Prakash S. Mahajan V. Shouche Y.S. Sreeramulu K. Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz. J. Microbiol. 2009 40 1 12 19 10.1590/S1517‑83822009000100002 24031311
    [Google Scholar]
  69. Izotova L.S. Strongin A.Y. Chekulaeva L.N. Sterkin V.E. Ostoslavskaya V.I. Lyublinskaya L.A. Timokhina E.A. Stepanov V.M. Purification and properties of serine protease from Halobacterium halobium. J. Bacteriol. 1983 155 2 826 830 10.1128/jb.155.2.826‑830.1983 6348027
    [Google Scholar]
  70. Kanlayakrit W. Bovornreungroj P. Oka T. Goto M. Production and characterization of a protease from an extremely halophilic Halobacterium sp. PB407. Witthayasan Kasetsat Witthayasat 2004 38 15 20
    [Google Scholar]
  71. Manikandan M. Pašić L. Kannan V. Purification and biological characterization of a halophilic thermostable protease from Haloferax lucentensis VKMM 007. World J. Microbiol. Biotechnol. 2009 25 12 2247 2256 10.1007/s11274‑009‑0132‑1
    [Google Scholar]
  72. Razzaq A. Shamsi S. Ali A. Ali Q. Sajjad M. Malik A. Ashraf M. Microbial proteases applications. Front. Bioeng. Biotechnol. 2019 7 7 110 10.3389/fbioe.2019.00110 31263696
    [Google Scholar]
  73. Ghosh S.S. Kumar S.S. Khare S.K. Microbial diversity of saline habitats: An overview of biotechnological applications. Microorganisms in saline environments: Strategies and Functions. Giri B. Varma A. Cham Springer 2019 65 92 10.1007/978‑3‑030‑18975‑4_4
    [Google Scholar]
  74. Madern D. Ebel C. Zaccai G. Halophilic adaptation of enzymes. Extremophiles 2000 4 2 91 98 10.1007/s007920050142 10805563
    [Google Scholar]
  75. Karan R. Kumar S. Sinha R. Khare S.K. Halophilic microorganisms as sources of novel enzymes. Microorganisms in sustainable agriculture and biotechnology. Satyanarayana T. Johri B.N. Prakash A. Dordrecht Springer 2012 555 579 10.1007/978‑94‑007‑2214‑9_25
    [Google Scholar]
  76. Sinha R. Khare S.K. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol. 2014 5 165 10.3389/fmicb.2014.00165 24782853
    [Google Scholar]
  77. Cira-Chávez L.A. Kinetics of halophilic enzymes. Kinetics of Enzymatic Synthesis. Rajendran L. Fernandez C. London IntechOpen 2018 10.5772/intechopen.81100
    [Google Scholar]
  78. Oren A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 2015 33 119 124 10.1016/j.copbio.2015.02.005 25727188
    [Google Scholar]
  79. Ambily N.I.V. Loka B.P.A. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles 2011 15 2 129 153 10.1007/s00792‑010‑0348‑x 21210167
    [Google Scholar]
  80. De Lourdes Moreno M. Pérez D. García M. Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013 3 1 38 51 10.3390/life3010038 25371331
    [Google Scholar]
  81. Daoud L. Jlidi M. Hmani H. Hadj B.A. El Arbi M. Ben A.M. Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia. J. Basic Microbiol. 2017 57 2 104 113 10.1002/jobm.201600391 27862101
    [Google Scholar]
  82. Fahmy N.M. El-Deeb B. Optimization, partial purification, and characterization of a novel high molecular weight alkaline protease produced by Halobacillus sp. HAL1 using fish wastes as a substrate. J. Genet. Eng. Biotechnol. 2023 21 1 48 10.1186/s43141‑023‑00509‑6 37121925
    [Google Scholar]
  83. Lama L. Romano I. Calandrelli V. Nicolaus B. Gambacorta A. Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res. Microbiol. 2005 156 4 478 484 10.1016/j.resmic.2004.12.004 15862445
    [Google Scholar]
  84. Haddar A. Bougatef A. Agrebi R. Sellami-Kamoun A. Nasri M. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization. Process Biochem. 2009 44 1 29 35 10.1016/j.procbio.2008.09.003
    [Google Scholar]
  85. Subba R.C. Sathish T. Ravichandra P. Prakasham R.S. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 2009 44 3 262 268 10.1016/j.procbio.2008.10.022
    [Google Scholar]
  86. Annamalai N. Rajeswari M.V. Thavasi R. Vijayalakshmi S. Balasubramanian T. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: A potential additive for detergent and antioxidant synthesis. Bioprocess Biosyst. Eng. 2013 36 7 873 883 10.1007/s00449‑012‑0820‑3 22983319
    [Google Scholar]
  87. Gurumallesh P. Alagu K. Ramakrishnan B. Muthusamy S. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 2019 128 254 267 10.1016/j.ijbiomac.2019.01.081 30664968
    [Google Scholar]
  88. Iqbal A. Hakim A. Hossain M.S. Rahman M.R. Islam K. Azim M.F. Ahmed J. Assaduzzaman M. Hoq M.M. Azad A.K. Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. J. Genet. Eng. Biotechnol. 2018 16 1 29 37 10.1016/j.jgeb.2017.10.011 30647701
    [Google Scholar]
  89. Patel A.R. Mokashe N.U. Chaudhari D.S. Jadhav A.G. Patil U.K. Production optimisation and characterisation of extracellular protease secreted by newly isolated Bacillus subtilis AU-2 strain obtained from Tribolium castaneum gut. Biocatal. Agric. Biotechnol. 2019 19 101122 10.1016/j.bcab.2019.101122
    [Google Scholar]
  90. Zhang J. Wang J. Zhao Y. Li J. Liu Y. Study on the interaction between calcium ions and alkaline protease of bacillus. Int. J. Biol. Macromol. 2019 124 121 130 10.1016/j.ijbiomac.2018.11.198 30471394
    [Google Scholar]
  91. Sana B. Ghosh D. Saha M. Mukherjee J. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem. 2006 41 1 208 215 10.1016/j.procbio.2005.09.010
    [Google Scholar]
  92. Yu P. Huang X. Ren Q. Wang X. Purification and characterization of a H2O2-tolerant alkaline protease from Bacillus sp. ZJ1502, a newly isolated strain from fermented bean curd. Food Chem. 2019 274 510 517 10.1016/j.foodchem.2018.09.013 30372972
    [Google Scholar]
  93. Dorra G. Ines K. Imen B.S. Laurent C. Sana A. Olfa T. Pascal C. Thierry J. Ferid L. Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int. J. Biol. Macromol. 2018 111 342 351 10.1016/j.ijbiomac.2018.01.024 29320724
    [Google Scholar]
  94. Anbu P. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04. Braz. J. Med. Biol. Res. 2016 49 4 5178
    [Google Scholar]
  95. Mesbah N.M. Wiegel J. Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. J. Mol. Catal., B Enzym. 2014 105 74 81 10.1016/j.molcatb.2014.03.023
    [Google Scholar]
  96. Annamalai N. Rajeswari M.V. Sahu S.K. Balasubramanian T. Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochem. 2014 49 6 1012 1019 10.1016/j.procbio.2014.03.007
    [Google Scholar]
  97. Kalwasińska A. Jankiewicz U. Felföldi T. Burkowska-But A. Swiontek B.M. Alkaline and halophilic protease production by Bacillus luteus H11 and its potential industrial applications. Food Technol. Biotechnol. 2018 56 4 553 561 10.17113/ftb.56.04.18.5553 30923452
    [Google Scholar]
  98. Doukyu N. Ogino H. Organic solvent-tolerant enzymes. Biochem. Eng. J. 2010 48 3 270 282 10.1016/j.bej.2009.09.009
    [Google Scholar]
  99. Haddar A. Agrebi R. Bougatef A. Hmidet N. Sellami-Kamoun A. Nasri M. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol. 2009 100 13 3366 3373 10.1016/j.biortech.2009.01.061 19269812
    [Google Scholar]
  100. manni L. Misbah A. Zouine N. Ananou S. Biochemical characterization of a novel alkaline and detergent stable protease from Aeromonas veronii OB3. Han’guk Misaengmul, Saengmyong Konghakhoe Chi. 2020 48 3 358 365 10.4014/mbl.1912.12015
    [Google Scholar]
  101. Raval V.H. Pillai S. Rawal C.M. Singh S.P. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem. 2014 49 6 955 962 10.1016/j.procbio.2014.03.014
    [Google Scholar]
  102. Gupta M. Choudhury B. Navani N.K. Production and characterization of an organic solvent activated protease from haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR. Heliyon 2024 10 3 25084 10.1016/j.heliyon.2024.e25084 38314259
    [Google Scholar]
  103. Hammami A. Hamdi M. Abdelhedi O. Jridi M. Nasri M. Bayoudh A. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae : Characterization and potential applications in chitin extraction and as a detergent additive. Int. J. Biol. Macromol. 2017 96 272 281 10.1016/j.ijbiomac.2016.12.035 27988295
    [Google Scholar]
  104. Rekik H. Zaraî J.N. Gargouri F. Bejar W. Frikha F. Jmal N. Bejar S. Jaouadi B. Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int. J. Biol. Macromol. 2019 121 1227 1239 10.1016/j.ijbiomac.2018.10.139 30352229
    [Google Scholar]
  105. Manni L. Ghorbel-Bellaaj O. Jellouli K. Younes I. Nasri M. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl. Biochem. Biotechnol. 2010 162 2 345 357 10.1007/s12010‑009‑8846‑y 19960271
    [Google Scholar]
  106. Wang H. Xu J. Kong B. Liu Q. Xia X. Sun F. Purification and characterization of the protease from Staphylococcus xylosus A2 isolated from harbin dry sausages. Foods 2022 11 8 1094 10.3390/foods11081094 35454681
    [Google Scholar]
  107. Adetunji A.I. Olaitan M.O. Erasmus M. Olaniran A.O. Microbial proteases: A next generation green catalyst for industrial, environmental and biomedical sustainability. Food Materials Research 2023 3 1 0 10.48130/FMR‑2023‑0012
    [Google Scholar]
  108. Biver S. Portetelle D. Vandenbol M. Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. Springerplus 2013 2 1 410 10.1186/2193‑1801‑2‑410 24024096
    [Google Scholar]
  109. Jaouadi B. Ellouz-Chaabouni S. Ali M.B. Messaoud E.B. Naili B. Dhouib A. Bejar S. Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB). Biotechnol. Bioprocess Eng.; BBE 2009 14 4 503 512 10.1007/s12257‑008‑0244‑8
    [Google Scholar]
  110. Divakar K. Deepa Arul Priya J. Gautam P. Purification and characterization of thermostable organic solvent-stable protease from Aeromonas veronii PG01. J. Mol. Catal., B Enzym. 2010 66 3-4 311 318 10.1016/j.molcatb.2010.06.008
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037384859250922101245
Loading
/content/journals/cpps/10.2174/0113892037384859250922101245
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: halophilic ; surfactants ; Alkaline protease ; bioremediation ; Bacillus ; pharmaceutical ; extremozymes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test