Skip to content
2000
image of Plant SUT Sucrose Transporters: Structure, Evolution and Biological Functions

Abstract

Sucrose transporters (SUTs) are essential for exporting and moving sucrose from source leaves to sink organs in plants. Many researchers have addressed SUT functions in plant development regulation and stress responses, as well as on the transporter’s evolution and regulation. In this paper, we reviewed the updated achievements of plant SUTs in evolution, development and abiotic stresses. Many SUTs regulate fruit and seed sugar accumulation, which provides a theoretical application of genes in crop yield and quality improvement. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SUTs in plants.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037372125250607041706
2025-07-01
2025-12-15
Loading full text...

Full text loading...

References

  1. Ruan Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014 65 1 33 67 10.1146/annurev‑arplant‑050213‑040251 24579990
    [Google Scholar]
  2. Ji J. Yang L. Fang Z. Zhang Y. Zhuang M. Lv H. Wang Y. Plant SWEET family of sugar transporters: Structure, evolution and biological functions. Biomolecules 2022 12 2 205 224 10.3390/biom12020205 35204707
    [Google Scholar]
  3. Chen L.Q. Cheung L.S. Feng L. Tanner W. Frommer W.B. Transport of sugars. Annu. Rev. Biochem. 2015 84 1 865 894 10.1146/annurev‑biochem‑060614‑033904 25747398
    [Google Scholar]
  4. Rolland F Moore B Sheen J. Sugar sensing and signaling in plants. Plant Cell. 2002 14 1 S185 10.1105/tpc.010455
    [Google Scholar]
  5. Chen L.Q. Hou B.H. Lalonde S. Takanaga H. Hartung M.L. Qu X.Q. Guo W.J. Kim J.G. Underwood W. Chaudhuri B. Chermak D. Antony G. White F.F. Somerville S.C. Mudgett M.B. Frommer W.B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010 468 7323 527 532 10.1038/nature09606 21107422
    [Google Scholar]
  6. Julius B.T. Leach K.A. Tran T.M. Mertz R.A. Braun D.M. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 2017 58 9 1442 1460 10.1093/pcp/pcx090 28922744
    [Google Scholar]
  7. Lalonde S. Wipf D. Frommer W.B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 2004 55 1 341 372 10.1146/annurev.arplant.55.031903.141758 15377224
    [Google Scholar]
  8. Reinders A. Sivitz A.B. Ward J.M. Evolution of plant sucrose uptake transporters. Front. Plant Sci. 2012 3 22 34 10.3389/fpls.2012.00022 22639641
    [Google Scholar]
  9. Sun F. Dong X. Li S. Sha H. Gao W. Bai X. Zhang L. Yang H. Genome-wide identification and expression analysis of SUT gene family members in sugar beet (Beta vulgaris L.). Gene 2023 870, 147422 10.1016/j.gene.2023.147422 37031883
    [Google Scholar]
  10. Prasad D. Jung W.J. Seo Y.W. Identification and molecular characterization of novel sucrose transporters in the hexaploid wheat (Triticum aestivum L.) Gene 2023 860, 147245 10.1016/j.gene.2023.147245 36736505
    [Google Scholar]
  11. Jiang S. An P. Xia C. Ma W. Zhao L. Liang T. Liu Q. Xu R. Huang D. Xia Z. Zou M. Genome-wide identification and expression analysis of the SUT family from three species of sapindaceae revealed their role in the accumulation of sugars in fruits. Plants 2023 13 1 95 10.3390/plants13010095 38202403
    [Google Scholar]
  12. Sun L. Deng R. Liu J. Lai M. Wu J. Liu X. Shahid M.Q. An overview of sucrose transporter (SUT) genes family in rice. Mol. Biol. Rep. 2022 49 6 5685 5695 10.1007/s11033‑022‑07611‑x 35699859
    [Google Scholar]
  13. Peng Q. Cai Y. Lai E. Nakamura M. Liao L. Zheng B. Ogutu C. Cherono S. Han Y. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biol. 2020 20 1 191 205 10.1186/s12870‑020‑02406‑3 32375636
    [Google Scholar]
  14. Xu Q. Chen S. Yunjuan R. Chen S. Liesche J. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol. 2018 176 1 930 945 10.1104/pp.17.01088 29158330
    [Google Scholar]
  15. Payyavula R.S. Tay K.H.C. Tsai C.J. Harding S.A. The sucrose transporter family in Populus : The importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 2011 65 5 757 770 10.1111/j.1365‑313X.2010.04463.x 21261761
    [Google Scholar]
  16. Usha B. Bordoloi D. Parida A. Diverse expression of sucrose transporter gene family in Zea mays. J. Genet. 2015 94 1 151 154 10.1007/s12041‑015‑0491‑3 25846891
    [Google Scholar]
  17. Chincinska I.A. Liesche J. Krügel U. Michalska J. Geigenberger P. Grimm B. Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol. 2008 146 2 323 324 10.1104/pp.107.112334 18083796
    [Google Scholar]
  18. Srivastava A.C. Ganesan S. Ismail I.O. Ayre B.G. Effective carbon partitioning driven by exotic phloem-specific regulatory nlms fused to the Arabidopsis thaliana AtSUC2 sucrose-proton symporter gene. BMC Plant Biol. 2009 9 1 7 20 10.1186/1471‑2229‑9‑7 19154603
    [Google Scholar]
  19. Kühn C. Grof C.P.L. Sucrose transporters of higher plants. Curr. Opin. Plant Biol. 2010 13 3 287 297 10.1016/j.pbi.2010.02.001 20303321
    [Google Scholar]
  20. Doidy J. Grace E. Kühn C. Simon-Plas F. Casieri L. Wipf D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012 17 7 413 422 10.1016/j.tplants.2012.03.009 22513109
    [Google Scholar]
  21. Wittek A. Dreyer I. Al-Rasheid K.A.S. Sauer N. Hedrich R. Geiger D. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources. J. Integr. Plant Biol. 2017 59 6 422 435 10.1111/jipb.12535 28296205
    [Google Scholar]
  22. Riesmeier J.W. Willmitzer L. Frommer W.B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 11 13 4705 4713 10.1002/j.1460‑2075.1992.tb05575.x 1464305
    [Google Scholar]
  23. Weise A. Barker L. Kühn C. Lalonde S. Buschmann H. Frommer W.B. Ward J.M. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve nlms of plants. Plant Cell 2000 12 8 1345 1355 10.1105/tpc.12.8.1345 10948254
    [Google Scholar]
  24. Aoki N. Hirose T. Scofield G.N. Whitfeld P.R. Furbank R.T. The sucrose transporter gene family in rice. Plant Cell Physiol. 2003 44 3 223 232 10.1093/pcp/pcg030 12668768
    [Google Scholar]
  25. Deol K.K. Mukherjee S. Gao F. Brûlé-Babel A. Stasolla C. Ayele B.T. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2013 13 1 181 196 10.1186/1471‑2229‑13‑181 24237613
    [Google Scholar]
  26. Hackel A. Schauer N. Carrari F. Fernie A.R. Grimm B. Kühn C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J. 2006 45 2 180 192 10.1111/j.1365‑313X.2005.02572.x 16367963
    [Google Scholar]
  27. Reuscher S. Akiyama M. Yasuda T. Makino H. Aoki K. Shibata D. Shiratake K. The sugar transporter inventory of tomato: Genome-wide identification and expression analysis. Plant Cell Physiol. 2014 55 6 1123 1141 10.1093/pcp/pcu052 24833026
    [Google Scholar]
  28. Li W. Sun K. Ren Z. Song C. Pei X. Liu Y. Wang Z. He K. Zhang F. Zhou X. Ma X. Yang D. Molecular evolution and stress and phytohormone responsiveness of SUT genes in Gossypium hirsutum. Front. Genet. 2018 9 494 509 10.3389/fgene.2018.00494 30405700
    [Google Scholar]
  29. Wang Y. Chen Y. Wei Q. Wan H. Sun C. Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development. PeerJ 2021 9 e11961 e11985 10.7717/peerj.11961 34603845
    [Google Scholar]
  30. Forrest L.R. Krämer R. Ziegler C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta Bioenerg. 2011 1807 2 167 188 10.1016/j.bbabio.2010.10.014 21029721
    [Google Scholar]
  31. Hirai T. Heymann J.A.W. Maloney P.C. Subramaniam S. Structural model for 12-helix transporters belonging to the major facilitator superfamily. J. Bacteriol. 2003 185 5 1712 1718 10.1128/JB.185.5.1712‑1718.2003 12591890
    [Google Scholar]
  32. Bavnhøj L. Driller J.H. Zuzic L. Stange A.D. Schiøtt B. Pedersen B.P. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nat. Plants 2023 9 6 938 950 10.1038/s41477‑023‑01421‑0 37188854
    [Google Scholar]
  33. Gautam T. Dutta M. Jaiswal V. Zinta G. Gahlaut V. Kumar S. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells 2022 11 8 1303 10.3390/cells11081303 35455982
    [Google Scholar]
  34. Jia B. Zhu X.F. Pu Z.J. Duan Y.X. Hao L.J. Zhang J. Chen L.Q. Jeon C.O. Xuan Y.H. Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters. Front. Plant Sci. 2017 8 2178 2196 10.3389/fpls.2017.02178 29326750
    [Google Scholar]
  35. Braun D.M. Slewinski T.L. Genetic control of carbon partitioning in grasses: Roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol. 2009 149 1 71 81 10.1104/pp.108.129049 19126697
    [Google Scholar]
  36. Lalonde S. Frommer W.B. SUT sucrose and MST monosaccharide transporter inventory of the Selaginella Genome. Front. Plant Sci. 2012 3 24 32 10.3389/fpls.2012.00024 22645575
    [Google Scholar]
  37. Bürkle L. Hibberd J.M. Quick W.P. Kühn C. Hirner B. Frommer W.B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol. 1998 118 1 59 68 10.1104/pp.118.1.59 9733526
    [Google Scholar]
  38. Slewinski T.L. Garg A. Johal G.S. Braun D.M. Maize SUT1 functions in phloem loading. Plant Signal. Behav. 2010 5 6 687 690 10.4161/psb.5.6.11575 20404497
    [Google Scholar]
  39. Liesche J. Krügel U. He H. Chincinska I. Hackel A. Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J. Plant Physiol. 2011 168 12 1426 1433 10.1016/j.jplph.2011.02.005 21444123
    [Google Scholar]
  40. Barth I. Meyer S. Sauer N. PmSUC3: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. Plant Cell 2003 15 6 1375 1385 10.1105/tpc.010967 12782730
    [Google Scholar]
  41. Endler A. Meyer S. Schelbert S. Schneider T. Weschke W. Peters S.W. Keller F. Baginsky S. Martinoia E. Schmidt U.G. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol. 2006 141 1 196 207 10.1104/pp.106.079533 16581873
    [Google Scholar]
  42. Peng D. Gu X. Xue L.J. Leebens-Mack J.H. Tsai C.J. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Front. Plant Sci. 2014 5 615 627 10.3389/fpls.2014.00615 25429293
    [Google Scholar]
  43. Schneider T. Keller F. Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol. 2009 50 12 2174 2182 10.1093/pcp/pcp151 19880397
    [Google Scholar]
  44. Slewinski T.L. Meeley R. Braun D.M. Sucrose transporter1 functions in phloem loading in maize leaves. J. Exp. Bot. 2009 60 3 881 892 10.1093/jxb/ern335 19181865
    [Google Scholar]
  45. Gottwald J.R. Krysan P.J. Young J.C. Evert R.F. Sussman M.R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc. Natl. Acad. Sci. USA 2000 97 25 13979 13984 10.1073/pnas.250473797 11087840
    [Google Scholar]
  46. Sun Y. Reinders A. LaFleur K.R. Mori T. Ward J.M. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant Cell Physiol. 2010 51 1 114 122 10.1093/pcp/pcp172 19965875
    [Google Scholar]
  47. Scofield G.N. Hirose T. Aoki N. Furbank R.T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J. Exp. Bot. 2007 58 12 3155 3169 10.1093/jxb/erm153 17728297
    [Google Scholar]
  48. Shakya R. Sturm A. Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiol. 1998 118 4 1473 1480 10.1104/pp.118.4.1473 9847123
    [Google Scholar]
  49. Öner-Sieben S. Lohaus G. Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior. J. Exp. Bot. 2014 65 7 1905 1916 10.1093/jxb/eru066 24591056
    [Google Scholar]
  50. Öner-Sieben S. Rappl C. Sauer N. Stadler R. Lohaus G. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior. J. Exp. Bot. 2015 66 15 4807 4819 10.1093/jxb/erv255 26022258
    [Google Scholar]
  51. Nieberl P. Ehrl C. Pommerrenig B. Graus D. Marten I. Jung B. Ludewig F. Koch W. Harms K. Flügge U.I. Neuhaus H.E. Hedrich R. Sauer N. Functional characterisation and cell specificity of Bv SUT 1, the transporter that loads sucrose into the phloem of sugar beet ( Beta vulgaris L.) source leaves. Plant Biol. 2017 19 3 315 326 10.1111/plb.12546 28075052
    [Google Scholar]
  52. Santiago J.P. Ward J.M. Sharkey T.D. Phaseolus vulgaris SUT1.1 is a high affinity sucrose-proton co-transporter. Plant Direct 2020 4 8 e00260 e00271 10.1002/pld3.260 32885136
    [Google Scholar]
  53. Juergensen K. Scholz-Starke J. Sauer N. Hess P. van Bel A.J.E. Grundler F.M.W. The companion cell-specific Arabidopsis disaccharide carrier AtSUC2 is expressed in nematode-induced syncytia. Plant Physiol. 2003 131 1 61 69 10.1104/pp.008037 12529515
    [Google Scholar]
  54. Matsukura C. Saitoh T. Hirose T. Ohsugi R. Perata P. Yamaguchi J. Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol. 2000 124 1 85 94 10.1104/pp.124.1.85 10982424
    [Google Scholar]
  55. Scofield G.N. Hirose T. Gaudron J.A. Furbank R.T. Upadhyaya N.M. Ohsugi R. Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct. Plant Biol. 2002 29 7 815 826 10.1071/PP01204 32689529
    [Google Scholar]
  56. Baker R.F. Leach K.A. Boyer N.R. Swyers M.J. Benitez-Alfonso Y. Skopelitis T. Luo A. Sylvester A. Jackson D. Braun D.M. Sucrose Transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiol. 2016 172 3 1876 1898 10.1104/pp.16.00884 27621426
    [Google Scholar]
  57. Leach K.A. Tran T.M. Slewinski T.L. Meeley R.B. Braun D.M. Sucrose transporter2 contributes to maize growth, development, and crop yield. J. Integr. Plant Biol. 2017 59 6 390 408 10.1111/jipb.12527 28206710
    [Google Scholar]
  58. Schneider S. Hulpke S. Schulz A. Yaron I. Höll J. Imlau A. Schmitt B. Batz S. Wolf S. Hedrich R. Sauer N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biol. 2012 14 2 325 336 10.1111/j.1438‑8677.2011.00506.x 21972845
    [Google Scholar]
  59. Schulz A. Beyhl D. Marten I. Wormit A. Neuhaus E. Poschet G. Büttner M. Schneider S. Sauer N. Hedrich R. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 2011 68 1 129 136 10.1111/j.1365‑313X.2011.04672.x 21668536
    [Google Scholar]
  60. Sivitz A.B. Reinders A. Johnson M.E. Krentz A.D. Grof C.P.L. Perroux J.M. Ward J.M. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol. 2007 143 1 188 198 10.1104/pp.106.089003 17098854
    [Google Scholar]
  61. Chincinska I. Gier K. Krügel U. Liesche J. He H. Grimm B. Harren F.J.M. Cristescu S.M. Kühn C. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front. Plant Sci. 2013 4 26 38 10.3389/fpls.2013.00026 23429841
    [Google Scholar]
  62. Sivitz A.B. Reinders A. Ward J.M. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 2008 147 1 92 100 10.1104/pp.108.118992 18359840
    [Google Scholar]
  63. Seitz J. Reimann T.M. Fritz C. Schröder C. Knab J. Weber W. Stadler R. How pollen tubes fight for food: The impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. Front. Plant Sci. 2023 14 1063765 1063784 10.3389/fpls.2023.1063765 37469768
    [Google Scholar]
  64. Hirose T. Zhang Z. Miyao A. Hirochika H. Ohsugi R. Terao T. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J. Exp. Bot. 2010 61 13 3639 3646 10.1093/jxb/erq175 20603282
    [Google Scholar]
  65. Lemoine R. Bürkle L. Barker L. Sakr S. Kühn C. Regnacq M. Gaillard C. Delrot S. Frommer W.B. Identification of a pollen-specific sucrose transporter-like proteinNtSUT3 from tobacco. FEBS Lett. 1999 454 3 325 330 10.1016/S0014‑5793(99)00843‑1 10431832
    [Google Scholar]
  66. Baud S. Wuillème S. Lemoine R. Kronenberger J. Caboche M. Lepiniec L. Rochat C. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J. 2005 43 6 824 836 10.1111/j.1365‑313X.2005.02496.x 16146522
    [Google Scholar]
  67. Pommerrenig B. Popko J. Heilmann M. Schulmeister S. Dietel K. Schmitt B. Stadler R. Feussner I. Sauer N. SUCROSE TRANSPORTER 5 supplies A rabidopsis embryos with biotin and affects triacylglycerol accumulation. Plant J. 2013 73 3 392 404 10.1111/tpj.12037 23031218
    [Google Scholar]
  68. Li Y. Li L.L. Fan R.C. Peng C.C. Sun H.L. Zhu S.Y. Wang X.F. Zhang L.Y. Zhang D.P. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose. Mol. Plant 2012 5 5 1029 1041 10.1093/mp/sss001 22311778
    [Google Scholar]
  69. Scofield G.N. Aoki N. Hirose T. Takano M. Jenkins C.L.D. Furbank R.T. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J. Exp. Bot. 2006 58 3 483 495 10.1093/jxb/erl217 17138625
    [Google Scholar]
  70. Siao W. Chen J.Y. Hsiao H.H. Chung P. Wang S.J. Characterization of OsSUT2 expression and regulation in germinating embryos of rice seeds. Rice (N. Y.) 2011 4 2 39 49 10.1007/s12284‑011‑9063‑1
    [Google Scholar]
  71. Al-Sheikh Ahmed S. Zhang J. Ma W. Dell B. Contributions of TaSUTs to grain weight in wheat under drought. Plant Mol. Biol. 2018 98 4-5 333 347 10.1007/s11103‑018‑0782‑1 30288667
    [Google Scholar]
  72. Ma Q.J. Sun M.H. Lu J. Liu Y.J. Hu D.G. Hao Y.J. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiol. 2017 174 4 2348 2362 10.1104/pp.17.00502 28600345
    [Google Scholar]
  73. Fan R.C. Peng C.C. Xu Y.H. Wang X.F. Li Y. Shang Y. Du S.Y. Zhao R. Zhang X.Y. Zhang L.Y. Zhang D.P. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars. Plant Physiol. 2009 150 4 1880 1901 10.1104/pp.109.141374 19502355
    [Google Scholar]
  74. Afoufa-Bastien D. Medici A. Jeauffre J. Coutos-Thévenot P. Lemoine R. Atanassova R. Laloi M. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol. 2010 10 1 245 267 10.1186/1471‑2229‑10‑245 21073695
    [Google Scholar]
  75. Zhang C. Bian Y. Hou S. Li X. Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication. Planta 2018 248 5 1187 1199 10.1007/s00425‑018‑2971‑1 30094488
    [Google Scholar]
  76. Wang L.F. Qi X.X. Huang X.S. Xu L.L. Jin C. Wu J. Zhang S.L. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. Plant Physiol. Biochem. 2016 105 150 161 10.1016/j.plaphy.2016.04.019 27105422
    [Google Scholar]
  77. Cheng J. Wen S. Xiao S. Lu B. Ma M. Bie Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J. Exp. Bot. 2018 69 3 511 523 10.1093/jxb/erx440 29309616
    [Google Scholar]
  78. Kaur H. Manna M. Thakur T. Gautam V. Salvi P. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol. Plant. 2021 171 4 833 848 10.1111/ppl.13364 33583052
    [Google Scholar]
  79. Gong X. Liu M. Zhang L. Ruan Y. Ding R. Ji Y. Zhang N. Zhang S. Farmer J. Wang C. ArabidopsisAtSUC2 andAtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA -dependent pathway. Physiol. Plant. 2015 153 1 119 136 10.1111/ppl.12225 24814155
    [Google Scholar]
  80. Lundmark M. Cavaco A.M. Trevanion S. Hurry V. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: A role for metabolite transporters. Plant Cell Environ. 2006 29 9 1703 1714 10.1111/j.1365‑3040.2006.01543.x 16913860
    [Google Scholar]
  81. Long J. Zhou H. Huang H. Xiao Y. Luo J. Pu Y. Liu Z. Qiu M. Lu X. He Y. Liu C. The high-affinity pineapple sucrose transporter AcSUT1B, regulated by AcCBF1, exhibited enhanced cold tolerance in transgenic Arabidopsis. Int. J. Biol. Macromol. 2024 283 Pt 4 , 137952 10.1016/j.ijbiomac.2024.137952 39579829
    [Google Scholar]
  82. Siahpoosh M.R. Sanchez D.H. Schlereth A. Scofield G.N. Furbank R.T. van Dongen J.T. Kopka J. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci. 2012 182 101 111 10.1016/j.plantsci.2011.01.001 22118621
    [Google Scholar]
  83. Ma Q.J. Sun M.H. Lu J. Kang H. You C.X. Hao Y.J. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnol. J. 2019 17 3 625 637 10.1111/pbi.13003 30133123
    [Google Scholar]
  84. Frost C.J. Nyamdari B. Tsai C.J. Harding S.A. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PLoS One 2012 7 8 e44467 e44477 10.1371/journal.pone.0044467 22952983
    [Google Scholar]
  85. Wang D. Liu H. Wang H. Zhang P. Shi C. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato. BMC Plant Biol. 2020 20 1 157 172 10.1186/s12870‑020‑02382‑8 32293270
    [Google Scholar]
  86. Wei H. Bausewein A. Steininger H. Su T. Zhao H. Harms K. Greiner S. Rausch T. Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of chicory (Cichorium intybus): Impact of hormonal and environmental cues. Front. Plant Sci. 2016 7 1806 1818 10.3389/fpls.2016.01806 27994611
    [Google Scholar]
  87. Regmi K.C. Zhang S. Gaxiola R.A. Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase. Ann. Bot. (Lond.) 2016 117 2 257 268 26614751
    [Google Scholar]
  88. Zhao D. You Y. Fan H. Zhu X. Wang Y. Duan Y. Xuan Y. Chen L. The role of sugar transporter genes during early infection by root-knot nematodes. Int. J. Mol. Sci. 2018 19 1 302 10.3390/ijms19010302 29351253
    [Google Scholar]
  89. Gabriel-Neumann E. Neumann G. Leggewie G. George E. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. J. Plant Physiol. 2011 168 9 911 919 10.1016/j.jplph.2010.11.026 21382646
    [Google Scholar]
  90. Vargas W.A. Martín J.M.S. Rech G.E. Rivera L.P. Benito E.P. Díaz-Mínguez J.M. Thon M.R. Sukno S.A. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol. 2012 158 3 1342 1358 10.1104/pp.111.190397 22247271
    [Google Scholar]
  91. Wahl R. Wippel K. Goos S. Kämper J. Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol. 2010 8 2 e1000303 10.1371/journal.pbio.1000303 20161717
    [Google Scholar]
  92. Wippel K. Wittek A. Hedrich R. Sauer N. Inverse pH regulation of plant and fungal sucrose transporters: A mechanism to regulate competition for sucrose at the host/pathogen interface? PLoS One 2010 5 8 e12429 e12437 10.1371/journal.pone.0012429 20865151
    [Google Scholar]
  93. Xu Q. Liesche J. Sugar export from Arabidopsis leaves: Actors and regulatory strategies. J. Exp. Bot. 2021 72 15 5275 5284 10.1093/jxb/erab241 34037757
    [Google Scholar]
  94. Hu Z. Tang Z. Zhang Y. Niu L. Yang F. Zhang D. Hu Y. Rice SUT and SWEET transporters. Int. J. Mol. Sci. 2021 22 20 11198 10.3390/ijms222011198 34681858
    [Google Scholar]
  95. Bing F. Yafei S. Hao A.I. Xiuli L. Jing Y. Lu L. Feiyan G. Guohua X.U. Shubin S. Overexpression of sucrose transporter OsSUT1 affects rice morphology and physiology. Chin J Rice Sci. 2018 32 549 556
    [Google Scholar]
  96. Wang L. Lu Q. Wen X. Lu C. Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiol. 2015 169 4 , pp.01170.2015 10.1104/pp.15.01170 26504138
    [Google Scholar]
  97. Geiger D. Plant sucrose transporters from a biophysical point of view. Mol. Plant 2011 4 3 395 406 10.1093/mp/ssr029 21502662
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037372125250607041706
Loading
/content/journals/cpps/10.2174/0113892037372125250607041706
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test