Skip to content
2000
image of Therapeutic Horizons for Parkinson’s Disease: Current Relevance of PNA5 in Memory and Cognition

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized primarily by the progressive loss of dopaminergic neurons in the substantia nigra and the pathological aggregation of α-synuclein. While some genetic and environmental factors contribute to the development of PD, emerging evidence suggests that specific proteins and molecules may have the potential to slow down, reverse, or mitigate the progression of the disease. Recently, the neuroprotective potential of peptide nucleic acid 5 (PNA5) has garnered attention for its ability to restore cognitive functions in PD. PNA5 is an angiotensin (1-7) agonist peptide molecule that targets α-synuclein mRNA to inhibit its translation and aggregation. Key areas explored include the role of PNA5 in reducing toxic α-synuclein oligomers and fibrils, modulating neuroinflammation, preserving mitochondrial function, and harnessing molecular chaperones and angiotensin-MAS receptor signalling pathways for cellular homeostasis. This review emphasizes the significance of PNA5 in addressing the unmet needs of PD treatment, particularly in the areas of memory and cognition. By targeting the molecular basis of cognitive decline, PNA5 represents a transformative candidate for disease-modifying therapy that could revolutionize approaches to treating neurodegenerative disorders. Future studies should concentrate on establishing delivery methods, evaluating long-term efficacy, and addressing safety concerns.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037389890250925014102
2025-10-21
2026-02-13
Loading full text...

Full text loading...

References

  1. DeMaagd G. Philip A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 2015 40 8 504 532 26236139
    [Google Scholar]
  2. Ramesh S. Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023 10 3 200 231 10.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  3. Wooten G.F. Currie L.J. Bovbjerg V.E. Lee J.K. Patrie J. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry 2004 75 4 637 639 10.1136/jnnp.2003.020982 15026515
    [Google Scholar]
  4. Tenison E. Capturing complexity, comorbidity and frailty in people with parkinsonism and understanding their impact. Student thesis: Doctoral Thesis › Doctor of Philosophy (PhD) 2023
    [Google Scholar]
  5. Prajjwal P. Flores Sanga H.S. Acharya K. Tango T. John J. Rodriguez R.S.C. Dheyaa M.M.M. Sulaimanov M. Ahmed A. Hussin O.A. Parkinson’s disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann. Med. Surg. 2023 85 10 4887 4902 10.1097/MS9.0000000000001142 37811009
    [Google Scholar]
  6. Goldman S.M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014 54 1 141 164 10.1146/annurev‑pharmtox‑011613‑135937 24050700
    [Google Scholar]
  7. Pang S.Y.Y. Ho P.W.L. Liu H.F. Leung C.T. Li L. Chang E.E.S. Ramsden D.B. Ho S.L. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 2019 8 1 23 10.1186/s40035‑019‑0165‑9 31428316
    [Google Scholar]
  8. Jurcău M.C. Andronie-Cioara F.L. Jurcău A. Marcu F. Ţiț D.M. Pașcalău N. Nistor-Cseppentö D.C. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: Therapeutic implications and future perspectives. Antioxidants 2022 11 11 2167 10.3390/antiox11112167 36358538
    [Google Scholar]
  9. Vidović M. Rikalovic M.G. Alpha-synuclein aggregation pathway in Parkinson’s disease: Current status and novel therapeutic approaches. Cells 2022 11 11 1732 10.3390/cells11111732 35681426
    [Google Scholar]
  10. Wadhwa R. Gupta R. Maurya P.K. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr. Pharm. Des. 2019 24 40 4711 4725 10.2174/1381612825666190115121018 30644343
    [Google Scholar]
  11. LeWitt P.A. Chaudhuri K.R. Unmet needs in Parkinson disease: Motor and non-motor. Parkinsonism Relat. Disord. 2020 80 Suppl. 1 S7 S12 10.1016/j.parkreldis.2020.09.024 33349582
    [Google Scholar]
  12. Aarsland D. Batzu L. Halliday G.M. Geurtsen G.J. Ballard C. Ray C.K. Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  13. Sprenger F. Poewe W. Management of motor and non-motor symptoms in Parkinson’s disease. CNS Drugs 2013 27 4 259 272 10.1007/s40263‑013‑0053‑2 23515972
    [Google Scholar]
  14. Bernard K. Mota J.A. Wene P. Corenblum M.J. Saez J.L. Bartlett M.J. Heien M.L. Doyle K.P. Polt R. Hay M. Madhavan L. Falk T. The angiotensin (1–7) glycopeptide PNA5 improves cognition in a chronic progressive mouse model of Parkinson’s disease through modulation of neuroinflammation. Exp. Neurol. 2024 381 114926 10.1016/j.expneurol.2024.114926 39153685
    [Google Scholar]
  15. Encinas-Basurto D. Konhilas J.P. Polt R. Hay M. Mansour H.M. Glycosylated Ang-(1-7) MasR agonist peptide poly lactic-co-glycolic acid (PLGA) nanoparticles and microparticles in cognitive impairment: Design, particle preparation, physicochemical characterization, and in vitro release. Pharmaceutics 2022 14 3 587 10.3390/pharmaceutics14030587 35335963
    [Google Scholar]
  16. Hoyer-Kimura C. Hay M. Konhilas J.P. Morrison H.W. Methajit M. Strom J. Polt R. Salcedo V. Fricks J.P. Kalya A. Pires P.W. PNA5, A novel mas receptor agonist, improves neurovascular and blood-brain-barrier function in a mouse model of vascular cognitive impairment and dementia. Aging Dis. 2024 15 4 1927 1951 37815905
    [Google Scholar]
  17. Hay M. Polt R. Heien M.L. Vanderah T.W. Largent-Milnes T.M. Rodgers K. Falk T. Bartlett M.J. Doyle K.P. Konhilas J.P. A novel angiotensin-(1-7) glycosylated mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J. Pharmacol. Exp. Ther. 2019 369 1 9 25 10.1124/jpet.118.254854 30709867
    [Google Scholar]
  18. Bhavsar I. Miller C.S. Al-Sabbagh M. Macrophage inflammatory protein-1 alpha (MIP-1 alpha)/CCL3: As a biomarker. General Methods in Biomarker Research and their Applications Springer Dordrecht 2015 223 249 10.1007/978‑94‑007‑7696‑8_27
    [Google Scholar]
  19. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  20. Murphy G. Jr Jia X.C. Song Y. Ong E. Shrivastava R. Bocchini V. Lee Y.L. Eng L.F. Macrophage inflammatory protein 1‐α mRNA expression in an immortalized microglial cell line and cortical astrocyte cultures. J. Neurosci. Res. 1995 40 6 755 763 10.1002/jnr.490400607 7629889
    [Google Scholar]
  21. Porel P. Hunjan G. Kaur N. Sharma V. Kaur M. Mittal Y. Kaur R. Aran K.R. Unlocking the neuroprotective potential of peptide nucleic acids 5 (PNA5) in neurological diseases: Molecular mechanisms to therapeutic approaches. Metab. Brain Dis. 2025 40 5 213 10.1007/s11011‑025‑01629‑3 40439916
    [Google Scholar]
  22. Labandeira-Garcia J.L. Labandeira C.M. Guerra M.J. Rodriguez-Perez A.I. The role of the brain renin-angiotensin system in Parkinson´s disease. Transl. Neurodegener. 2024 13 1 22 10.1186/s40035‑024‑00410‑3 38622720
    [Google Scholar]
  23. Rivas-Santisteban R. Lillo J. Muñoz A. Rodríguez-Pérez A.I. Labandeira-García J.L. Navarro G. Franco R. Novel interactions involving the mas receptor show potential of the renin–angiotensin system in the regulation of microglia activation: Altered expression in parkinsonism and dyskinesia. Neurotherapeutics 2021 18 2 998 1016 10.1007/s13311‑020‑00986‑4 33474655
    [Google Scholar]
  24. Li J. Kong X. Liu T. Xian M. Wei J. The role of ACE2 in neurological disorders: From underlying mechanisms to the neurological impact of COVID-19. Int. J. Mol. Sci. 2024 25 18 9960 10.3390/ijms25189960 39337446
    [Google Scholar]
  25. Rabie M.A. Abd El Fattah M.A. Nassar N.N. El-Abhar H.S. Abdallah D.M. Angiotensin 1-7 ameliorates 6-hydroxydopamine lesions in hemiparkinsonian rats through activation of MAS receptor/PI3K/Akt/BDNF pathway and inhibition of angiotensin II type-1 receptor/NF-κB axis. Biochem. Pharmacol. 2018 151 126 134 10.1016/j.bcp.2018.01.047 29428223
    [Google Scholar]
  26. Rukavina M.N.L. Pineda A.M. Gironacci M.M. Angiotensin- (1-7) and Mas receptor in the brain. Explor. Med. 2021 2 3 268 293 10.37349/emed.2021.0004
    [Google Scholar]
  27. Huang S. Zhang M. The role of angiotensin II type 1 receptor pathway in cerebral ischemia‒reperfusion injury: Implications for the neuroprotective effect of ARBs. Neuroprotection 2024 2 2 100 119 10.1002/nep3.45
    [Google Scholar]
  28. Kuriakose J. Montezano A.C. Touyz R.M. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: Vasoprotection to COVID-19-associated vascular disease. Clin. Sci. 2021 135 2 387 407 10.1042/CS20200480 33511992
    [Google Scholar]
  29. Shah S. Tereda A. Mansour H.M. Molecular mechanisms of degeneration in Parkinson’s disease; Deep brain stimulation, Pluripotent stem cell therapy, and cutting edge technology in treatment Of Parkinson’s disease. Curr. Genet. Med. Rep. 2024 12 1-4 1 19 10.1007/s40142‑024‑00210‑1
    [Google Scholar]
  30. Mahul-Mellier A.L. Burtscher J. Maharjan N. Weerens L. Croisier M. Kuttler F. Leleu M. Knott G.W. Lashuel H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. USA 2020 117 9 4971 4982 10.1073/pnas.1913904117 32075919
    [Google Scholar]
  31. Nowicka U. Chroscicki P. Stroobants K. Sladowska M. Turek M. Uszczynska-Ratajczak B. Kundra R. Goral T. Perni M. Dobson C.M. Vendruscolo M. Chacinska A. Cytosolic aggregation of mitochondrial proteins disrupts cellular homeostasis by stimulating the aggregation of other proteins. eLife 2021 10 e65484 10.7554/eLife.65484 34292154
    [Google Scholar]
  32. Subudhi B.B. Sahu P.K. Targeting renin–angiotensin system: A strategy for drug development against neurological disorders. Angiotensin Academic Press 2023 107 150 10.1016/B978‑0‑323‑99618‑1.00025‑8
    [Google Scholar]
  33. Oyovwi M.O. Chijiokwu E.A. Ben-Azu B. Atere A.D. Joseph U.G. Ogbutor U.G. Udi O.A. Potential roles of natural antioxidants in modulating neurodegenerative disease pathways. Mol. Neurobiol. 2025 2025 1 31 10.1007/s12035‑025‑04874‑w 40202704
    [Google Scholar]
  34. Ge Y. Vascular contributions to healthy aging and dementia. Aging Dis. 2024 15 4 1432 1437 39059424
    [Google Scholar]
  35. Zis P. Grünewald R.A. Chaudhuri R.K. Hadjivassiliou M. Peripheral neuropathy in idiopathic Parkinson’s disease: A systematic review. J. Neurol. Sci. 2017 378 204 209 10.1016/j.jns.2017.05.023 28566165
    [Google Scholar]
  36. Gómez-Benito M. Granado N. García-Sanz P. Michel A. Dumoulin M. Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020 11 356 10.3389/fphar.2020.00356 32390826
    [Google Scholar]
  37. Gökçal E. Gür V.E. Selvitop R. Babacan Yildiz G. Asil T. Motor and non-motor symptoms in Parkinson’s disease: Effects on quality of life. Noro Psikiyatri Arsivi 2017 54 2 143 148 10.5152/npa.2016.12758 28680312
    [Google Scholar]
  38. Peña-Zelayeta L. Delgado-Minjares K.M. Villegas-Rojas M.M. León-Arcia K. Santiago-Balmaseda A. Andrade-Guerrero J. Pérez-Segura I. Ortega-Robles E. Soto-Rojas L.O. Arias-Carrión O. Redefining non-motor symptoms in Parkinson’s disease. J. Pers. Med. 2025 15 5 172 10.3390/jpm15050172 40423044
    [Google Scholar]
  39. Surmeier D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018 285 19 3657 3668 10.1111/febs.14607 30028088
    [Google Scholar]
  40. Bayati A. Ayoubi R. Aguila A. Zorca C.E. Deyab G. Han C. Recinto S.J. Nguyen-Renou E. Rocha C. Maussion G. Luo W. Shlaifer I. Banks E. McDowell I. Del Cid Pellitero E. Ding X.E. Sharif B. Séguéla P. Yaqubi M. Chen C.X.Q. You Z. Abdian N. McBride H.M. Fon E.A. Stratton J.A. Durcan T.M. Nahirney P.C. McPherson P.S. Modeling Parkinson’s disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines. Nat. Neurosci. 2024 27 12 2401 2416 10.1038/s41593‑024‑01775‑4 39379564
    [Google Scholar]
  41. Hoyer-Kimura C. PNA5: A novel therapy for heart failure-induced vascular dementia. The University of Arizona 2023
    [Google Scholar]
  42. Xie Y.Y. Lu Y.W. Yu G.R. The protective effects of hyperoside on Ang II-mediated apoptosis of bEnd.3 cells and injury of blood-brain barrier model in vitro. BMC Complement. Med. Ther. 2022 22 1 157 10.1186/s12906‑022‑03635‑9 35698113
    [Google Scholar]
  43. Cosarderelioglu C. Nidadavolu L.S. George C.J. Oh E.S. Bennett D.A. Walston J.D. Abadir P.M. Brain renin–angiotensin system at the intersect of physical and cognitive frailty. Front. Neurosci. 2020 14 586314 10.3389/fnins.2020.586314 33117127
    [Google Scholar]
  44. Kobiec T. Otero-Losada M. Chevalier G. Udovin L. Bordet S. Menéndez-Maissonave C. Capani F. Pérez-Lloret S. The renin–angiotensin system modulates dopaminergic neurotransmission: A new player on the scene. Front. Synaptic Neurosci. 2021 13 638519 10.3389/fnsyn.2021.638519 33967734
    [Google Scholar]
  45. Tu D. Velagapudi R. Gao Y. Hong J.S. Zhou H. Gao H.M. Activation of neuronal NADPH oxidase NOX2 promotes inflammatory neurodegeneration. Free Radic. Biol. Med. 2023 200 47 58 10.1016/j.freeradbiomed.2023.03.001 36870375
    [Google Scholar]
  46. Xu J. Wu S. Wang J. Wang J. Yan Y. Zhu M. Zhang D. Jiang C. Liu T. Oxidative stress induced by NOX2 contributes to neuropathic pain via plasma membrane translocation of PKCε in rat dorsal root ganglion neurons. J. Neuroinflammation 2021 18 1 106 10.1186/s12974‑021‑02155‑6 33952299
    [Google Scholar]
  47. Kumar A. Barrett J.P. Alvarez-Croda D.M. Stoica B.A. Faden A.I. Loane D.J. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav. Immun. 2016 58 291 309 10.1016/j.bbi.2016.07.158 27477920
    [Google Scholar]
  48. Deng X. Ren J. Chen K. Zhang J. Zhang Q. Zeng J. Li T. Tang Q. Lin J. Zhu J. Mas receptor activation facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. J. Neuroinflammation 2024 21 1 106 10.1186/s12974‑024‑03105‑8 38658922
    [Google Scholar]
  49. Hoyer-Kimura C. Konhilas J.P. Mansour H.M. Polt R. Doyle K.P. Billheimer D. Hay M. Neurofilament light: A possible prognostic biomarker for treatment of vascular contributions to cognitive impairment and dementia. J. Neuroinflammation 2021 18 1 236 10.1186/s12974‑021‑02281‑1 34654436
    [Google Scholar]
  50. Vinten-Johansen J. Commentary: Mitochondria are more than just the cells’ powerhouse. J. Thorac. Cardiovasc. Surg. 2020 160 2 e33 e34 10.1016/j.jtcvs.2019.07.029 31444067
    [Google Scholar]
  51. Wen P. Sun Z. Gou F. Wang J. Fan Q. Zhao D. Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res. Rev. 2025 104 102667 10.1016/j.arr.2025.102667 39848408
    [Google Scholar]
  52. Price D.L. Khan A. Angers R. Cardenas A. Prato M.K. Bani M. Bonhaus D.W. Citron M. Biere A.L. In vivoeffects of the alpha-synuclein misfolding inhibitor minzasolmin supports clinical development in Parkinson’s disease. NPJ Parkinsons Dis. 2023 9 1 114 10.1038/s41531‑023‑00552‑7 37460603
    [Google Scholar]
  53. Yedlapudi D. Xu L. Luo D. Marsh G.B. Todi S.V. Dutta A.K. Targeting alpha synuclein and amyloid beta by a multifunctional, brain-penetrant dopamine D2/D3 agonist D-520: Potential therapeutic application in Parkinson’s disease with dementia. Sci. Rep. 2019 9 1 19648 10.1038/s41598‑019‑55830‑3 31873106
    [Google Scholar]
  54. Lerche S. Zimmermann M. Wurster I. Roeben B. Fries F.L. Deuschle C. Waniek K. Lachmann I. Gasser T. Jakobi M. Joos T.O. Schneiderhan-Marra N. Brockmann K. CSF and serum levels of inflammatory markers in PD: Sparse correlation, sex differences and association with neurodegenerative biomarkers. Front. Neurol. 2022 13 834580 10.3389/fneur.2022.834580 35280273
    [Google Scholar]
  55. Gervasi N.M. Scott S.S. Aschrafi A. Gale J. Vohra S.N. MacGibeny M.A. Kar A.N. Gioio A.E. Kaplan B.B. The local expression and trafficking of tyrosine hydroxylase mRNA in the axons of sympathetic neurons. RNA 2016 22 6 883 895 10.1261/rna.053272.115 27095027
    [Google Scholar]
  56. Daubner S.C. Le T. Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011 508 1 1 12 10.1016/j.abb.2010.12.017 21176768
    [Google Scholar]
  57. Smith J.A. Das A. Ray S.K. Banik N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012 87 1 10 20 10.1016/j.brainresbull.2011.10.004 22024597
    [Google Scholar]
  58. Zimmermann M. Brockmann K. Bloem R.B. Brundin P. Tan E.K. Harms A. Arlehamn L.C. Williams-Gray C. Blood and cerebrospinal fluid biomarkers of inflammation in Parkinson's disease. J. Parkinsons Dis. 2022 12 s1 S183 S200 10.3233/JPD‑223277 35661021
    [Google Scholar]
  59. Fracchioni G. Vailati S. Grazioli M. Pirota V. Structural unfolding of G-quadruplexes: From small molecules to antisense strategies. Molecules 2024 29 15 3488 10.3390/molecules29153488 39124893
    [Google Scholar]
  60. Ravanidis S. Doxakis E. RNA-binding proteins implicated in mitochondrial damage and mitophagy. Front. Cell Dev. Biol. 2020 8 372 10.3389/fcell.2020.00372 32582692
    [Google Scholar]
  61. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  62. Quijano E. Bahal R. Ricciardi A. Saltzman W.M. Glazer P.M. Focus: Genome editing: Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J. Biol. Med. 2017 90 4 583 598 29259523
    [Google Scholar]
  63. Mahbub N.U. Islam M.M. Hong S.T. Chung H.J. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: Consequences for neurodegeneration. Front. Cell. Infect. Microbiol. 2024 14 1348279 10.3389/fcimb.2024.1348279 38435303
    [Google Scholar]
  64. Santos R.A.S. Sampaio W.O. Alzamora A.C. Motta-Santos D. Alenina N. Bader M. Campagnole-Santos M.J. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1–7). Physiol. Rev. 2018 98 1 505 553 10.1152/physrev.00023.2016 29351514
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037389890250925014102
Loading
/content/journals/cpps/10.2174/0113892037389890250925014102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test