Skip to content
2000
image of Pharmacological Evaluation of the Combination Therapy of Novel Herbal Mixture in Polycystic Ovary Syndrome

Abstract

Introduction

An endocrine condition known as Poly-Cystic Ovarian Syndrome (PCOS) makes females of reproductive age more susceptible to insulin resistance, excessive levels of male hormones, and delayed ovulation. It is the main reason that stimulates infertility in females during their reproductive years. Thus, the objective of the present research is to determine whether oleo-gum resins derived from and could be beneficial in the treatment of PCOS using a female animal model (Wistar rats) that were administered 1 mg/ kg of letrozole for induction of the disease.

Methods

A combination therapy of and myrrh was used to study its effect on rat models administered letrozole (1 mg/kg), employed to induce PCOS. OECD Guidelines 407 and 423 were followed for toxicity studies.

Results

It was revealed that the polyherbal mixture is nontoxic and safe to use, according to the results. Furthermore, studies have investigated the potential of a combination of oleo-gum resins in the treatment of letrozole-induced PCOS using animal models. According to the information gathered, it was found that the prepared herbal mixture significantly affected the letrozole-induced PCOS rat models. Additionally, it seems to have potential benefits for PCOS-related hormonal and reproductive disorders.

Conclusion

The polyherbal mixture was considered safe for consumption at a dose concentration of under 2000 mg/ kg and can be used for an extended period. Additionally, the polyherbal mixture improved the outcome of the therapy of PCOS in rat models administered with letrozole (1 mg/ kg) employed to induce PCOS.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037368963250710184315
2025-08-01
2025-11-07
Loading full text...

Full text loading...

References

  1. Manocha N. Agrawal P. Singh R. Ali M.S. Formulation and evaluation of polyherbal capsules for the treatment of poly cystic ovarian syndrome (Pcos). Afr J. Biol. Sci. 2024 6 6 5879 5905 10.33472/AFJBS.6.6.2024.5879‑5905
    [Google Scholar]
  2. Bulsara J. Priyanshi P. Arun S. Sanjeev A. A review: Brief insight into polycystic ovarian syndrome. Endocrinol. Metab. 2021 3 100085 10.1016/j.endmts.2021.100085
    [Google Scholar]
  3. Wallace I.R. McKinley M.C. Bell P.M. Hunter S.J. Sex hormone binding globulin and insulin resistance. Clin. Endocrinol. (Oxf.) 2013 78 3 321 329 10.1111/cen.12086 23121642
    [Google Scholar]
  4. Khanage S.G. Subhash T.Y. Bhaiyyasaheb I.R. Herbal drugs for the treatment of polycystic ovary syndrome (PCOS) and its complications. Pharm. Res. 2019 2 1 5 13 31823112
    [Google Scholar]
  5. Salmerón-Manzano E. Garrido-Cardenas J.A. Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020 17 10 3376 10.3390/ijerph17103376 32408690
    [Google Scholar]
  6. General guidelines for methodologies on research and evaluation of traditional medicine 2000 Available from: https://apps.who.int/iris/bitstream/handle/10665/66783/WHO_EDM_TRM_2000.1.pdf
  7. Mustafa G. Arif R. Atta A. Sharif S. Jamil A. Bioactive compounds from medicinal plants and their importance in drug discovery in Pakistan. Matrix sci pharma 2017 1 1 17 26 10.26480/msp.01.2017.17.26
    [Google Scholar]
  8. Hussain F. Traditional resource evaluation of some plants of Mastuj, District Chitral, Pakistan. Pak. J. Bot. 2007 39 2 339 354
    [Google Scholar]
  9. Karimi A. Majlesi M. Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015 4 1 27 30 28197471
    [Google Scholar]
  10. Nisar B. Sultan A. Rubab S.L. Comparison of medicinally important natural products versus synthetic drugs-a short commentary. Nat. Prod. Chem. Res. 2018 6 2 308 10.4172/2329‑6836.1000308
    [Google Scholar]
  11. Reddy B.A. Digitalis therapy in patients with congestive heart failure. Intern J. Pharmaceu Sci. Rev. Res. 2010 3 90 95
    [Google Scholar]
  12. Zhang D. Yang R. Wang S. Dong Z. Paclitaxel: New uses for an old drug. Drug Des. Devel. Ther. 2014 8 279 284 24591817
    [Google Scholar]
  13. Kohoude M.J. Gbaguidi F. Agbani P. Ayedoun M.A. Cazaux S. Bouajila J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharm. Biol. 2017 55 1 33 42 10.1080/13880209.2016.1226356 27650786
    [Google Scholar]
  14. Soni A. Bohra N. Boswellia serrata-propogation and uses—A Review. Int. J. Adv. Res. Biol. Sci. 2021 8 5 35 46
    [Google Scholar]
  15. Al-Harrasi A. Ali L. Rehman N.U. Hussain H. Hussain J. Al-Rawahi A. Langley G.J. Wells N.J. Abbas G. Nine triterpenes from Boswellia sacra Flückiger and their chemotaxonomic importance. Biochem. Syst. Ecol. 2013 51 113 116 10.1016/j.bse.2013.08.026
    [Google Scholar]
  16. Mahdian D. Abbaszadeh-Goudarzi K. Raoofi A. Dadashizadeh G. Abroudi M. Zarepour E. Hosseinzadeh H. Effect of Boswellia species on the metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2020 23 11 1374 1381 33235693
    [Google Scholar]
  17. Iram F. Khan S.A. Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017 7 6 513 523 10.1016/j.apjtb.2017.05.001
    [Google Scholar]
  18. Eshaghian R. Mazaheri M. Ghanadian M. Rouholamin S. Feizi A. Babaeian M. The effect of frankincense (Boswellia serrata, oleoresin) and ginger (Zingiber officinale, rhizoma) on heavy menstrual bleeding: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med. 2019 42 42 47 10.1016/j.ctim.2018.09.022 30670277
    [Google Scholar]
  19. Eltahir H.M. Fawzy M.A. Mohamed E.M. Alrehany M.A. Shehata A.M. Abouzied M.M. Antioxidant, anti-inflammatory and anti-fibrotic effects of Boswellia serrate gum resin in CCl 4 -induced hepatotoxicity. Exp. Ther. Med. 2020 19 2 1313 1321 32010304
    [Google Scholar]
  20. Di Stefano V. Schillaci D. Cusimano M.G. Rishan M. Rashan L. In vitro antimicrobial activity of frankincense oils from Boswellia sacra grown in different locations of the Dhofar Region (Oman). Antibiotics 2020 9 4 195 10.3390/antibiotics9040195 32325952
    [Google Scholar]
  21. Zhou X. Cai J.G. Zhu W.W. Zhao H.Y. Wang K. Zhang X.F. Boswellic acid attenuates asthma phenotype by downregulation of GATA3 via nhibition of PSTAT6. Genet. Mol. Res. 2015 14 3 7463 7468 10.4238/2015.July.3.22 26214425
    [Google Scholar]
  22. Alluri V.K. Dodda S. Kilari E.K. Golakoti T. Sengupta K. Toxicological assessment of a standardized BSgum resin extract. Int. J. Toxicol. 2019 38 5 423 435 10.1177/1091581819858069 31234670
    [Google Scholar]
  23. Arora K. Tomar P.C. Kumari P. Kumari A. Medicinal alternative for chikungunya cure: A herbal approach. J. Microbiol. Biotechnol. Food Sci. 2021 9 5 970 978 10.15414/jmbfs.2020.9.5.970‑978
    [Google Scholar]
  24. Wei C. Fan J. Sun X. Yao J. Guo Y. Zhou B. Shang Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic. Biol. Med. 2020 150 96 108 10.1016/j.freeradbiomed.2020.02.022 32109514
    [Google Scholar]
  25. Roy N.K. Parama D. Banik K. Bordoloi D. Devi A.K. Thakur K.K. Padmavathi G. Shakibaei M. Fan L. Sethi G. Kunnumakkara A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019 20 17 4101 10.3390/ijms20174101 31443458
    [Google Scholar]
  26. Batiha G.E.S. Wasef L. Teibo J.O. Shaheen H.M. Zakariya A.M. Akinfe O.A. Teibo T.K.A. Al-kuraishy H.M. Al-Garbee A.I. Alexiou A. Papadakis M. Commiphora myrrh: A phytochemical and pharmacological update. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 3 405 420 10.1007/s00210‑022‑02325‑0 36399185
    [Google Scholar]
  27. Hanuš L.O. Řezanka T. Dembitsky V.M. Moussaieff A. Myrrh - Commiphora chemistry. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005 149 1 3 28 10.5507/bp.2005.001 16170385
    [Google Scholar]
  28. Massoud A. El Sisi S. Salama O. Massoud A. Preliminary study of therapeutic efficacy of a new fasciolicidal drug derived from Commiphora molmol (myrrh). Am. J. Trop. Med. Hyg. 2001 65 2 96 99 10.4269/ajtmh.2001.65.96 11508399
    [Google Scholar]
  29. Omer S.A. Adam S.E.I. Mohammed O.B. Antimicrobial activity of Commiphora myrrha against some bacteria and Candida albicans isolated from gazelles at king khalid wildlife research centre. Res. J. Med. Plant 2011 5 1 65 71 10.3923/rjmp.2011.65.71
    [Google Scholar]
  30. Shen T. Li G.H. Wang X.N. Lou H.X. The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2012 142 2 319 330 10.1016/j.jep.2012.05.025 22626923
    [Google Scholar]
  31. Cao B. Wei X.C. Xu X.R. Zhang H.Z. Luo C.H. Feng B. Xu R.C. Zhao S.Y. Du X.J. Han L. Zhang D.K. Seeing the unseen of the combination of two natural resins, frankincense and myrrh: Changes in chemical constituents and pharmacological activities. Molecules 2019 24 17 3076 10.3390/molecules24173076 31450584
    [Google Scholar]
  32. Weng J.K. Philippe R.N. Noel J.P. The rise of chemodiversity in plants. Science 2012 336 6089 1667 1670 10.1126/science.1217411 22745420
    [Google Scholar]
  33. Dodda S. Madireddy R.K. Alluri V.K. Golakoti T. Sengupta K. Safety assessment of a novel water-soluble extract of Boswellia serrata gum resin: acute toxicity, 90-day sub-chronic toxicity, Ames’ bacterial reverse mutation, and in vivo micronucleus assays. Toxicol. Mech. Methods 2022 32 5 362 372 10.1080/15376516.2021.2012545 34886755
    [Google Scholar]
  34. Rispin A. Farrar D. Margosches E. Gupta K. Stitzel K. Carr G. Greene M. Meyer W. McCall D. Alternative methods for the median lethal dose (LD(50)) test: The up-and-down procedure for acute oral toxicity. ILAR J. 2002 43 4 233 243 10.1093/ilar.43.4.233 12391399
    [Google Scholar]
  35. Anzar C.A. Joseph M.V. Sundaram R. Vadiraj G.B. Prasad C.P. Eranimose B. Acute and sub-acute oral toxicity effects ofaqueous ethanolic extract of boswellia serrata (Boswegex®) on biochemical, hematological and, histopathological parameters in wistar rats. IOSR J. Pharm. Biol. Sci. 2023 18 4 60 80 10.9790/30081804026080
    [Google Scholar]
  36. Kausar F. Rather M.A. Bashir S.M. Alsaffar R.M. Nabi S. Ali S.I. Goswami P. Ahmad A. Rashid S. Wali A.F. Ameliorative effects of Cuscuta reflexa and Peucedanum grande on letrozole induced polycystic ovary syndrome in Wistar rats. Redox Rep. 2021 26 1 94 104 10.1080/13510002.2021.1927396 34018905
    [Google Scholar]
  37. Prajapati D.P. Patel M. Dharamsi A. Beneficial effect of polyherbal formulation in letrozole induced Polycystic ovarian syndrome (PCOS). J. Tradit. Complement. Med. 2022 12 6 575 583 10.1016/j.jtcme.2022.08.003 36325242
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037368963250710184315
Loading
/content/journals/cpps/10.2174/0113892037368963250710184315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test