Skip to content
2000
image of The Emergence of Bioactive Peptides as Anti-diabetic Agents: A Review

Abstract

A complex condition called diabetes mellitus is characterized by insufficient or resistant insulin production. The incidence of diseases is rising quickly, placing a significant economic, social, and health burden on the modern world. Interventions in nutrition and improved physical activity could make a big difference in controlling this disease. Bioactive peptides obtained from natural sources have been linked to various therapeutic benefits. Several peptides with anti-diabetic potential may lower blood sugar levels, enhance insulin uptake, and inhibit vital enzymes involved in the onset and progression of diabetes. Many bioactive peptides with anti-diabetic properties have been discovered and validated. A more transparent comprehension of the underlying molecular mechanisms of these peptides will aid the development of new peptide-based pharmaceuticals. The objective of this review was to update our understanding of the genesis, structural features, and mechanism of action. The effects of bioactive peptides on vital enzymes and proteins, such as α-glucosidase, α-amylase, glucagon-like peptides, and dipeptidyl peptidase-IV, which are involved in managing glycaemic levels from carbohydrate consumption through blood glucose regulation, were also addressed. The information obtained through this study and industry endeavours should provide a better understanding and evaluation of the prospects of bioactive peptides with anti-diabetic potential for blood glucose level management.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037386831250806112604
2025-09-02
2025-11-07
Loading full text...

Full text loading...

References

  1. Thomford N.E. Senthebane D.A. Rowe A. Munro D. Seele P. Maroyi A. Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018 19 6 1578 10.3390/ijms19061578 29799486
    [Google Scholar]
  2. Sánchez A. Vázquez A. Bioactive peptides: A review. Food. Qual Saf. 2017 1 1 29 46 10.1093/fqs/fyx006
    [Google Scholar]
  3. a Sharma S. Singh R. Rana S. Bioactive peptides: A review. Int. J. Bioautomation 2011 15 223 250
    [Google Scholar]
  4. b Walther B. Sieber R. Bioactive proteins and peptides in foods. Int. J. Vitam. Nutr. Res. 2011 81 2-3 181 192 10.1024/0300‑9831/a000054
    [Google Scholar]
  5. c Shahidi F. Zhong Y. Bioactive peptides. J. AOAC Int. 2008 91 4 914 931 10.1093/jaoac/91.4.914 18727554
    [Google Scholar]
  6. d Yan J. Zhao J. Yang R. Zhao W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol. 2019 54 6 1909 1919 10.1111/ijfs.14090
    [Google Scholar]
  7. Fields K. Falla T.J. Rodan K. Bush L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009 8 1 8 13 10.1111/j.1473‑2165.2009.00416.x 19250159
    [Google Scholar]
  8. a Bhat Z.F. Kumar S. Bhat H.F. Bioactive peptides from egg: A review. Nutr. Food Sci. 2015 45 2 190 212 10.1108/NFS‑10‑2014‑0088
    [Google Scholar]
  9. b Carrasco-Castilla J. Hernández-Álvarez A.J. Jiménez-Martínez C. Gutiérrez-López G.F. Dávila-Ortiz G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev. 2012 4 4 224 243 10.1007/s12393‑012‑9058‑8
    [Google Scholar]
  10. Korhonen H. Pihlanto A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006 16 9 945 960 10.1016/j.idairyj.2005.10.012
    [Google Scholar]
  11. Agyei D. Ongkudon C.M. Wei C.Y. Chan A.S. Danquah M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 2016 98 244 256 10.1016/j.fbp.2016.02.003
    [Google Scholar]
  12. Sarmadi B.H. Ismail A. Antioxidative peptides from food proteins: A review. Peptides 2010 31 10 1949 1956 10.1016/j.peptides.2010.06.020 20600423
    [Google Scholar]
  13. IDF Diabetes Atlas International Diabetes Federation. 9th ed 2019
    [Google Scholar]
  14. Lee S.H. Jeon Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013 86 129 136 10.1016/j.fitote.2013.02.013 23466874
    [Google Scholar]
  15. a Derosa G. Maffioli P. Mini-special issue paper management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012 5 5 899 906 10.5114/aoms.2012.31621 23185202
    [Google Scholar]
  16. b Zhang L. Chen Q. Li L. Kwong J.S.W. Jia P. Zhao P. Wang W. Zhou X. Zhang M. Sun X. Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: A systematic review and meta-analysis. Sci. Rep. 2016 6 1 32649 10.1038/srep32649 27596383
    [Google Scholar]
  17. Drucker D.J. The biology of incretin hormones. Cell Metab. 2006 3 3 153 165 10.1016/j.cmet.2006.01.004 16517403
    [Google Scholar]
  18. Meloni A.R. DeYoung M.B. Lowe C. Parkes D.G. GLP‐1 receptor activated insulin secretion from pancreatic β‐cells: Mechanism and glucose dependence. Diabetes Obes. Metab. 2013 15 1 15 27 10.1111/j.1463‑1326.2012.01663.x 22776039
    [Google Scholar]
  19. Ramracheya R. Chapman C. Chibalina M. Dou H. Miranda C. González A. Moritoh Y. Shigeto M. Zhang Q. Braun M. Clark A. Johnson P.R. Rorsman P. Briant L.J.B. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol. Rep. 2018 6 17 e13852 10.14814/phy2.13852 30187652
    [Google Scholar]
  20. Drucker D.J. Nauck M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 368 9548 1696 1705 10.1016/S0140‑6736(06)69705‑5 17098089
    [Google Scholar]
  21. Bliss M. Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 1982 56 4 554 568 6760943
    [Google Scholar]
  22. Fosgerau K. Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015 20 1 122 128 10.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  23. Cao S. Lv Z. Guo S. Jiang G. Liu H. An update - Prolonging the action of protein and peptide drugs. J. Drug Deliv. Sci. Technol. 2021 61 102124 10.1016/j.jddst.2020.102124
    [Google Scholar]
  24. Acquah C. Dzuvor C.K.O. Tosh S. Agyei D. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 2022 62 8 2158 2171 10.1080/10408398.2020.1851168 33317324
    [Google Scholar]
  25. Caner S. Zhang X. Jiang J. Chen H.M. Nguyen N.T. Overkleeft H. Brayer G.D. Withers S.G. Glucosyl epi‐cyclophellitol allows mechanism‐based inactivation and structural analysis of human pancreatic α‐amylase. FEBS Lett. 2016 590 8 1143 1151 10.1002/1873‑3468.12143 27000970
    [Google Scholar]
  26. a Zambrowicz A. Eckert E. Pokora M. Bobak Ł. Dąbrowska A. Szołtysik M. Trziszka T. Chrzanowska J. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia). RSC Advances 2015 5 14 10460 10467 10.1039/C4RA12943A
    [Google Scholar]
  27. b Bischoff H. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Invest. 1994 24 S3 3 10 10.1111/j.1365‑2362.1994.tb02249.x
    [Google Scholar]
  28. c Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 1997 61 8 1233 1239 10.1271/bbb.61.1233 9301101
    [Google Scholar]
  29. Siow H.L. Lim T.S. Gan C.Y. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study – Cumin seed. Food Chem. 2017 214 67 76 10.1016/j.foodchem.2016.07.069 27507449
    [Google Scholar]
  30. Siow H.L. Gan C.Y. Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J. Funct. Foods 2016 22 1 12 10.1016/j.jff.2016.01.011
    [Google Scholar]
  31. Evaristus N.A. Wan Abdullah W.N. Gan C.Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides 2018 102 61 67 10.1016/j.peptides.2018.03.001 29510154
    [Google Scholar]
  32. Admassu H. Gasmalla M.A.A. Yang R. Zhao W. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). J. Agric. Food Chem. 2018 66 19 4872 4882 10.1021/acs.jafc.8b00960 29667406
    [Google Scholar]
  33. Ngoh Y.Y. Tye G.J. Gan C.Y. The investigation of α-amylase inhibitory activity of selected Pinto bean peptides via preclinical study using AR42J cell. J. Funct. Foods 2017 35 641 647 10.1016/j.jff.2017.06.037
    [Google Scholar]
  34. Yu Z. Yin Y. Zhao W. Liu J. Chen F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem. 2012 135 3 2078 2085 10.1016/j.foodchem.2012.06.088 22953959
    [Google Scholar]
  35. a Mohanty D.P. Mohapatra S. Misra S. Sahu P.S. Milk derived bioactive peptides and their impact on human health – A review. Saudi J. Biol. Sci. 2016 23 5 577 583 10.1016/j.sjbs.2015.06.005 27579006
    [Google Scholar]
  36. b Vilcacundo R. Martínez-Villaluenga C. Hernández-Ledesma B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J. Funct. Foods 2017 35 531 539 10.1016/j.jff.2017.06.024
    [Google Scholar]
  37. c Oseguera-Toledo M.E. Gonzalez de Mejia E. Amaya-Llano S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 2015 76 Pt 3 839 851 10.1016/j.foodres.2015.07.046
    [Google Scholar]
  38. d Cian R.E. Campos-Soldini A. Chel-Guerrero L. Drago S.R. Betancur-Ancona D. Bioactive Phaseolus lunatus peptides release from maltodextrin/gum arabic microcapsules obtained by spray drying after simulated gastrointestinal digestion. Int. J. Food Sci. Technol. 2019 54 6 2002 2009 10.1111/ijfs.14031
    [Google Scholar]
  39. D’Souza R. Pandeya D.R. Rahman M. Seo Lee H. Jung J.K. Hong S.T. Genetic engineering of Lactococcus lactis to produce an amylase inhibitor for development of an anti-diabetes biodrug. New Microbiol. 2012 35 1 35 42 22378551
    [Google Scholar]
  40. Rodhi A. Yap P-G. Olalere O. Gan C-Y. Exploring α-glucosidase inhibitory peptides: Structure-activity relationship analysis and perspectives for designing potential anti-diabetic agents. Jundishapur J. Nat. Pharm. Prod. 2023 18 e139988 10.5812/jjnpp‑139988
    [Google Scholar]
  41. Ibrahim M.A. Bester M.J. Neitz A.W.H. Gaspar A.R.M. Structural properties of bioactive peptides with α‐glucosidase inhibitory activity. Chem. Biol. Drug Des. 2018 91 2 370 379 10.1111/cbdd.13105 28884942
    [Google Scholar]
  42. Sun L. Liu J. He Z. Du R. Plant-derived as alternatives to animal-derived bioactive peptides: A review of the preparation, bioactivities, structure–activity relationships, and applications in chronic diseases. Nutrients 2024 16 19 3277 10.3390/nu16193277 39408244
    [Google Scholar]
  43. Baggio L.L. Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007 132 6 2131 2157 10.1053/j.gastro.2007.03.054 17498508
    [Google Scholar]
  44. Sandoval D.A. D’Alessio D.A. Physiology of proglucagon peptides: Role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015 95 2 513 548 10.1152/physrev.00013.2014 25834231
    [Google Scholar]
  45. Deacon C.F. Nauck M.A. Toft-Nielsen M. Pridal L. Willms B. Holst J.J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995 44 9 1126 1131 10.2337/diab.44.9.1126 7657039
    [Google Scholar]
  46. Leiter L. Nauck M. Efficacy and safety of GLP-1 receptor agonists across the spectrum of type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2017 125 7 419 435 10.1055/s‑0043‑103969 28724168
    [Google Scholar]
  47. a McCormack P.L. Exenatide twice daily: A review of its use in the management of patients with type 2 diabetes mellitus. Drugs 2014 74 3 325 351 10.1007/s40265‑013‑0172‑6 24435322
    [Google Scholar]
  48. b Syed Y.Y. McCormack P.L. Exenatide extended-release: An Updated review of its use in type 2 diabetes mellitus. Drugs 2015 75 10 1141 1152 10.1007/s40265‑015‑0420‑z 26071140
    [Google Scholar]
  49. Cvetković R.S. Plosker G.L. Exenatide: A review of its use in patients with type 2 diabetes mellitus (as an adjunct to metformin and/or a sulfonylurea). Drugs 2007 67 6 935 954 10.2165/00003495‑200767060‑00008 17428109
    [Google Scholar]
  50. Nauck M.A. Meier J.J. MANAGEMENT OF ENDOCRINE DISEASE: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur. J. Endocrinol. 2019 181 6 R211 R234 10.1530/EJE‑19‑0566 31600725
    [Google Scholar]
  51. Nielsen L.L. Young A.A. Parkes D.G. Pharmacology of exenatide (synthetic exendin-4): A potential therapeutic for improved glycemic control of type 2 diabetes. Regul. Pept. 2004 117 2 77 88 10.1016/j.regpep.2003.10.028 14700743
    [Google Scholar]
  52. Gupta V. Glucagon-like peptide-1 analogues: An overview. Indian J. Endocrinol. Metab. 2013 17 3 413 421 10.4103/2230‑8210.111625 23869296
    [Google Scholar]
  53. DeYoung M.B. MacConell L. Sarin V. Trautmann M. Herbert P. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol. Ther. 2011 13 11 1145 1154 10.1089/dia.2011.0050 21751887
    [Google Scholar]
  54. a Nauck M.A. Duran S. Kim D. Johns D. Northrup J. Festa A. Brodows R. Trautmann M. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: A non-inferiority study. Diabetologia 2007 50 2 259 267 10.1007/s00125‑006‑0510‑2 17160407
    [Google Scholar]
  55. b Heine R.J. Van Gaal L.F. Johns D. Mihm M.J. Widel M.H. Brodows R.G. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: A randomized trial. Ann. Intern. Med. 2005 143 8 559 569 10.7326/0003‑4819‑143‑8‑200510180‑00006 16230722
    [Google Scholar]
  56. Kim D. MacConell L. Zhuang D. Kothare P.A. Trautmann M. Fineman M. Taylor K. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007 30 6 1487 1493 10.2337/dc06‑2375 17353504
    [Google Scholar]
  57. Home P.D. Nauck M.A. Duran S. Kim D. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: A non-inferiority study. Diabetologia 2007 50 7 1561 1562 10.1007/s00125‑007‑0653‑9 17384924
    [Google Scholar]
  58. Raskin P. Allen E. Hollander P. Lewin A. Gabbay R.A. Hu P. Bode B. Garber A. Initiating insulin therapy in type 2 diabetes: A comparison of biphasic and basal insulin analogs. Diabetes Care 2005 28 2 260 265 10.2337/diacare.28.2.260 15677776
    [Google Scholar]
  59. Riddle M.C. Rosenstock J. Gerich J. The treat-to-target trial: Randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003 26 11 3080 3086 10.2337/diacare.26.11.3080 14578243
    [Google Scholar]
  60. a Distiller L. Ruus P. Pharmacokinetics and pharmacodynamics of GLP-1 agonist AVE0010 in type 2 diabetes patients. Diabetes 2008 57 A154 A155
    [Google Scholar]
  61. b Christensen M. Knop F.K. Vilsbøll T. Holst J.J. Lixisenatide for type 2 diabetes mellitus. Expert Opin. Investig. Drugs 2011 20 4 549 557 10.1517/13543784.2011.562191 21391833
    [Google Scholar]
  62. c Werner U. Haschke G. Herling A.W. Kramer W. Pharmacological profile of lixisenatide: A new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul. Pept. 2010 164 2-3 58 64 10.1016/j.regpep.2010.05.008 20570597
    [Google Scholar]
  63. d Seino Y. Min K.W. Niemoeller E. Takami A. Randomized, double‐blind, placebo‐controlled trial of the once‐daily GLP ‐1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal ‐L‐Asia). Diabetes Obes. Metab. 2012 14 10 910 917 10.1111/j.1463‑1326.2012.01618.x 22564709
    [Google Scholar]
  64. Kapitza C. Forst T. Coester H.V. Poitiers F. Ruus P. Hincelin-Méry A. Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin. Diabetes Obes. Metab. 2013 15 7 642 649 10.1111/dom.12076 23368510
    [Google Scholar]
  65. Becker R.H.A. Stechl J. Steinstraesser A. Golor G. Pellissier F. Lixisenatide reduces postprandial hyperglycaemia via gastrostatic and insulinotropic effects. Diabetes Metab. Res. Rev. 2015 31 6 610 618 10.1002/dmrr.2647 25773712
    [Google Scholar]
  66. Ratner R.E. Rosenstock J. Boka G. Dose‐dependent effects of the once‐daily GLP‐1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: a randomized, double‐blind, placebo‐controlled trial. Diabet. Med. 2010 27 9 1024 1032 10.1111/j.1464‑5491.2010.03020.x 20722676
    [Google Scholar]
  67. Highlights of prescribing information these highlights do not include all the information needed to use ADLYXIN safely and effectively. See full prescribing information for ADLYXIN 2016 Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2016/208471Orig1s000lbl.pdf
    [Google Scholar]
  68. Liraglutide 2025 Available from: https://www.drugbank.ca/drugs/DB06655
  69. a Elbrønd B. Jakobsen G. Larsen S. Agersø H. Jensen L.B. Rolan P. Sturis J. Hatorp V. Zdravkovic M. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002 25 8 1398 1404 10.2337/diacare.25.8.1398 12145241
    [Google Scholar]
  70. b Agersø H. Jensen L.B. Elbrønd B. Rolan P. Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002 45 2 195 202 10.1007/s00125‑001‑0719‑z 11935150
    [Google Scholar]
  71. a Zinman B. Gerich J. Buse J.B. Lewin A. Schwartz S. Raskin P. Hale P.M. Zdravkovic M. Blonde L. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009 32 7 1224 1230 10.2337/dc08‑2124 19289857
    [Google Scholar]
  72. b Russell-Jones D. Vaag A. Schmitz O. Sethi B.K. Lalic N. Antic S. Zdravkovic M. Ravn G.M. Simó R. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): A randomised controlled trial. Diabetologia 2009 52 10 2046 2055 10.1007/s00125‑009‑1472‑y 19688338
    [Google Scholar]
  73. c Nauck M. Frid A. Hermansen K. Shah N.S. Tankova T. Mitha I.H. Zdravkovic M. Düring M. Matthews D.R. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: The LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009 32 1 84 90 10.2337/dc08‑1355 18931095
    [Google Scholar]
  74. d Marre M. Shaw J. Brändle M. Bebakar W.M.W. Kamaruddin N.A. Strand J. Zdravkovic M. Le Thi T.D. Colagiuri S. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet. Med. 2009 26 3 268 278 10.1111/j.1464‑5491.2009.02666.x 19317822
    [Google Scholar]
  75. Buse J.B. Rosenstock J. Sesti G. Schmidt W.E. Montanya E. Brett J.H. Zychma M. Blonde L. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009 374 9683 39 47 10.1016/S0140‑6736(09)60659‑0 19515413
    [Google Scholar]
  76. Buse J.B. Sesti G. Schmidt W.E. Montanya E. Chang C.T. Xu Y. Blonde L. Rosenstock J. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care 2010 33 6 1300 1303 10.2337/dc09‑2260 20332351
    [Google Scholar]
  77. Henry R.R. Rosenstock J. Denham D.S. Prabhakar P. Kjems L. Baron M.A. Clinical impact of ITCA 650, a novel drug-device GLP-1 receptor agonist, in uncontrolled type 2 diabetes and very high baseline HbA1c: The FREEDOM-1 HBL (High Baseline) study. Diabetes Care 2018 41 3 613 619 10.2337/dc17‑1519 29301824
    [Google Scholar]
  78. a Kuritzky L. Umpierrez G. Ekoé J.M. Mancillas-Adame L. Landó L.F. Safety and efficacy of dulaglutide, a once weekly GLP-1 receptor agonist, for the management of type 2 diabetes. Postgrad. Med. 2014 126 6 60 71 10.3810/pgm.2014.10.2821 25414935
    [Google Scholar]
  79. b Glaesner W. Mark Vick A. Millican R. Ellis B. Tschang S.H. Tian Y. Bokvist K. Brenner M. Koester A. Porksen N. Etgen G. Bumol T. Engineering and characterization of the long‐acting glucagon‐like peptide‐1 analogue LY2189265, an Fc fusion protein. Diabetes Metab. Res. Rev. 2010 26 4 287 296 10.1002/dmrr.1080 20503261
    [Google Scholar]
  80. Jendle J. Grunberger G. Blevins T. Giorgino F. Hietpas R.T. Botros F.T. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: A comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab. Res. Rev. 2016 32 8 776 790 10.1002/dmrr.2810 27102969
    [Google Scholar]
  81. Lau J. Bloch P. Schäffer L. Pettersson I. Spetzler J. Kofoed J. Madsen K. Knudsen L.B. McGuire J. Steensgaard D.B. Strauss H.M. Gram D.X. Knudsen S.M. Nielsen F.S. Thygesen P. Reedtz-Runge S. Kruse T. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015 58 18 7370 7380 10.1021/acs.jmedchem.5b00726 26308095
    [Google Scholar]
  82. Pratley R.E. Aroda V.R. Lingvay I. Lüdemann J. Andreassen C. Navarria A. Viljoen A. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): A randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018 6 4 275 286 10.1016/S2213‑8587(18)30024‑X 29397376
    [Google Scholar]
  83. Ahmann A.J. Capehorn M. Charpentier G. Dotta F. Henkel E. Lingvay I. Holst A.G. Annett M.P. Aroda V.R. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 2018 41 2 258 266 10.2337/dc17‑0417 29246950
    [Google Scholar]
  84. Trujillo J.M. Nuffer W. Albiglutide. Ann. Pharmacother. 2014 48 11 1494 1501 10.1177/1060028014545807 25136065
    [Google Scholar]
  85. Lindamood C.A. Taylor J.R. Emerging new therapies for the treatment of type 2 diabetes mellitus: Glucagon-like peptide-1 receptor agonists. Clin. Ther. 2015 37 3 483 493 10.1016/j.clinthera.2015.01.003 25659912
    [Google Scholar]
  86. Rosenstock J. Fonseca V.A. Gross J.L. Ratner R.E. Ahrén B. Chow F.C.C. Yang F. Miller D. Johnson S.L. Stewart M.W. Leiter L.A. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: A comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. Diabetes Care 2014 37 8 2317 2325 10.2337/dc14‑0001 24898300
    [Google Scholar]
  87. Pratley R.E. Nauck M.A. Barnett A.H. Feinglos M.N. Ovalle F. Harman-Boehm I. Ye J. Scott R. Johnson S. Stewart M. Rosenstock J. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): A randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014 2 4 289 297 10.1016/S2213‑8587(13)70214‑6 24703047
    [Google Scholar]
  88. a Nongonierma A.B. Mooney C. Shields D.C. FitzGerald R.J. In silicoapproaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 2014 57 43 51 10.1016/j.peptides.2014.04.018 2479377
    [Google Scholar]
  89. b Tulipano G. Faggi L. Nardone A. Cocchi D. Caroli A.M. Characterisation of the potential of β-lactoglobulin and α-lactalbumin as sources of bioactive peptides affecting incretin function: In silico and in vitro comparative studies. Int. Dairy J. 2015 48 66 72 10.1016/j.idairyj.2015.01.008
    [Google Scholar]
  90. Mojica L. Gonzalez de Mejia E. Granados-Silvestre M.Á. Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J. Funct. Foods 2017 31 274 286 10.1016/j.jff.2017.02.006
    [Google Scholar]
  91. Tran S. Retnakaran R. Zinman B. Kramer C.K. Efficacy of glucagon‐like peptide‐1 receptor agonists compared to dipeptidyl peptidase‐4 inhibitors for the management of type 2 diabetes: A meta‐analysis of randomized clinical trials. Diabetes Obes. Metab. 2018 20 S1 68 76 10.1111/dom.13137 29364587
    [Google Scholar]
  92. Harnedy P.A. O’Keeffe M.B. FitzGerald R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 2015 172 400 406 10.1016/j.foodchem.2014.09.083 25442570
    [Google Scholar]
  93. Hu K. Huang H. Li H. Wei Y. Yao C. Legume-derived bioactive peptides in type 2 diabetes: Opportunities and challenges. Nutrients 2023 15 5 1096 10.3390/nu15051096 36904097
    [Google Scholar]
  94. Polyzos S.A. Kountouras J. Mantzoros C.S. Adipokines in nonalcoholic fatty liver disease. Metabolism 2016 65 8 1062 1079 10.1016/j.metabol.2015.11.006 26725002
    [Google Scholar]
  95. Jiang H. Feng J. Du Z. Zhen H. Lin M. Jia S. Li T. Huang X. Ostenson C.G. Chen Z. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats. J. Nutr. Biochem. 2014 25 9 954 963 10.1016/j.jnutbio.2014.04.010 24985367
    [Google Scholar]
  96. Hasib A. Ng M.T. Khan D. Gault V.A. Flatt P.R. Irwin N. Characterisation and antidiabetic utility of a novel hybrid peptide, exendin-4/gastrin/xenin-8-Gln. Eur. J. Pharmacol. 2018 834 126 135 10.1016/j.ejphar.2018.07.027 30025814
    [Google Scholar]
  97. Wang C. Luo D. Zheng L. Zhao M. Anti‐diabetic mechanism and potential bioactive peptides of casein hydrolysates in STZ/HFD ‐induced diabetic rats. J. Sci. Food Agric. 2024 104 5 2947 2958 10.1002/jsfa.13187 38041433
    [Google Scholar]
  98. Leong Y.K. Chang J.S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends Food Sci. Technol. 2024 145 104352 10.1016/j.tifs.2024.104352
    [Google Scholar]
  99. Lima A.M. Azevedo M.I.G. Sousa L.M. Oliveira N.S. Andrade C.R. Freitas C.D.T. Souza P.F.N. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int. J. Biol. Macromol. 2022 214 10 21 10.1016/j.ijbiomac.2022.06.043 35700843
    [Google Scholar]
  100. Dini I. De Biasi M.G. Mancusi A. An overview of the potentialities of antimicrobial peptides derived from natural sources. Antibiotics 2022 11 11 1483 10.3390/antibiotics11111483 36358138
    [Google Scholar]
  101. de Oliveira S.S.S. Cherene M.B. Taveira G.B. de Oliveira Mello É. de Oliveira Carvalho A. Gomes V.M. Plant antimicrobial peptides and their main families and roles: A review of the literature. Curr. Issues Mol. Biol. 2024 47 1 1 10.3390/cimb47010001 39852116
    [Google Scholar]
  102. Vallée F. Kadziola A. Bourne Y. Juy M. Rodenburg K.W. Svensson B. Haser R. Barley α-amylase bound to its endogenous protein inhibitor BASI: Crystal structure of the complex at 1.9 å resolution. Structure 1998 6 5 649 659 10.1016/S0969‑2126(98)00066‑5 9634702
    [Google Scholar]
  103. Nahoum V. Farisei F. Le-Berre-Anton V. Egloff M.P. Rougé P. Poerio E. Payan F. A plant-seed inhibitor of two classes of α-amylases: X-ray analysis of Tenebrio molitor larvae α-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr. D Biol. Crystallogr. 1999 55 1 360 362 10.1107/S0907444998010701 10089450
    [Google Scholar]
  104. Pereira P.J.B. Lozanov V. Patthy A. Huber R. Bode W. Pongor S. Strobl S. Specific inhibition of insect α-amylases: Yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å resolution. Structure 1999 7 9 1079 1088 10.1016/S0969‑2126(99)80175‑0 10508777
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037386831250806112604
Loading
/content/journals/cpps/10.2174/0113892037386831250806112604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test