Skip to content
2000
image of An In-Depth Study of Circular RNAs Related to Breast Cancer Treatment and their Implications

Abstract

Circular RNAs, or circRNAs, play a key role in breast cancer biology, directly impacting the diagnosis, prognosis, and treatment of the disease. This review explores the mechanisms, regulatory roles, and functional significance of circRNAs in breast cancer. Overexpressed circRNAs regulate gene expression, cell cycle progression, and drug response in breast cancer. This process is facilitated by the interaction between small RNA molecules (miRNAs) and proteins that can bind to RNA (RBPs), which target the main messenger RNA (mRNA). Consequently, they influence gene expression, cellular proliferation, and drug resistance. Dysregulated circRNA expression contributes to breast cancer progression by promoting tumor aggressiveness and treatment resistance.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037378439250718193539
2025-08-07
2026-01-03
Loading full text...

Full text loading...

References

  1. You W. Henneberg M. Cancer incidence increasing globally: The role of relaxed natural selection. Evol. Appl. 2018 11 2 140 152 10.1111/eva.12523 29387151
    [Google Scholar]
  2. Misir S. Ozer Yaman S. Petrović N. Sumer C. Hepokur C. Aliyazicioglu Y. circRNAs in drug resistance of breast cancer. Oncol. Res. 2022 30 4 157 172 10.32604/or.2022.027547 37304411
    [Google Scholar]
  3. Chu M. Fang Y. Jin Y. CircRNAs as promising biomarker in diagnosis of breast cancer: An updated meta-analysis. J. Clin. Lab. Anal. 2021 35 9 23934 10.1002/jcla.23934 34331339
    [Google Scholar]
  4. Li Z. Chen Z. Hu G. Zhang Y. Feng Y. Jiang Y. Wang J. Profiling and integrated analysis of differentially expressed circRNAs as novel biomarkers for breast cancer. J. Cell. Physiol. 2020 235 11 7945 7959 10.1002/jcp.29449 31943203
    [Google Scholar]
  5. Ghafouri-Fard S. Hussen B.M. Taheri M. Ayatollahi S.A. Emerging role of circular RNAs in breast cancer. Pathol. Res. Pract. 2021 223 153496 10.1016/j.prp.2021.153496 34052769
    [Google Scholar]
  6. Gao D. Cui C. Jiao Y. Circular RNA and its potential diagnostic and therapeutic values in breast cancer. Mol. Biol. Rep. 2024 51 1 258 10.1007/s11033‑023‑09172‑z
    [Google Scholar]
  7. Bao H. Li J. Zhao Q. Yang Q. Xu Y. Circular RNAs in breast cancer: An update. Biomolecules 2024 14 2 158 10.3390/biom14020158 38397395
    [Google Scholar]
  8. Gong L. Zhou X. Sun J. Circular RNAs interaction with miRNAs: Emerging roles in breast cancer. Int. J. Med. Sci. 2021 18 14 3182 3196 10.7150/ijms.62219
    [Google Scholar]
  9. Sheng H. Pan H. Yao M. Integrated analysis of circular RNA-associated ceRNA network reveals potential circRNA biomarkers in human breast cancer. Comput. Math. Methods Med. 2021 2021 1732176 10.1155/2021/1732176
    [Google Scholar]
  10. Huang X. Song C. Zhang J. Zhu L. Tang H. Circular RNAs in breast cancer diagnosis, treatment, and prognosis. Oncol. Res. 2023 32 2 241 249 10.32604/or.2023.046582
    [Google Scholar]
  11. Sarkar D. Diermeier S.D. Circular RNAs: Potential applications as therapeutic targets and biomarkers in breast cancer. Non-coding RNA 2021 7 1 2 10.3390/ncrna7010002
    [Google Scholar]
  12. Jahani S. Nazeri E. Majidzadeh-A K. Jahani M. Esmaeili R. Circular RNA; a new biomarker for breast cancer: A systematic review. J. Cell. Physiol. 2020 235 7-8 5501 5510 10.1002/jcp.29558 31985056
    [Google Scholar]
  13. Zokaei E. Darbeheshti F. Rezaei N. Prospect of exosomal circular RNAs in breast Cancer: Presents and future. Mol. Biol. Rep. 2022 49 7 6997 7011 10.1007/s11033‑022‑07472‑4 35534582
    [Google Scholar]
  14. Ma Y. Niu X. Yan S. Liu Y. Dong R. Li Y. Circular RNA profiling facilitates the diagnosis and prognostic monitoring of breast cancer: A pair-wise meta-analysis. J. Clin. Lab. Anal. 2021 35 1 23575 10.1002/jcla.23575 33159705
    [Google Scholar]
  15. Zhou S. Chen W. Yang S. Xu Z. Hu J. Zhang H. Zhong S. Tang J. The emerging role of circular RNAs in breast cancer. Biosci. Rep. 2019 39 6 BSR20190621 10.1042/BSR20190621 31160488
    [Google Scholar]
  16. Wang H. Shan X. Peng Y. Zhou W. Circular RNAs in the chemoresistance of triple-negative breast cancer: A systematic review. Drug Dev. Res. 2023 84 5 805 814 10.1002/ddr.22069 37114737
    [Google Scholar]
  17. De Palma F.D.E. Salvatore F. Pol J.G. Kroemer G. Maiuri M.C. Circular RNAs as potential biomarkers in breast cancer. Biomedicines 2022 10 3 725 10.3390/biomedicines10030725 35327527
    [Google Scholar]
  18. Shi Y. Liu C. Circular RNA hsa_circ_0043278 inhibits breast cancer progression via the miR-455-3p/EI24 signalling pathway. BMC Cancer 2021 21 1 1249 10.1186/s12885‑021‑08989‑w 34800978
    [Google Scholar]
  19. Lü L. Sun J. Shi P. Kong W. Xu K. He B. Zhang S. Wang J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 2017 8 27 44096 44107 10.18632/oncotarget.17307 28484086
    [Google Scholar]
  20. Tian T. Zhao Y. Zheng J. Jin S. Liu Z. Wang T. Circular RNA: A potential diagnostic, prognostic, and therapeutic biomarker for human triple-negative breast cancer. Mol. Ther. Nucleic Acids 2021 26 63 80 10.1016/j.omtn.2021.06.017 34513294
    [Google Scholar]
  21. Liu X.Y. Zhang Q. Guo J. Zhang P. Liu H. Tian Z.B. Zhang C.P. Li X.Y. The role of circular RNAs in the drug resistance of cancers. Front. Oncol. 2022 11 790589 10.3389/fonc.2021.790589 35070998
    [Google Scholar]
  22. Magalhães L. Ribeiro-dos-Santos A.M. Cruz R.L. Nakamura K.D.M. Brianese R. Burbano R. Ferreira S.P. Oliveira E.L.F. Anaissi A.K.M. Nahúm M.C.S. Demachki S. Vidal A.F. Carraro D.M. Ribeiro-dos-Santos Â. Triple-negative breast cancer circrnaome reveals hsa_circ_0072309 as a potential risk biomarker. Cancers 2022 14 13 3280 10.3390/cancers14133280 35805051
    [Google Scholar]
  23. Nair A.A. Niu N. Tang X. Thompson K.J. Wang L. Kocher J.P. Subramanian S. Kalari K.R. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2016 7 49 80967 80979 10.18632/oncotarget.13134 27829232
    [Google Scholar]
  24. Dawoud A. Ihab Zakaria Z. Hisham Rashwan H. Braoudaki M. Youness R.A. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res. 2023 8 1 60 74 10.1016/j.ncrna.2022.09.011 36380816
    [Google Scholar]
  25. Li Y. Chen Y. Yue X. Li X. Cheng Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J. Hematol. Oncol. 2021 14 1 41 10.1186/s13045‑021‑01052‑y
    [Google Scholar]
  26. Wen S. Manuel L. Doolan M. Westhuyzen J. Shakespeare T.P. Aherne N.J. Effect of clinical and treatment factors on survival outcomes of triple negative breast cancer patients. Breast Cancer 2020 12 27 35 10.2147/BCTT.S236483 32184654
    [Google Scholar]
  27. Noor J. Chaudhry A. Noor R. Batool S. Advancements and applications of liquid biopsies in oncology: A narrative review. Cureus 2023 15 7 42731 10.7759/cureus.42731 37654932
    [Google Scholar]
  28. Tierno D. Grassi G. Zanconati F. Dapas B. Scaggiante B. Plasma circular RNAs as biomarkers for breast cancer. Biomedicines 2024 12 4 875 10.3390/biomedicines12040875 38672229
    [Google Scholar]
  29. Wang M. Zhang L. Ren W. Li S. Zhi K. Zheng J. Gao L. Diagnostic value of circRNAs as potential biomarkers in oral squamous cell carcinoma: A meta-analysis. Front. Oncol. 2021 11 693284 10.3389/fonc.2021.693284 34307158
    [Google Scholar]
  30. Ameli-Mojarad M. Ameli-Mojarad M. Nourbakhsh M. Nazemalhosseini-Mojarad E. Circular RNA hsa_circ_0005046 and hsa_circ_0001791 may become diagnostic biomarkers for breast cancer early detection. J. Oncol. 2021 2021 1 7 10.1155/2021/2303946 34239561
    [Google Scholar]
  31. Darbeheshti F. Zokaei E. Mansoori Y. Allahyari E.S. Kamaliyan Z. Kadkhoda S. Bazzaz T.J. Rezaei N. Shakoori A. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: A potential regulator of GATA3. Cancer Cell Int. 2021 21 1 312 10.1186/s12935‑021‑02015‑6 34126989
    [Google Scholar]
  32. Hussen B.M. Mohamadtahr S. Abdullah S.R. Hidayat H.J. Rasul M.F. Faraj H.G.S. Ghafouri-Fard S. Taheri M. Khayamzadeh M. Jamali E. Exosomal circular RNAs: New player in breast cancer progression and therapeutic targets. Front. Genet. 2023 14 1126944 10.3389/fgene.2023.1126944 36926585
    [Google Scholar]
  33. Zepeda-Enríquez P. Silva-Cázares M.B. López-Camarillo C. Novel insights into circular rnas in metastasis in breast cancer: An update. Noncoding RNA 2023 9 5 55 10.3390/ncrna9050055 37736901
    [Google Scholar]
  34. Wu S. Liu H. Zhou M. Shang Y. Luo L. Chen J. Yang J. The miR-410-5p /ITGA6 axis participates in the pathogenesis of recurrent abortion by regulating the biological function of trophoblast. J. Reprod. Immunol. 2022 152 103647 10.1016/j.jri.2022.103647 35667342
    [Google Scholar]
  35. Foruzandeh Z. Dorabadi D.G. Sadeghi F. Zeinali-Sehrig F. Zaefizadeh M. Rahmati Y. Alivand M.R. Circular RNAs as novel biomarkers in triple-negative breast cancer: A systematic review. Mol. Biol. Rep. 2022 49 10 9825 9840 10.1007/s11033‑022‑07502‑1 35534586
    [Google Scholar]
  36. Gopikrishnan M. R H.C. R G. Ashour H.M. Pintus G. Hammad M. Kashyap M.K. C G.P.D. Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct. Integr. Genomics 2023 23 2 184 10.1007/s10142‑023‑01083‑3 37243750
    [Google Scholar]
  37. Cao L. Wang M. Dong Y. Xu B. Chen J. Ding Y. Qiu S. Li L. Karamfilova Zaharieva E. Zhou X. Xu Y. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020 11 2 145 10.1038/s41419‑020‑2336‑0 32094325
    [Google Scholar]
  38. Liu D. Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol. Med. 2021 18 3 635 648 10.20892/j.issn.2095‑3941.2020.0275 34018386
    [Google Scholar]
  39. Fu B. Liu W. Zhu C. Li P. Wang L. Pan L. Li K. Cai P. Meng M. Wang Y. Zhang A. Tang W. An M. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int. J. Biol. Sci. 2021 17 12 3104 3117 10.7150/ijbs.58916 34421353
    [Google Scholar]
  40. Ng W.L. Mohd Mohidin T.B. Shukla K. Functional role of circular RNAs in cancer development and progression. RNA Biol. 2018 15 8 1 11 10.1080/15476286.2018.1486659 29954251
    [Google Scholar]
  41. Tang Y.Y. Zhao P. Zou T.N. Duan J.J. Zhi R. Yang S.Y. Yang D.C. Wang X.L. Circular rna hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017 36 11 901 908 10.1089/dna.2017.3862 28933584
    [Google Scholar]
  42. Qiu X. Zhang Q. Deng Q. Li Q. Circular RNA hsa_circ_0012673 promotes breast cancer progression via miR-576-3p/SOX4 axis. Mol. Biotechnol. 2023 65 1 61 71 10.1007/s12033‑022‑00524‑x 35794450
    [Google Scholar]
  43. Li F. Yang Q. He A.T. Yang B.B. Circular RNAs in cancer: Limitations in functional studies and diagnostic potential. Semin. Cancer Biol. 2021 75 49 61 10.1016/j.semcancer.2020.10.002 33035655
    [Google Scholar]
  44. Jia Q. Ye L. Xu S. Xiao H. Xu S. Shi Z. Li J. Chen Z. Circular RNA 0007255 regulates the progression of breast cancer through miR-335-5p/SIX2 axis. Thorac. Cancer 2020 11 3 619 630 10.1111/1759‑7714.13306 31962380
    [Google Scholar]
  45. Yin W.B. Yan M.G. Fang X. Guo J.J. Xiong W. Zhang R.P. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin. Chim. Acta 2018 487 363 368 10.1016/j.cca.2017.10.011 29045858
    [Google Scholar]
  46. Chen B. Wei W. Huang X. Xie X. Kong Y. Dai D. Yang L. Wang J. Tang H. Xie X. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 2018 8 14 4003 4015 10.7150/thno.24106 30083277
    [Google Scholar]
  47. Verduci L. Tarcitano E. Strano S. Yarden Y. Blandino G. CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis. 2021 12 5 468 10.1038/s41419‑021‑03743‑3 33976116
    [Google Scholar]
  48. Cui J. Chen M. Zhang L. Huang S. Xiao F. Zou L. Circular rnas: Biomarkers of cancer. Cancer Innovation 2022 1 3 197 206 10.1002/cai2.28 38089761
    [Google Scholar]
  49. Fiscon G. Funari A. Paci P. Circular RNA mediated gene regulation in human breast cancer: A bioinformatics analysis. PLoS One 2023 18 7 0289051 10.1371/journal.pone.0289051 37494404
    [Google Scholar]
  50. Li Z. Zhang R. Li D. Guo R. Molecular mechanisms of circular RNA in breast cancer: A narrative review. Transl. Cancer Res. 2024 13 2 1139 1149 10.21037/tcr‑23‑1760 38482408
    [Google Scholar]
  51. Cao J. Pan C. Zhang J. Chen Q. Li T. He D. Cheng X. Analysis and verification of the circRNA regulatory network RNO_CIRCpedia_ 4214/RNO-miR-667-5p/Msr1 axis as a potential ceRNA promoting macrophage M2-like polarization in spinal cord injury. BMC Genomics 2023 24 1 181 10.1186/s12864‑023‑09273‑w 37020267
    [Google Scholar]
  52. Firoozi Z. Mohammadisoleimani E. Shahi A. Mansoori H. Naghizadeh M.M. Bastami M. Nariman-Saleh-Fam Z. Daraei A. Raoofat A. Mansoori Y. Potential roles of hsa_circ_000839 and hsa_circ_0005986 in breast cancer. J. Clin. Lab. Anal. 2022 36 3 24263 10.1002/jcla.24263 35098570
    [Google Scholar]
  53. Yuan P. Lei L. Dong S. Liu D. Circular rna hsa_circ_0068033 acts as a diagnostic biomarker and suppresses the progression of breast cancer through sponging miR-659. OncoTargets Ther. 2020 13 1921 1929 10.2147/OTT.S223542 32184627
    [Google Scholar]
  54. Tran A.M. Chalbatani G.M. Berland L. Cruz De los Santos M. Raj P. Jalali S.A. Gharagouzloo E. Ivan C. Dragomir M.P. Calin G.A. A new world of biomarkers and therapeutics for female reproductive system and breast cancers: Circular RNAs. Front. Cell Dev. Biol. 2020 8 50 10.3389/fcell.2020.00050 32211400
    [Google Scholar]
  55. Lin L. Cai G.X. Zhai X.M. Yang X.X. Li M. Li K. Zhou C.L. Liu T.C. Han B.W. Liu Z.J. Chen M.Q. Ye G.L. Wu Y.S. Guo Z.W. Plasma-derived extracellular vesicles circular rnas serve as biomarkers for breast cancer diagnosis. Front. Oncol. 2021 11 752651 10.3389/fonc.2021.752651 34900700
    [Google Scholar]
  56. Su Y. Zhong G. Jiang N. Huang M. Lin T. Circular RNA, a novel marker for cancer determination (Review). Int. J. Mol. Med. 2018 42 4 1786 1798 10.3892/ijmm.2018.3795 30066837
    [Google Scholar]
  57. Zeng Y. Zou Y. Gao G. Zheng S. Wu S. Xie X. Tang H. The biogenesis, function and clinical significance of circular RNAs in breast cancer. Cancer Biol. Med. 2021 18 0 10.20892/j.issn.2095‑3941.2020.0485 34110722
    [Google Scholar]
  58. Liang H.F. Zhang X.Z. Liu B.G. Jia G.T. Li W.L. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am. J. Cancer Res. 2017 7 7 1566 1576 28744405
    [Google Scholar]
  59. Han Z. Wei B. Zheng Y. Yin Y. Li K. Li S. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 2017 7 1 4172 10.1038/s41598‑017‑04075‑z 28646155
    [Google Scholar]
  60. Brown J.R. Chinnaiyan A.M. The potential of circular rnas as cancer biomarkers. Cancer Epidemiol. Biomarkers Prev. 2020 29 12 2541 2555 10.1158/1055‑9965.EPI‑20‑0796 33060073
    [Google Scholar]
  61. Jin Y. Yang L. Li X. Liu F. Circular RNA KIF4A promotes cell migration, invasion and inhibits apoptosis through miR-152/ZEB1 axis in breast cancer. Diagn. Pathol. 2020 15 1 55 10.1186/s13000‑020‑00963‑7 32408908
    [Google Scholar]
  62. Afzal S. Hassan M. Ullah S. Abbas H. Tawakkal F. Khan M.A. Breast cancer; discovery of novel diagnostic biomarkers, drug resistance, and therapeutic implications. Front. Mol. Biosci. 2022 9 783450 10.3389/fmolb.2022.783450 35265667
    [Google Scholar]
  63. Bolha L. Ravnik-Glavač M. Glavač D. Circular RNAs: Biogenesis, function, and a role as possible cancer biomarkers. Int. J. Genomics 2017 2017 1 19 10.1155/2017/6218353 29349062
    [Google Scholar]
  64. Xu L. Lyu M. Yang S. Zhang J. Yu D. CircRNA expression profiles of breast cancer and construction of a circRNA-miRNA-mRNA network. Sci. Rep. 2022 12 1 17765 10.1038/s41598‑022‑21877‑y 36273233
    [Google Scholar]
  65. Mao Y. Lv M. Cao W. Liu X. Cui J. Wang Y. Wang Y. Nie G. Liu X. Wang H. Circular RNA 000554 represses epithelial-mesenchymal transition in breast cancer by regulating microRNA-182/ZFP36 axis. FASEB J. 2020 34 9 11405 11420 10.1096/fj.201903047R 32729957
    [Google Scholar]
  66. Ojha R. Nandani R. Chatterjee N. Prajapati V. K. Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv. Exp. Med. Biol. 2018 1087 141 157 10.1007/978‑981‑13‑1426‑1_12
    [Google Scholar]
  67. He X. Xu T. Hu W. Tan Y. Wang D. Wang Y. Zhao C. Yi Y. Xiong M. Lv W. Wu M. Li X. Wu Y. Zhang Q. Circular RNAs: Their role in the pathogenesis and orchestration of breast cancer. Front. Cell Dev. Biol. 2021 9 647736 10.3389/fcell.2021.647736 33777954
    [Google Scholar]
  68. Shen Y. Zhang M. Da L. Huang W. Zhang C. Circular RNA circ_SETD2 represses breast cancer progression via modulating the miR-155-5p/SCUBE2 axis. Open Med. 2020 15 1 940 953 10.1515/med‑2020‑0223 33336052
    [Google Scholar]
  69. Zhu M. Sun S. Zhang Y. Chen L. He H. Chen J. Zhang N. Zhang M. Effects of the appearance care on psychosocial outcomes for breast cancer: A systematic review and meta-analysis. Support. Care Cancer 2022 30 11 8805 8817 10.1007/s00520‑022‑07274‑1 35835903
    [Google Scholar]
  70. Xu Y. Yao Y. Leng K. Ji D. Qu L. Liu Y. Cui Y. Increased expression of circular rna circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/ CBX8 Signal Pathway. Cell. Physiol. Biochem. 2018 51 4 1710 1722 10.1159/000495675 30504704
    [Google Scholar]
  71. Garlapati P. Ling J. Chiao P.J. Fu J. Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell Int. 2021 21 1 317 10.1186/s12935‑021‑02017‑4 34162394
    [Google Scholar]
  72. Pan Y. Wu W. Xiong X. Circular RNAs: Promising biomarkers for age-related diseases. Aging Dis. 2020 11 6 1585 1593 10.14336/AD.2020.0309 33269108
    [Google Scholar]
  73. Ribelles N. Perez-Villa L. Jerez J.M. Pajares B. Vicioso L. Jimenez B. de Luque V. Franco L. Gallego E. Marquez A. Alvarez M. Sanchez-Muñoz A. Perez-Rivas L. Alba E. Pattern of recurrence of early breast cancer is different according to intrinsic subtype and proliferation index. Breast Cancer Res. 2013 15 5 R98 10.1186/bcr3559 24148581
    [Google Scholar]
  74. Zhang F. Li L. Fan Z. circRNAs and their relationship with breast cancer: A review. World J. Surg. Oncol. 2022 20 1 373 10.1186/s12957‑022‑02842‑5 36443878
    [Google Scholar]
  75. Baliou S. Adamaki M. Kyriakopoulos A. Spandidos D. Panagiotidis M. Christodoulou I. Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int. J. Oncol. 2018 53 2 443 468 10.3892/ijo.2018.4434 29901119
    [Google Scholar]
  76. Pisignano G. Michael D.C. Visal T.H. Pirlog R. Ladomery M. Calin G.A. Going circular: History, present, and future of circRNAs in cancer. Oncogene 2023 42 38 2783 2800 10.1038/s41388‑023‑02780‑w 37587333
    [Google Scholar]
  77. He Z. Zhu Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed. Pharmacother. 2023 165 115217 10.1016/j.biopha.2023.115217 37506578
    [Google Scholar]
  78. Zhao R-J. Zhang W-Y. Fan X-X. Circular RNAs: Potential biomarkers and therapeutic targets for autoimmune diseases. Heliyon 2024 10 1 e23694 10.1016/j.heliyon.2023.e23694
    [Google Scholar]
  79. He A.T. Liu J. Li F. Yang B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021 6 1 185 10.1038/s41392‑021‑00569‑5 34016945
    [Google Scholar]
  80. Zhao X. Zhong Y. Wang X. Shen J. An W. Advances in circular rna and its applications. Int. J. Med. Sci. 2022 19 6 975 985 10.7150/ijms.71840 35813288
    [Google Scholar]
  81. Obi P. Chen Y.G. The design and synthesis of circular RNAs. Methods 2021 196 85 103 10.1016/j.ymeth.2021.02.020 33662562
    [Google Scholar]
  82. Sur S. Pal J.K. Shekhar S. Bafna P. Bhattacharyya R. Emerging role and clinical applications of circular RNAs in human diseases. Funct. Integr. Genomics 2025 25 1 77 10.1007/s10142‑025‑01575‑4 40148685
    [Google Scholar]
  83. Liu X. Zhang Y. Zhou S. Dain L. Mei L. Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J. Control. Release 2022 348 84 94 10.1016/j.jconrel.2022.05.043 35649485
    [Google Scholar]
  84. Dong J. Zeng Z. Huang Y. Chen C. Cheng Z. Zhu Q. Challenges and opportunities for circRNA identification and delivery. Crit. Rev. Biochem. Mol. Biol. 2023 58 1 19 35 10.1080/10409238.2023.2185764 36916323
    [Google Scholar]
  85. Xu T. Wang M. Jiang L. Ma L. Wan L. Chen Q. Wei C. Wang Z. CircRNAs in anticancer drug resistance: Recent advances and future potential. Mol. Cancer 2020 19 1 127 10.1186/s12943‑020‑01240‑3 32799866
    [Google Scholar]
  86. Wang T. He M. Zhang X. Guo Z. Wang P. Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: A novel perspective. Cell. Mol. Biol. Lett. 2024 29 1 60 10.1186/s11658‑024‑00571‑z 38671354
    [Google Scholar]
  87. Fang L. Zhu Z. Han M. Li S. Kong X. Yang L. Unlocking the potential of extracellular vesicle circRNAs in breast cancer: From molecular mechanisms to therapeutic horizons. Biomed. Pharmacother. 2024 180 117480 10.1016/j.biopha.2024.117480 39357330
    [Google Scholar]
  88. Zhang H. Qin C. An C. Zheng X. Wen S. Chen W. Liu X. Lv Z. Yang P. Xu W. Gao W. Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021 20 1 126 10.1186/s12943‑021‑01431‑6 34598686
    [Google Scholar]
  89. Faraj H.G.S. Hussen B.M. Abdullah S.R. Rasul F.M. Hajiesmaeili Y. Baniahmad A. Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res. 2024 9 3 811 830 10.1016/j.ncrna.2024.03.012 38590433
    [Google Scholar]
  90. Qi D. Ke R. Huang J.H. Wu E. Forging the future of circRNA therapeutics: Unleashing synthetic potential and conquering challenges. Mol. Ther. Nucleic Acids 2023 33 42 43 10.1016/j.omtn.2023.06.002 37727443
    [Google Scholar]
  91. Gao Y. Lin H. Tang T. Wang Y. Chen W. Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int. J. Biol. Macromol. 2024 280 Pt 2 135659 10.1016/j.ijbiomac.2024.135659 39288849
    [Google Scholar]
  92. O’Leary E. Jiang Y. Kristensen L.S. Hansen T.B. Kjems J. The therapeutic potential of circular RNAs. Nat. Rev. Genet. 2025 26 4 230 244 10.1038/s41576‑024‑00806‑x 39789148
    [Google Scholar]
  93. Zhang B. Zhang H. Wang Z. Cao H. Zhang N. Dai Z. Liang X. Peng Y. Wen J. Zhang X. Zhang L. Luo P. Zhang J. Liu Z. Cheng Q. Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci. Ther. 2024 30 4 14500 10.1111/cns.14500 37953502
    [Google Scholar]
  94. Chen R. Wang S.K. Belk J.A. Amaya L. Li Z. Cardenas A. Abe B.T. Chen C.K. Wender P.A. Chang H.Y. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 2023 41 2 262 272 10.1038/s41587‑022‑01393‑0 35851375
    [Google Scholar]
  95. Zhou J. He S. Wang B. Yang W. Zheng Y. Jiang S. Li D. Lin J. Construction and bioinformatics analysis of circRNA-miRNA-mRNA network in acute myocardial infarction. Front. Genet. 2022 13 854993 10.3389/fgene.2022.854993 35422846
    [Google Scholar]
  96. Niu D. Wu Y. Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct. Target. Ther. 2023 8 1 341 10.1038/s41392‑023‑01561‑x 37691066
    [Google Scholar]
  97. Polk A. Svane I.M. Andersson M. Nielsen D. Checkpoint inhibitors in breast cancer – Current status. Cancer Treat. Rev. 2018 63 122 134 10.1016/j.ctrv.2017.12.008 29287242
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037378439250718193539
Loading
/content/journals/cpps/10.2174/0113892037378439250718193539
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chemotherapy ; cancer treatment ; Breast cancer ; biomarker ; circRNA ; microRNAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test