Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The misfolding and aggregation of amyloid proteins are closely associated with a range of neurodegenerative diseases. Liquid-liquid phase separation (LLPS) can initiate the aggregation of proteins, indicating that LLPS may serve as an alternative pathway for the pathological aggregation of amyloid proteins. The co-occurrence of two or more amyloid pathologies has been observed in extensive pathophysiological studies and is linked to faster disease progression. The co-LLPS (also known as co-condensation) and co-aggregation of different disease-related proteins have been proposed as a potential molecular mechanism for combined neuropathology. Here, we reviewed the current state of knowledge regarding the co-aggregation and co-condensation of various amyloid proteins, including Aβ, tau, α-synuclein, TDP-43, FUS, and hnRNPA/B protein family, C9orf72 dipeptide repeats and prion protein. We briefly introduced the epidemiological correlation among different neurodegenerative diseases and specifically presented recent experimental findings about co-aggregation and co-condensation of two different amyloid proteins. Additionally, we discussed computational studies focusing on the molecular interactions between amyloid proteins to offer mechanistic insights into the co-LLPS and co-aggregation processes. This review provides an overview of the synergistic interactions between different disease-related proteins, which is helpful for understanding the mechanisms of combined neuropathology and developing targeted therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037350729241129054701
2025-02-10
2026-01-05
Loading full text...

Full text loading...

References

  1. HouY. DanX. BabbarM. WeiY. HasselbalchS.G. CroteauD.L. BohrV.A. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑731501588
    [Google Scholar]
  2. HungC.W. ChenY.C. HsiehW.L. ChiouS.H. KaoC.L. Ageing and neurodegenerative diseases.Ageing Res. Rev.20109Suppl. 1S36S4610.1016/j.arr.2010.08.00620732460
    [Google Scholar]
  3. ReeveA. SimcoxE. TurnbullD. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?Ageing Res. Rev.201414100193010.1016/j.arr.2014.01.00424503004
    [Google Scholar]
  4. Parra BravoC. NaguibS.A. GanL. Cellular and pathological functions of tau.Nat. Rev. Mol. Cell Biol.2024251184586410.1038/s41580‑024‑00753‑939014245
    [Google Scholar]
  5. NguyenP.H. RamamoorthyA. SahooB.R. ZhengJ. FallerP. StraubJ.E. DominguezL. SheaJ.E. DokholyanN.V. De SimoneA. MaB. NussinovR. NajafiS. NgoS.T. LoquetA. ChiricottoM. GangulyP. McCartyJ. LiM.S. HallC. WangY. MillerY. MelchionnaS. HabensteinB. TimrS. ChenJ. HnathB. StrodelB. KayedR. LesnéS. WeiG. SterponeF. DoigA.J. DerreumauxP. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis.Chem. Rev.202112142545264710.1021/acs.chemrev.0c0112233543942
    [Google Scholar]
  6. WellsC. BrennanS. KeonM. OoiL. The role of amyloid oligomers in neurodegenerative pathologies.Int. J. Biol. Macromol.202118158260410.1016/j.ijbiomac.2021.03.11333766600
    [Google Scholar]
  7. WuJ.W. BreydoL. IsasJ.M. LeeJ. KuznetsovY.G. LangenR. GlabeC. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation.J. Biol. Chem.201028596071607910.1074/jbc.M109.06954220018889
    [Google Scholar]
  8. WinnerB. JappelliR. MajiS.K. DesplatsP.A. BoyerL. AignerS. HetzerC. LoherT. VilarM. CampioniS. TzitzilonisC. SoragniA. JessbergerS. MiraH. ConsiglioA. PhamE. MasliahE. GageF.H. RiekR. In vivo demonstration that α-synuclein oligomers are toxic.Proc. Natl. Acad. Sci. USA2011108104194419910.1073/pnas.110097610821325059
    [Google Scholar]
  9. GoedertM. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein.Science20153496248125555510.1126/science.125555526250687
    [Google Scholar]
  10. JuckerM. WalkerL.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases.Nat. Neurosci.201821101341134910.1038/s41593‑018‑0238‑630258241
    [Google Scholar]
  11. GoedertM. EisenbergD.S. CrowtherR.A. Propagation of Tau aggregates and neurodegeneration.Annu. Rev. Neurosci.201740118921010.1146/annurev‑neuro‑072116‑03115328772101
    [Google Scholar]
  12. SpillantiniM.G. CrowtherR.A. JakesR. HasegawaM. GoedertM. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies.Proc. Natl. Acad. Sci. USA199895116469647310.1073/pnas.95.11.64699600990
    [Google Scholar]
  13. LingJ.P. PletnikovaO. TroncosoJ.C. WongP.C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.Science2015349624865065510.1126/science.aab098326250685
    [Google Scholar]
  14. DengH. GaoK. JankovicJ. The role of FUS gene variants in neurodegenerative diseases.Nat. Rev. Neurol.201410633734810.1038/nrneurol.2014.7824840975
    [Google Scholar]
  15. AmbadipudiS. BiernatJ. RiedelD. MandelkowE. ZweckstetterM. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau.Nat. Commun.20178127510.1038/s41467‑017‑00480‑028819146
    [Google Scholar]
  16. SawnerA.S. RayS. YadavP. MukherjeeS. PanigrahiR. PoudyalM. PatelK. GhoshD. KummerantE. KumarA. RiekR. MajiS.K. Modulating α-synuclein liquid–liquid phase separation.Biochemistry202160483676369610.1021/acs.biochem.1c0043434431665
    [Google Scholar]
  17. ConicellaA.E. DignonG.L. ZerzeG.H. SchmidtH.B. D’OrdineA.M. KimY.C. RohatgiR. AyalaY.M. MittalJ. FawziN.L. TDP-43 α-helical structure tunes liquid–liquid phase separation and function.Proc. Natl. Acad. Sci. USA2020117115883589410.1073/pnas.191205511732132204
    [Google Scholar]
  18. PortzB. LeeB.L. ShorterJ. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci.202146755056310.1016/j.tibs.2020.12.00533446423
    [Google Scholar]
  19. LiP. BanjadeS. ChengH.C. KimS. ChenB. GuoL. LlagunoM. HollingsworthJ.V. KingD.S. BananiS.F. RussoP.S. JiangQ.X. NixonB.T. RosenM.K. Phase transitions in the assembly of multivalent signalling proteins.Nature2012483738933634010.1038/nature1087922398450
    [Google Scholar]
  20. LarsonA.G. NarlikarG.J. The role of phase separation in heterochromatin formation, function, and regulation.Biochemistry201857172540254810.1021/acs.biochem.8b0040129644850
    [Google Scholar]
  21. MitreaD.M. KriwackiR.W. Phase separation in biology; Functional organization of a higher order.Cell Commun. Signal.2016141110.1186/s12964‑015‑0125‑726727894
    [Google Scholar]
  22. BrangwynneC.P. EckmannC.R. CoursonD.S. RybarskaA. HoegeC. GharakhaniJ. JülicherF. HymanA.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation.Science200932459351729173210.1126/science.117204619460965
    [Google Scholar]
  23. BrangwynneC.P. MitchisonT.J. HymanA.A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.Proc. Natl. Acad. Sci. USA2011108114334433910.1073/pnas.101715010821368180
    [Google Scholar]
  24. Hernández-VegaA. BraunM. ScharrelL. JahnelM. WegmannS. HymanB.T. AlbertiS. DiezS. HymanA.A. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase.Cell Rep.201720102304231210.1016/j.celrep.2017.08.04228877466
    [Google Scholar]
  25. WegmannS. Liquid-liquid phase separation of tau protein in neurobiology and pathology.Adv. Exp. Med. Biol.2019118434135710.1007/978‑981‑32‑9358‑8_2532096048
    [Google Scholar]
  26. KanaanN.M. HamelC. GrabinskiT. CombsB. Liquid-liquid phase separation induces pathogenic tau conformations in vitro.Nat. Commun.2020111280910.1038/s41467‑020‑16580‑332499559
    [Google Scholar]
  27. RayS. SinghN. KumarR. PatelK. PandeyS. DattaD. MahatoJ. PanigrahiR. NavalkarA. MehraS. GadheL. ChatterjeeD. SawnerA.S. MaitiS. BhatiaS. GerezJ.A. ChowdhuryA. KumarA. PadinhateeriR. RiekR. KrishnamoorthyG. MajiS.K. α-Synuclein aggregation nucleates through liquid–liquid phase separation.Nat. Chem.202012870571610.1038/s41557‑020‑0465‑932514159
    [Google Scholar]
  28. PetronilhoE.C. PedroteM.M. MarquesM.A. PassosY.M. MotaM.F. JakobusB. SousaG.S. Pereira da CostaF. FelixA.L. FerrettiG.D.S. AlmeidaF.P. CordeiroY. VieiraT.C.R.G. de OliveiraG.A.P. SilvaJ.L. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands.Chem. Sci.202112217334734910.1039/D1SC01739J34163823
    [Google Scholar]
  29. AlbertiS. DormannD. Liquid–liquid phase separation in disease.Annu. Rev. Genet.201953117119410.1146/annurev‑genet‑112618‑04352731430179
    [Google Scholar]
  30. WegmannS. EftekharzadehB. TepperK. ZoltowskaK.M. BennettR.E. DujardinS. LaskowskiP.R. MacKenzieD. KamathT. ComminsC. VanderburgC. RoeA.D. FanZ. MolliexA.M. Hernandez-VegaA. MullerD. HymanA.A. MandelkowE. TaylorJ.P. HymanB.T. Tau protein liquid–liquid phase separation can initiate tau aggregation.EMBO J.2018377e9804910.15252/embj.20179804929472250
    [Google Scholar]
  31. MurakamiT. QamarS. LinJ.Q. SchierleG.S.K. ReesE. MiyashitaA. CostaA.R. DoddR.B. ChanF.T.S. MichelC.H. Kronenberg-VersteegD. LiY. YangS.P. WakutaniY. MeadowsW. FerryR.R. DongL. TartagliaG.G. FavrinG. LinW.L. DicksonD.W. ZhenM. RonD. Schmitt-UlmsG. FraserP.E. ShneiderN.A. HoltC. VendruscoloM. KaminskiC.F. St George-HyslopP. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP Granule function.Neuron201588467869010.1016/j.neuron.2015.10.03026526393
    [Google Scholar]
  32. PatelA. LeeH.O. JawerthL. MaharanaS. JahnelM. HeinM.Y. StoynovS. MahamidJ. SahaS. FranzmannT.M. PozniakovskiA. PoserI. MaghelliN. RoyerL.A. WeigertM. MyersE.W. GrillS. DrechselD. HymanA.A. AlbertiS. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation.Cell201516251066107710.1016/j.cell.2015.07.04726317470
    [Google Scholar]
  33. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. Ray ChaudhuriK. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑334210995
    [Google Scholar]
  34. DasS. ZhangZ. AngL.C. Clinicopathological overlap of neurodegenerative diseases: A comprehensive review.J. Clin. Neurosci.202078303310.1016/j.jocn.2020.04.08832354648
    [Google Scholar]
  35. MatejR. TesarA. RusinaR. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview.Clin. Biochem.201973263110.1016/j.clinbiochem.2019.08.00531400306
    [Google Scholar]
  36. IrwinD.J. LeeV.M.Y. TrojanowskiJ.Q. Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies.Nat. Rev. Neurosci.201314962663610.1038/nrn354923900411
    [Google Scholar]
  37. ChaudhuriP. PrajapatiK.P. AnandB.G. DubeyK. KarK. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism.Ageing Res. Rev.20195610093710.1016/j.arr.2019.10093731430565
    [Google Scholar]
  38. BizaK.V. NastouK.C. TsiolakiP.L. MastrokalouC.V. HamodrakasS.J. IconomidouV.A. The amyloid interactome: Exploring protein aggregation.PLoS One2017123e017316310.1371/journal.pone.017316328249044
    [Google Scholar]
  39. LuoJ. WärmländerS.K.T.S. GräslundA. AbrahamsJ.P. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the amyloid cascade hypothesis.J. Biol. Chem.201629132164851649310.1074/jbc.R116.71457627325705
    [Google Scholar]
  40. MarshS.E. Blurton-JonesM. Examining the mechanisms that link β-amyloid and α-synuclein pathologies.Alzheimers Res. Ther.2012421110.1186/alzrt10922546279
    [Google Scholar]
  41. GalpernW.R. LangA.E. Interface between tauopathies and synucleinopathies: A tale of two proteins.Ann. Neurol.200659344945810.1002/ana.2081916489609
    [Google Scholar]
  42. IrwinD.J. GrossmanM. WeintraubD. HurtigH.I. DudaJ.E. XieS.X. LeeE.B. Van DeerlinV.M. LopezO.L. KoflerJ.K. NelsonP.T. JichaG.A. WoltjerR. QuinnJ.F. KayeJ. LeverenzJ.B. TsuangD. LongfellowK. YearoutD. KukullW. KeeneC.D. MontineT.J. ZabetianC.P. TrojanowskiJ.Q. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis.Lancet Neurol.2017161556510.1016/S1474‑4422(16)30291‑527979356
    [Google Scholar]
  43. NagaishiM. YokooH. NakazatoY. Tau-positive glial cytoplasmic granules in multiple system atrophy.Neuropathology201131329930510.1111/j.1440‑1789.2010.01159.x21062361
    [Google Scholar]
  44. IrwinD.J. WhiteM.T. ToledoJ.B. XieS.X. RobinsonJ.L. Van DeerlinV. LeeV.M.Y. LeverenzJ.B. MontineT.J. DudaJ.E. HurtigH.I. TrojanowskiJ.Q. Neuropathologic substrates of Parkinson disease dementia.Ann. Neurol.201272458759810.1002/ana.2365923037886
    [Google Scholar]
  45. HorvathJ. HerrmannF. R. BurkhardP. R. BourasC. KövariE. Neuropathology of dementia in a large cohort of patients with Parkinson's disease.Parkinsonism Relat Disord2013191086486810.1016/j.parkreldis.2013.05.010
    [Google Scholar]
  46. RuffmannC. CalboliF.C.F. BraviI. GvericD. CurryL.K. de SmithA. PavlouS. BuxtonJ.L. BlakemoreA.I.F. TakousisP. MolloyS. PicciniP. DexterD.T. RoncaroliF. GentlemanS.M. MiddletonL.T. Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases.Neuropathol. Appl. Neurobiol.201642543645010.1111/nan.1229426527105
    [Google Scholar]
  47. ComptaY. ParkkinenL. O’SullivanS.S. VandrovcovaJ. HoltonJ.L. CollinsC. LashleyT. KallisC. WilliamsD.R. de SilvaR. LeesA.J. ReveszT. Lewy and Alzheimer-type pathologies in Parkinson’s disease dementia: Which is more important?Brain201113451493150510.1093/brain/awr03121596773
    [Google Scholar]
  48. JellingerK.A. SeppiK. WenningG.K. PoeweW. Impact of coexistent Alzheimer pathology on the natural history of Parkinson’s disease.J. Neural Transm. (Vienna)2002109332933910.1007/s00702020002711956955
    [Google Scholar]
  49. IshizawaT. MattilaP. DaviesP. WangD. DicksonD.W. Colocalization of tau and alpha-synuclein epitopes in Lewy bodies.J. Neuropathol. Exp. Neurol.200362438939710.1093/jnen/62.4.38912722831
    [Google Scholar]
  50. ArimaK. HiraiS. SunoharaN. AotoK. IzumiyamaY. UédaK. IkedaK. KawaiM. Cellular co-localization of phosphorylated tau- and NACP/α-synuclein-epitopes in Lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies.Brain Res.19998431-2536110.1016/S0006‑8993(99)01848‑X10528110
    [Google Scholar]
  51. Colom-CadenaM. GelpiE. CharifS. BelbinO. BlesaR. MartíM.J. ClarimónJ. LleóA. Confluence of α-synuclein, tau, and β-amyloid pathologies in dementia with Lewy bodies.J. Neuropathol. Exp. Neurol.201372121203121210.1097/NEN.000000000000001824226269
    [Google Scholar]
  52. LuJ. ZhangS. MaX. JiaC. LiuZ. HuangC. LiuC. LiD. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation.J. Biol. Chem.2020295217470748010.1074/jbc.RA119.01228432291284
    [Google Scholar]
  53. ChauE. KimJ.R. α-synuclein-assisted oligomerization of β-amyloid (1–42).Arch. Biochem. Biophys.202271710912010.1016/j.abb.2022.10912035041853
    [Google Scholar]
  54. VasconcelosB. StancuI.C. BuistA. BirdM. WangP. VanoosthuyseA. Van KolenK. VerheyenA. Kienlen-CampardP. OctaveJ.N. BaatsenP. MoecharsD. DewachterI. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo.Acta Neuropathol.2016131454956910.1007/s00401‑015‑1525‑x26739002
    [Google Scholar]
  55. TaylorN.O. WeiM.T. StoneH.A. BrangwynneC.P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching.Biophys. J.201911771285130010.1016/j.bpj.2019.08.03031540706
    [Google Scholar]
  56. RossC. A. PoirierM. A. Protein aggregation and neurodegenerative disease.Nat Med200410SupplS10S1710.1038/nm1066
    [Google Scholar]
  57. AguzziA. O’ConnorT. Protein aggregation diseases: Pathogenicity and therapeutic perspectives.Nat. Rev. Drug Discov.20109323724810.1038/nrd305020190788
    [Google Scholar]
  58. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-beta peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑122120061647
    [Google Scholar]
  59. LuJ.X. QiangW. YauW.M. SchwietersC.D. MeredithS.C. TyckoR. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue.Cell201315461257126810.1016/j.cell.2013.08.03524034249
    [Google Scholar]
  60. GremerL. SchölzelD. SchenkC. ReinartzE. LabahnJ. RavelliR.B.G. TuscheM. Lopez-IglesiasC. HoyerW. HeiseH. WillboldD. SchröderG.F. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy.Science2017358635911611910.1126/science.aao282528882996
    [Google Scholar]
  61. FitzpatrickA.W.P. FalconB. HeS. MurzinA.G. MurshudovG. GarringerH.J. CrowtherR.A. GhettiB. GoedertM. ScheresS.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease.Nature2017547766218519010.1038/nature2300228678775
    [Google Scholar]
  62. IngelssonM. Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and other Lewy body disorders.Front. Neurosci.20161040810.3389/fnins.2016.0040827656123
    [Google Scholar]
  63. TuttleM.D. ComellasG. NieuwkoopA.J. CovellD.J. BertholdD.A. KloepperK.D. CourtneyJ.M. KimJ.K. BarclayA.M. KendallA. WanW. StubbsG. SchwietersC.D. LeeV.M.Y. GeorgeJ.M. RienstraC.M. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein.Nat. Struct. Mol. Biol.201623540941510.1038/nsmb.319427018801
    [Google Scholar]
  64. LiY. ZhaoC. LuoF. LiuZ. GuiX. LuoZ. ZhangX. LiD. LiuC. LiX. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.Cell Res.201828989790310.1038/s41422‑018‑0075‑x30065316
    [Google Scholar]
  65. Guerrero-FerreiraR. TaylorN.M.I. MonaD. RinglerP. LauerM.E. RiekR. BritschgiM. StahlbergH. Cryo-EM structure of alpha-synuclein fibrils.eLife20187e3640210.7554/eLife.3640229969391
    [Google Scholar]
  66. LiB. GeP. MurrayK.A. ShethP. ZhangM. NairG. SawayaM.R. ShinW.S. BoyerD.R. YeS. EisenbergD.S. ZhouZ.H. JiangL. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel.Nat. Commun.201891360910.1038/s41467‑018‑05971‑230190461
    [Google Scholar]
  67. CiryamP. Lambert-SmithI.A. BeanD.M. FreerR. CidF. TartagliaG.G. SaundersD.N. WilsonM.R. OliverS.G. MorimotoR.I. DobsonC.M. VendruscoloM. FavrinG. YerburyJ.J. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS.Proc. Natl. Acad. Sci. USA201711420E3935E394310.1073/pnas.161385411428396410
    [Google Scholar]
  68. HalleggerM. ChakrabartiA.M. LeeF.C.Y. LeeB.L. AmaliettiA.G. OdehH.M. CopleyK.E. RubienJ.D. PortzB. KuretK. HuppertzI. RauF. PataniR. FawziN.L. ShorterJ. LuscombeN.M. UleJ. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire.Cell20211841846804696.e2210.1016/j.cell.2021.07.01834380047
    [Google Scholar]
  69. GanserL.R. NiakiA.G. YuanX. HuangE. DengD. DjajaN.A. GeY. CraigA. LangloisO. MyongS. The roles of FUS-RNA binding domain and low complexity domain in RNA-dependent phase separation.Structure2024322177187.e510.1016/j.str.2023.11.00638070499
    [Google Scholar]
  70. TsoiP.S. QuanM.D. ChoiK.J. DaoK.M. FerreonJ.C. FerreonA.C.M. Electrostatic modulation of hnRNPA1 low-complexity domain liquid–liquid phase separation and aggregation.Protein Sci.20213071408141710.1002/pro.410833982369
    [Google Scholar]
  71. ZahnR. LiuA. LührsT. RiekR. von SchroetterC. López GarcíaF. BilleterM. CalzolaiL. WiderG. WüthrichK. NMR solution structure of the human prion protein.Proc. Natl. Acad. Sci. USA200097114515010.1073/pnas.97.1.14510618385
    [Google Scholar]
  72. AguzziA. CalellaA.M. Prions: Protein aggregation and infectious diseases.Physiol. Rev.20098941105115210.1152/physrev.00006.200919789378
    [Google Scholar]
  73. IrwinD.J. HurtigH.I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders.J. Alzheimers Dis. Parkinsonism20188444410.4172/2161‑0460.100044430473927
    [Google Scholar]
  74. PanL. MengL. HeM. ZhangZ. Tau in the pathophysiology of Parkinson’s disease.J. Mol. Neurosci.202171112179219110.1007/s12031‑020‑01776‑533459970
    [Google Scholar]
  75. HelyM.A. ReidW.G.J. AdenaM.A. HallidayG.M. MorrisJ.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years.Mov. Disord.200823683784410.1002/mds.2195618307261
    [Google Scholar]
  76. LiJ. RuskeyJ.A. ArnulfI. DauvilliersY. HuM.T.M. HöglB. LeblondC.S. ZhouS. AmbalavananA. RossJ.P. BourassaC.V. SpiegelmanD. LaurentS.B. StefaniA. Charley MonacaC. Cochen De CockV. BoivinM. Ferini-StrambiL. PlazziG. AntelmiE. YoungP. HeidbrederA. LabbeC. FermanT.J. DionP.A. FanD. DesautelsA. GagnonJ.F. DupréN. FonE.A. MontplaisirJ.Y. BoeveB.F. PostumaR.B. RouleauG.A. RossO.A. Gan-OrZ. Full sequencing and haplotype analysis of MAPT in Parkinson’s disease and rapid eye movement sleep behavior disorder.Mov. Disord.20183361016102010.1002/mds.2738529756641
    [Google Scholar]
  77. StefanssonH. HelgasonA. ThorleifssonG. SteinthorsdottirV. MassonG. BarnardJ. BakerA. JonasdottirA. IngasonA. GudnadottirV.G. DesnicaN. HicksA. GylfasonA. GudbjartssonD.F. JonsdottirG.M. SainzJ. AgnarssonK. BirgisdottirB. GhoshS. OlafsdottirA. CazierJ.B. KristjanssonK. FriggeM.L. ThorgeirssonT.E. GulcherJ.R. KongA. StefanssonK. A common inversion under selection in Europeans.Nat. Genet.200537212913710.1038/ng150815654335
    [Google Scholar]
  78. NallsM.A. PlagnolV. HernandezD.G. SharmaM. SheerinU.M. SaadM. Simón-SánchezJ. SchulteC. LesageS. SveinbjörnsdóttirS. StefánssonK. MartinezM. HardyJ. HeutinkP. BriceA. GasserT. SingletonA.B. WoodN.W. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies.Lancet2011377976664164910.1016/S0140‑6736(10)62345‑821292315
    [Google Scholar]
  79. Setó-SalviaN. ClarimónJ. PagonabarragaJ. Pascual-SedanoB. CampolongoA. CombarrosO. MateoJ.I. RegañaD. Martínez-CorralM. MarquiéM. AlcoleaD. Suárez-CalvetM. Molina-PorcelL. DolsO. Gómez-IslaT. BlesaR. LleóA. KulisevskyJ. Dementia risk in Parkinson disease: Disentangling the role of MAPT haplotypes.Arch. Neurol.201168335936410.1001/archneurol.2011.1721403021
    [Google Scholar]
  80. Williams-GrayC.H. EvansJ.R. GorisA. FoltynieT. BanM. RobbinsT.W. BrayneC. KolachanaB.S. WeinbergerD.R. SawcerS.J. BarkerR.A. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort.Brain2009132112958296910.1093/brain/awp24519812213
    [Google Scholar]
  81. MollenhauerB. Caspell-GarciaC.J. CoffeyC.S. TaylorP. ShawL.M. TrojanowskiJ.Q. SingletonA. FrasierM. MarekK. GalaskoD. MarekK. JenningsD. LaschS. TannerC. SimuniT. CoffeyC. KieburtzK. WilsonR. PoeweW. MollenhauerB. ForoudT. ShererT. ChowdhuryS. FrasierM. KopilC. ArnedoV. RudolphA. CasaceliC. SeibylJ. MendickS. SchuffN. CaspellC. UribeL. FosterE. GloerK. YankeyJ. TogaA. CrawfordK. CasalinP. MalferrariG. MollenhauerB. GalaskoD. SingletonA. HawkinsK.A. RussellD. FactorS. HogarthP. StandaertD. HauserR. JankovicJ. SternM. ChahineL. LeverenzJ. FrankS. RichardI. SeppiK. ShillH. FernandezH. BergD. WursterI. GalaskoD. MariZ. BrooksD. PaveseN. BaroneP. IsaacsonS. EspayA. RoweD. BrandaburM. TetrudJ. LiangG. IranzoA. TolosaE. LearyL. RiordanC. ReesL. PortilloA. LenahanA. WilliamsK. GuthrieS. RawlinsA. HarlanS. HunterC. TranB. DarinA. LinderC. BacaM. VenkovH. ThomasC-A. JamesR. DeeleyC. BishopC. Fabienne Sprenger WillekeD. ObradovS. MuleJ. MonahanN. GaussK. FontaineD. GigliottiC. McCoyA. DunlopB. ShahB. SusanA. JamesA. SilversteinR. EspayK. RanolaM. MarekK. InvestigatorP. JenningsD. LaschS. SiderowfA. CarolineT. SimuniT. CoffeyC. Karl Kieburtz FlaggE. ChowdhuryS. PoeweW. MollenhauerB. ShererT. FrasierM. MeunierC. RudolphA. CasaceliC. SeibylJ. InvestigatorP. MendickS. SchuffN. Ying Zhang TogaA. CrawfordK. AnsbachA. De BlasioP. PiovellaM. TrojanowskiJ. ShawL. SingletonA. HawkinsK. PsyDMichaelJ. EberlingJ. BrooksD. RussellD. LearyL. FactorS. SommerfeldB. HogarthP. PighettiE. WilliamsK. StandaertD. GuthrieS. HauserR. DelgadoH. JankovicJ. HunterC. SternM. TranB. LeverenzJ. BacaM. FrankS. ThomasC-A. RichardI. DeeleyC. ReesL. SprengerF. OertelW. LangE. ShillH. ObradovS. FernandezH. WintersA. BergD. GaussK. GalaskoD. FontaineD. MariZ. GerstenhaberM. BrooksD. MalloyS. BaroneP. LongoK. ComeryT. RavinaB. GrachevI. GallagherK. CollinsM. WidnellK.L. OstrowizkiS. FontouraP. La-RocheF.H. HoT. LuthmanJ. van der BrugM. ReithA.D. TaylorP. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls.Neurology201789191959196910.1212/WNL.000000000000460929030452
    [Google Scholar]
  82. DolatshahiM. PourmirbabaeiS. KamalianA. Ashraf-GanjoueiA. YaseriM. AarabiM.H. Longitudinal alterations of alpha-synuclein, amyloid beta, total, and phosphorylated tau in cerebrospinal fluid and correlations between their changes in Parkinson’s disease.Front. Neurol.2018956010.3389/fneur.2018.0056030050494
    [Google Scholar]
  83. SenguptaU. Guerrero-MuñozM.J. Castillo-CarranzaD.L. Lasagna-ReevesC.A. GersonJ.E. Paulucci-HolthauzenA.A. KrishnamurthyS. FarhedM. JacksonG.R. KayedR. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies.Biol. Psychiatry2015781067268310.1016/j.biopsych.2014.12.01925676491
    [Google Scholar]
  84. HuX. YangY. GongD. Changes of cerebrospinal fluid Aβ42, t-tau, and p-tau in Parkinson’s disease patients with cognitive impairment relative to those with normal cognition: a meta-analysis.Neurol. Sci.201738111953196110.1007/s10072‑017‑3088‑128808876
    [Google Scholar]
  85. SchragA. SiddiquiU.F. AnastasiouZ. WeintraubD. SchottJ.M. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: A cohort study.Lancet Neurol.2017161667510.1016/S1474‑4422(16)30328‑327866858
    [Google Scholar]
  86. LiuC. CholertonB. ShiM. GinghinaC. CainK.C. AuingerP. ZhangJ. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson’s disease.Parkinsonism Relat. Disord.201521327127610.1016/j.parkreldis.2014.12.02725596881
    [Google Scholar]
  87. AarslandD. AndersenK. LarsenJ.P. LolkA. Kragh-SørensenP. Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study.Arch. Neurol.200360338739210.1001/archneur.60.3.38712633150
    [Google Scholar]
  88. ButerT.C. van den HoutA. MatthewsF.E. LarsenJ.P. BrayneC. AarslandD. Dementia and survival in Parkinson disease.Neurology200870131017102210.1212/01.wnl.0000306632.43729.2418362281
    [Google Scholar]
  89. Přikrylová VranováH. MarešJ. HluštíkP. NevrlýM. StejskalD. ZapletalováJ. ObereigneruR. KaňovskýP. Tau protein and beta-amyloid1-42 CSF levels in different phenotypes of Parkinson’s disease.J. Neural Transm. (Vienna)2012119335336210.1007/s00702‑011‑0708‑421892760
    [Google Scholar]
  90. ToledoJ.B. GopalP. RaibleK. IrwinD.J. BrettschneiderJ. SedorS. WaitsK. BoludaS. GrossmanM. Van DeerlinV.M. LeeE.B. ArnoldS.E. DudaJ.E. HurtigH. LeeV.M.Y. AdlerC.H. BeachT.G. TrojanowskiJ.Q. Pathological α-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology.Acta Neuropathol.2016131339340910.1007/s00401‑015‑1526‑926721587
    [Google Scholar]
  91. HamiltonR.L. Lewy bodies in Alzheimer’s disease: A neuropathological review of 145 cases using alpha-synuclein immunohistochemistry.Brain Pathol.200010337838410.1111/j.1750‑3639.2000.tb00269.x10885656
    [Google Scholar]
  92. UchikadoH. LinW.L. DeLuciaM.W. DicksonD.W. Alzheimer disease with amygdala Lewy bodies: A distinct form of alpha-synucleinopathy.J. Neuropathol. Exp. Neurol.200665768569710.1097/01.jnen.0000225908.90052.0716825955
    [Google Scholar]
  93. ClintonL.K. Blurton-JonesM. MyczekK. TrojanowskiJ.Q. LaFerlaF.M. Synergistic Interactions between Abeta, tau, and alpha-synuclein: Acceleration of neuropathology and cognitive decline.J. Neurosci.201030217281728910.1523/JNEUROSCI.0490‑10.201020505094
    [Google Scholar]
  94. ToledoJ.B. BrettschneiderJ. GrossmanM. ArnoldS.E. HuW.T. XieS.X. LeeV.M.Y. ShawL.M. TrojanowskiJ.Q. CSF biomarkers cutoffs: The importance of coincident neuropathological diseases.Acta Neuropathol.20121241233510.1007/s00401‑012‑0983‑722526019
    [Google Scholar]
  95. OnoK. TakahashiR. IkedaT. YamadaM. Cross-seeding effects of amyloid β-protein and α-synuclein.J. Neurochem.2012122588389010.1111/j.1471‑4159.2012.07847.x22734715
    [Google Scholar]
  96. CandrevaJ. ChauE. RiceM.E. KimJ.R. Interactions between soluble species of β-amyloid and α-synuclein promote oligomerization while inhibiting fibrillization.Biochemistry202059442543510.1021/acs.biochem.9b0065531854188
    [Google Scholar]
  97. ForessiN.N. RodríguezL.C. CelejM.S. Heterotypic liquid-liquid phase separation of tau and α-synuclein: Implications for overlapping neuropathologies.Biochim. Biophys. Acta. Proteins Proteomics20231871614095010.1016/j.bbapap.2023.14095037574035
    [Google Scholar]
  98. RodríguezL.C. ForessiN.N. CelejM.S. Modulation of α-synuclein phase separation by biomolecules.Biochim. Biophys. Acta. Proteins Proteomics20231871214088510.1016/j.bbapap.2022.14088536481455
    [Google Scholar]
  99. GraciaP. PolancoD. Tarancón-DíezJ. SerraI. BracciM. OrozJ. LaurentsD.V. GarcíaI. CremadesN. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau.Nat. Commun.2022131458610.1038/s41467‑022‑32350‑935933508
    [Google Scholar]
  100. SiegertA. RankovicM. FavrettoF. Ukmar-GodecT. StrohäkerT. BeckerS. ZweckstetterM. Interplay between tau and α-synuclein liquid–liquid phase separation.Protein Sci.20213071326133610.1002/pro.402533452693
    [Google Scholar]
  101. JensenP.H. HagerH. NielsenM.S. HøjrupP. GliemannJ. JakesR. α-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356.J. Biol. Chem.199927436254812548910.1074/jbc.274.36.2548110464279
    [Google Scholar]
  102. OikawaT. NonakaT. TeradaM. TamaokaA. HisanagaS. HasegawaM. α-Synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly.J. Biol. Chem.201629129150461505610.1074/jbc.M116.73635527226637
    [Google Scholar]
  103. BhasneK. SebastianS. JainN. MukhopadhyayS. Synergistic amyloid switch triggered by early heterotypic oligomerization of intrinsically disordered α-synuclein and tau.J. Mol. Biol.2018430162508252010.1016/j.jmb.2018.04.02029704492
    [Google Scholar]
  104. MasliahE. RockensteinE. VeinbergsI. SagaraY. MalloryM. HashimotoM. MuckeL. β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease.Proc. Natl. Acad. Sci. USA20019821122451225010.1073/pnas.21141239811572944
    [Google Scholar]
  105. WalshD.M. KlyubinI. FadeevaJ.V. CullenW.K. AnwylR. WolfeM.S. RowanM.J. SelkoeD.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo.Nature2002416688053553910.1038/416535a11932745
    [Google Scholar]
  106. LesnéS. KohM.T. KotilinekL. KayedR. GlabeC.G. YangA. GallagherM. AsheK.H. A specific amyloid-β protein assembly in the brain impairs memory.Nature2006440708235235710.1038/nature0453316541076
    [Google Scholar]
  107. ShigenagaM.K. HagenT.M. AmesB.N. Oxidative damage and mitochondrial decay in aging.Proc. Natl. Acad. Sci. USA19949123107711077810.1073/pnas.91.23.107717971961
    [Google Scholar]
  108. HandaA.K. FatimaT. MattooA.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease.Front Chem.201861010.3389/fchem.2018.0001029468148
    [Google Scholar]
  109. HigashiS. IsekiE. YamamotoR. MinegishiM. HinoH. FujisawaK. TogoT. KatsuseO. UchikadoH. FurukawaY. KosakaK. AraiH. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies.Brain Res.2007118428429410.1016/j.brainres.2007.09.04817963732
    [Google Scholar]
  110. McAleeseK.E. WalkerL. ErskineD. ThomasA.J. McKeithI.G. AttemsJ. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing.Brain Pathol.201727447247910.1111/bpa.1242427495267
    [Google Scholar]
  111. RobinsonJ.L. LeeE.B. XieS.X. RennertL. SuhE. BredenbergC. CaswellC. Van DeerlinV.M. YanN. YousefA. HurtigH.I. SiderowfA. GrossmanM. McMillanC.T. MillerB. DudaJ.E. IrwinD.J. WolkD. ElmanL. McCluskeyL. Chen-PlotkinA. WeintraubD. ArnoldS.E. BrettschneiderJ. LeeV.M.Y. TrojanowskiJ.Q. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated.Brain201814172181219310.1093/brain/awy14629878075
    [Google Scholar]
  112. SmithV.D. BachstetterA.D. IghodaroE. RobertsK. AbnerE.L. FardoD.W. NelsonP.T. Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi.Brain Pathol.201828226427310.1111/bpa.1250528281308
    [Google Scholar]
  113. YokotaO. DavidsonY. AraiT. HasegawaM. AkiyamaH. IshizuH. TeradaS. SikkinkS. Pickering-BrownS. MannD.M.A. Effect of topographical distribution of α-synuclein pathology on TDP-43 accumulation in Lewy body disease.Acta Neuropathol.2010120678980110.1007/s00401‑010‑0731‑920669025
    [Google Scholar]
  114. Nakashima-YasudaH. UryuK. RobinsonJ. XieS.X. HurtigH. DudaJ.E. ArnoldS.E. SiderowfA. GrossmanM. LeverenzJ.B. WoltjerR. LopezO.L. HamiltonR. TsuangD.W. GalaskoD. MasliahE. KayeJ. ClarkC.M. MontineT.J. LeeV.M.Y. TrojanowskiJ.Q. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases.Acta Neuropathol.2007114322122910.1007/s00401‑007‑0261‑217653732
    [Google Scholar]
  115. AokiN. MurrayM.E. OgakiK. FujiokaS. RutherfordN.J. RademakersR. RossO.A. DicksonD.W. Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A.Acta Neuropathol.20151291536410.1007/s00401‑014‑1358‑z25367383
    [Google Scholar]
  116. UemuraM.T. RobinsonJ.L. CousinsK.A.Q. TropeaT.F. KargilisD.C. McBrideJ.D. SuhE. XieS.X. XuY. PortaS. UemuraN. Van DeerlinV.M. WolkD.A. IrwinD.J. BrundenK.R. LeeV.M.Y. LeeE.B. TrojanowskiJ.Q. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease.Acta Neuropathol.20221431153110.1007/s00401‑021‑02383‑334854996
    [Google Scholar]
  117. KaranthS. NelsonP.T. KatsumataY. KryscioR.J. SchmittF.A. FardoD.W. CykowskiM.D. JichaG.A. Van EldikL.J. AbnerE.L. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults.JAMA Neurol.202077101299130710.1001/jamaneurol.2020.174132568358
    [Google Scholar]
  118. MontalbanoM. McAllenS. CascioF.L. SenguptaU. GarciaS. BhattN. EllsworthA. HeidelmanE.A. JohnsonO.D. DoskocilS. KayedR. TDP-43 and tau oligomers in Alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia.Neurobiol. Dis.202014610513010.1016/j.nbd.2020.10513033065281
    [Google Scholar]
  119. Guerrero-MuñozM.J. Castillo-CarranzaD.L. KrishnamurthyS. Paulucci-HolthauzenA.A. SenguptaU. Lasagna-ReevesC.A. AhmadY. JacksonG.R. KayedR. Amyloid-β oligomers as a template for secondary amyloidosis in Alzheimer’s disease.Neurobiol. Dis.201471142310.1016/j.nbd.2014.08.00825134727
    [Google Scholar]
  120. LatimerC.S. StairJ.G. HincksJ.C. CurreyH.N. BirdT.D. KeeneC.D. KraemerB.C. LiachkoN.F. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans.Dis. Model. Mech.2022154dmm04932310.1242/dmm.04932335178571
    [Google Scholar]
  121. JiangL. LinW. ZhangC. AshP.E.A. VermaM. KwanJ. van VlietE. YangZ. CruzA.L. BoudeauS. MaziukB.F. LeiS. SongJ. AlvarezV.E. HovdeS. AbisambraJ.F. KuoM.H. KanaanN. MurrayM.E. CraryJ.F. ZhaoJ. ChengJ.X. PetrucelliL. LiH. EmiliA. WolozinB. Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy.Mol. Cell2021812042094227.e1210.1016/j.molcel.2021.07.03834453888
    [Google Scholar]
  122. ShihY.H. TuL.H. ChangT.Y. GanesanK. ChangW.W. ChangP.S. FangY.S. LinY.T. JinL.W. ChenY.R. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer’s disease.Nat. Commun.2020111595010.1038/s41467‑020‑19786‑733230138
    [Google Scholar]
  123. LaosV. BishopD. GangulyP. SchonfeldG. TrappE. CantrellK.L. BurattoS.K. SheaJ.E. BowersM.T. Catalytic cross talk between key peptide fragments that couple Alzheimer’s disease with amyotrophic lateral sclerosis.J. Am. Chem. Soc.202114393494350210.1021/jacs.0c1272933621087
    [Google Scholar]
  124. DhakalS. WyantC.E. GeorgeH.E. MorganS.E. RangachariV. Prion-like C-terminal domain of tdp-43 and α-synuclein interact synergistically to generate neurotoxic hybrid fibrils.J. Mol. Biol.20214331016695310.1016/j.jmb.2021.16695333771571
    [Google Scholar]
  125. DhakalS. MondalM. MirzazadehA. BanerjeeS. GhoshA. RangachariV. α-Synuclein emulsifies TDP-43 prion-like domain—RNA liquid droplets to promote heterotypic amyloid fibrils.Commun. Biol.202361122710.1038/s42003‑023‑05608‑138052886
    [Google Scholar]
  126. DhakalS. RobangA.S. BhattN. PuangmalaiN. FungL. KayedR. ParavastuA.K. RangachariV. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein.J. Biol. Chem.20222981110249810.1016/j.jbc.2022.10249836116552
    [Google Scholar]
  127. ZinsznerH. SokJ. ImmanuelD. YinY. RonD. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling.J. Cell Sci.1997110151741175010.1242/jcs.110.15.17419264461
    [Google Scholar]
  128. AyalaY.M. ZagoP. D’AmbrogioA. XuY.F. PetrucelliL. BurattiE. BaralleF.E. Structural determinants of the cellular localization and shuttling of TDP-43.J. Cell Sci.2008121223778378510.1242/jcs.03895018957508
    [Google Scholar]
  129. GeuensT. BouhyD. TimmermanV. The hnRNP family: Insights into their role in health and disease.Hum. Genet.2016135885186710.1007/s00439‑016‑1683‑527215579
    [Google Scholar]
  130. ColombritaC. ZennaroE. FalliniC. WeberM. SommacalA. BurattiE. SilaniV. RattiA. TDP-43 is recruited to stress granules in conditions of oxidative insult.J. Neurochem.200911141051106110.1111/j.1471‑4159.2009.06383.x19765185
    [Google Scholar]
  131. BoscoD.A. LemayN. KoH.K. ZhouH. BurkeC. KwiatkowskiT.J.Jr SappP. McKenna-YasekD. BrownR.H.Jr HaywardL.J. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules.Hum. Mol. Genet.201019214160417510.1093/hmg/ddq33520699327
    [Google Scholar]
  132. GalJ. ZhangJ. KwinterD.M. ZhaiJ. JiaH. JiaJ. ZhuH. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants.Neurobiol. Aging201132122323.e272323.e4010.1016/j.neurobiolaging.2010.06.01020674093
    [Google Scholar]
  133. SreedharanJ. BlairI.P. TripathiV.B. HuX. VanceC. RogeljB. AckerleyS. DurnallJ.C. WilliamsK.L. BurattiE. BaralleF. de BellerocheJ. MitchellJ.D. LeighP.N. Al-ChalabiA. MillerC.C. NicholsonG. ShawC.E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis.Science200831958701668167210.1126/science.115458418309045
    [Google Scholar]
  134. VanceC. RogeljB. HortobágyiT. De VosK.J. NishimuraA.L. SreedharanJ. HuX. SmithB. RuddyD. WrightP. GanesalingamJ. WilliamsK.L. TripathiV. Al-SarajS. Al-ChalabiA. LeighP.N. BlairI.P. NicholsonG. de BellerocheJ. GalloJ.M. MillerC.C. ShawC.E. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6.Science200932359181208121110.1126/science.116594219251628
    [Google Scholar]
  135. KimH.J. KimN.C. WangY.D. ScarboroughE.A. MooreJ. DiazZ. MacLeaK.S. FreibaumB. LiS. MolliexA. KanagarajA.P. CarterR. BoylanK.B. WojtasA.M. RademakersR. PinkusJ.L. GreenbergS.A. TrojanowskiJ.Q. TraynorB.J. SmithB.N. ToppS. GkaziA.S. MillerJ. ShawC.E. KottlorsM. KirschnerJ. PestronkA. LiY.R. FordA.F. GitlerA.D. BenatarM. KingO.D. KimonisV.E. RossE.D. WeihlC.C. ShorterJ. TaylorJ.P. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.Nature2013495744246747310.1038/nature1192223455423
    [Google Scholar]
  136. FreibaumB.D. ChittaR.K. HighA.A. TaylorJ.P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery.J. Proteome Res.2010921104112010.1021/pr901076y20020773
    [Google Scholar]
  137. BurattiE. BrindisiA. GiombiM. TisminetzkyS. AyalaY.M. BaralleF.E. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing.J. Biol. Chem.200528045375723758410.1074/jbc.M50555720016157593
    [Google Scholar]
  138. LeeE.B. LeeV.M.Y. TrojanowskiJ.Q. Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration.Nat. Rev. Neurosci.2012131385010.1038/nrn312122127299
    [Google Scholar]
  139. LingS.C. AlbuquerqueC.P. HanJ.S. Lagier-TourenneC. TokunagaS. ZhouH. ClevelandD.W. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS.Proc. Natl. Acad. Sci. USA201010730133181332310.1073/pnas.100822710720624952
    [Google Scholar]
  140. KryndushkinD. WicknerR.B. ShewmakerF. FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis.Protein Cell20112322323610.1007/s13238‑011‑1525‑021452073
    [Google Scholar]
  141. DemonginC. TranierS. JoshiV. CeschiL. DesforgesB. PastréD. HamonL. RNA and the RNA-binding protein FUS act in concert to prevent TDP-43 spatial segregation.J. Biol. Chem.2024300310571610.1016/j.jbc.2024.10571638311174
    [Google Scholar]
  142. CookC.N. WuY. OdehH.M. GendronT.F. Jansen-WestK. del RossoG. YueM. JiangP. GomesE. TongJ. DaughrityL.M. AvendanoN.M. Castanedes-CaseyM. ShaoW. OskarssonB. TomassyG.S. McCampbellA. RigoF. DicksonD.W. ShorterJ. ZhangY.J. PetrucelliL. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy.Sci. Transl. Med.202012559eabb377410.1126/scitranslmed.abb377432878979
    [Google Scholar]
  143. RyanV.H. DignonG.L. ZerzeG.H. ChabataC.V. SilvaR. ConicellaA.E. AmayaJ. BurkeK.A. MittalJ. FawziN.L. Mechanistic view of hnrnpa2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation.Mol. Cell2018693465479.e710.1016/j.molcel.2017.12.02229358076
    [Google Scholar]
  144. ChewJ. CookC. GendronT.F. Jansen-WestK. del RossoG. DaughrityL.M. Castanedes-CaseyM. KurtiA. StankowskiJ.N. DisneyM.D. RothsteinJ.D. DicksonD.W. FryerJ.D. ZhangY.J. PetrucelliL. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy.Mol. Neurodegener.2019141910.1186/s13024‑019‑0310‑z30767771
    [Google Scholar]
  145. ChewJ. GendronT.F. PrudencioM. SasaguriH. ZhangY.J. Castanedes-CaseyM. LeeC.W. Jansen-WestK. KurtiA. MurrayM.E. BieniekK.F. BauerP.O. WhitelawE.C. RousseauL. StankowskiJ.N. StetlerC. DaughrityL.M. PerkersonE.A. DesaroP. JohnstonA. OverstreetK. EdbauerD. RademakersR. BoylanK.B. DicksonD.W. FryerJ.D. PetrucelliL. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits.Science201534862391151115410.1126/science.aaa934425977373
    [Google Scholar]
  146. LiuY. PattamattaA. ZuT. ReidT. BardhiO. BorcheltD.R. YachnisA.T. RanumL.P.W. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD.Neuron201690352153410.1016/j.neuron.2016.04.00527112499
    [Google Scholar]
  147. KoppersM. BlokhuisA.M. WestenengH.J. TerpstraM.L. ZundelC.A.C. Vieira de SáR. SchellevisR.D. WaiteA.J. BlakeD.J. VeldinkJ.H. van den BergL.H. PasterkampR.J. C 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits.Ann. Neurol.201578342643810.1002/ana.2445326044557
    [Google Scholar]
  148. JiangJ. ZhuQ. GendronT.F. SaberiS. McAlonis-DownesM. SeelmanA. StaufferJ.E. Jafar-nejadP. DrennerK. SchulteD. ChunS. SunS. LingS.C. MyersB. EngelhardtJ. KatzM. BaughnM. PlatoshynO. MarsalaM. WattA. HeyserC.J. ArdM.C. De MuynckL. DaughrityL.M. SwingD.A. TessarolloL. JungC.J. DelpouxA. UtzschneiderD.T. HedrickS.M. de JongP.J. EdbauerD. Van DammeP. PetrucelliL. ShawC.E. BennettC.F. Da CruzS. RavitsJ. RigoF. ClevelandD.W. Lagier-TourenneC. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs.Neuron201690353555010.1016/j.neuron.2016.04.00627112497
    [Google Scholar]
  149. LeeK.H. ZhangP. KimH.J. MitreaD.M. SarkarM. FreibaumB.D. CikaJ. CoughlinM. MessingJ. MolliexA. MaxwellB.A. KimN.C. TemirovJ. MooreJ. KolaitisR.M. ShawT.I. BaiB. PengJ. KriwackiR.W. TaylorJ.P. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles.Cell20161673774788.e1710.1016/j.cell.2016.10.00227768896
    [Google Scholar]
  150. SaberiS. StaufferJ.E. JiangJ. GarciaS.D. TaylorA.E. SchulteD. OhkuboT. SchloffmanC.L. MaldonadoM. BaughnM. RodriguezM.J. PizzoD. ClevelandD. RavitsJ. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis.Acta Neuropathol.2018135345947410.1007/s00401‑017‑1793‑829196813
    [Google Scholar]
  151. KovacsG.G. RahimiJ. StröbelT. LutzM.I. RegelsbergerG. StreichenbergerN. Perret-LiaudetA. HöftbergerR. LiberskiP.P. BudkaH. SikorskaB. Tau pathology in Creutzfeldt-Jakob disease revisited.Brain Pathol.201727333234410.1111/bpa.1241127377321
    [Google Scholar]
  152. HallinanG.I. HoqM.R. GhoshM. VagoF.S. FernandezA. GarringerH.J. VidalR. JiangW. GhettiB. Structure of Tau filaments in Prion protein amyloidoses.Acta Neuropathol.2021142222724110.1007/s00401‑021‑02336‑w34128081
    [Google Scholar]
  153. ZhaoJ. WuH. TangX. Tau internalization: A complex step in tau propagation.Ageing Res. Rev.20216710127210.1016/j.arr.2021.10127233571704
    [Google Scholar]
  154. RaiS.K. KhannaR. AvniA. MukhopadhyayS. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates.Proc. Natl. Acad. Sci. USA20231202e221633812010.1073/pnas.221633812036595668
    [Google Scholar]
  155. Haïk, S.; Privat, N.; Adjou, K.T.; Sazdovitch, V.; Dormont, D.; Duyckaerts, C.; Hauw, J.J. Alpha-synuclein-immunoreactive deposits in human and animal prion diseases.Acta Neuropathol.2002103551652010.1007/s00401‑001‑0499‑z11935269
    [Google Scholar]
  156. AgarwalA. AroraL. RaiS.K. AvniA. MukhopadhyayS. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion.Nat. Commun.2022131115410.1038/s41467‑022‑28797‑535241680
    [Google Scholar]
  157. ScialòC. CelauroL. ZattoniM. TranT.H. BistaffaE. ModaF. KammererR. BurattiE. LegnameG. The cellular prion protein increases the uptake and toxicity of TDP-43 fibrils.Viruses2021138162510.3390/v1308162534452489
    [Google Scholar]
  158. PolidoS.A. StuaniC. VoigtA. BanikP. KampsJ. BaderV. GroverP. KrauseL.J. ZerrI. MatschkeJ. GlatzelM. WinklhoferK.F. BurattiE. TatzeltJ. Cross-seeding by prion protein inactivates TDP-43.Brain2024147124025410.1093/brain/awad28937669322
    [Google Scholar]
  159. HanY. YeH. LiP. ZengY. YangJ. GaoM. SuZ. HuangY. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein.Int. J. Biol. Macromol.20222081072108110.1016/j.ijbiomac.2022.03.21535381286
    [Google Scholar]
  160. LiuY.Q. LiangC.Q. ChenZ.W. HuJ. HuJ.J. LuoY.Y. ChenY.X. LiY.M. 14-3-3ζ participates in the phase separation of phosphorylated and glycated tau and modulates the physiological and pathological functions of tau.ACS Chem. Neurosci.20231471220122510.1021/acschemneuro.3c0003436939323
    [Google Scholar]
  161. LiuH.N. WangT. HuJ.J. ChenL. ShiX. LiY.M. LuoS.Z. The disordered protein SERF promotes α-Synuclein aggregation through liquid–liquid phase separation.J. Biol. Chem.2024300310566710.1016/j.jbc.2024.10566738272228
    [Google Scholar]
  162. WangC. LiuY. YuB. PengY. ZhangX. JiangG. HeL. LiuM. Diverse roles of ScSERF in modifying the fibril growth of amyloidogenic proteins.Chemistry20232930e20220396510.1002/chem.20220396536914570
    [Google Scholar]
  163. DarlingA.L. DahrendorffJ. CreodoreS.G. DickeyC.A. BlairL.J. UverskyV.N. Small heat shock protein 22 kDa can modulate the aggregation and liquid–liquid phase separation behavior of tau.Protein Sci.20213071350135910.1002/pro.406033686711
    [Google Scholar]
  164. GuJ. WangC. HuR. LiY. ZhangS. SunY. WangQ. LiD. FangY. LiuC. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation.Cell Res.20213191024102710.1038/s41422‑021‑00526‑534239072
    [Google Scholar]
  165. WatanabeS. InamiH. OiwaK. MurataY. SakaiS. KomineO. SobueA. IguchiY. KatsunoM. YamanakaK. Aggresome formation and liquid–liquid phase separation independently induce cytoplasmic aggregation of TAR DNA-binding protein 43.Cell Death Dis.2020111090910.1038/s41419‑020‑03116‑233097688
    [Google Scholar]
  166. BoczekE.E. FürschJ. NiedermeierM.L. JawerthL. JahnelM. Ruer-GrußM. KammerK.M. HeidP. MedianiL. WangJ. YanX. PozniakovskiA. PoserI. MatejuD. HubatschL. CarraS. AlbertiS. HymanA.A. StengelF. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain.eLife202110e6937710.7554/eLife.6937734487489
    [Google Scholar]
  167. JosephJ.A. ReinhardtA. AguirreA. ChewP.Y. RussellK.O. EspinosaJ.R. GaraizarA. Collepardo-GuevaraR. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy.Nat. Comput. Sci.202111173274310.1038/s43588‑021‑00155‑335795820
    [Google Scholar]
  168. Sanchez-BurgosI. EspinosaJ.R. JosephJ.A. Collepardo-GuevaraR. Valency and binding affinity variations can regulate the multilayered organization of protein condensates with many components.Biomolecules202111227810.3390/biom1102027833672806
    [Google Scholar]
  169. EspinosaJ.R. JosephJ.A. Sanchez-BurgosI. GaraizarA. FrenkelD. Collepardo-GuevaraR. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.Proc. Natl. Acad. Sci. USA202011724132381324710.1073/pnas.191756911732482873
    [Google Scholar]
  170. ZhangY. XuB. WeinerB.G. MeirY. WingreenN.S. Decoding the physical principles of two-component biomolecular phase separation.eLife202110e6240310.7554/eLife.6240333704061
    [Google Scholar]
  171. PyoA.G.T. ZhangY. WingreenN.S. Proximity to criticality predicts surface properties of biomolecular condensates.Proc. Natl. Acad. Sci. USA202312023e222001412010.1073/pnas.222001412037252985
    [Google Scholar]
  172. DignonG.L. ZhengW. KimY.C. BestR.B. MittalJ. Sequence determinants of protein phase behavior from a coarse- grained model.PLOS Comput. Biol.2018141e100594110.1371/journal.pcbi.100594129364893
    [Google Scholar]
  173. EspinosaJ.R. GaraizarA. VegaC. FrenkelD. Collepardo-GuevaraR. Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles.J. Chem. Phys.20191502222451010.1063/1.509855131202247
    [Google Scholar]
  174. SemenovA.N. RubinsteinM. Thermoreversible gelation in solutions of associative polymers. 1. Statics.Macromolecules19983141373138510.1021/ma970616h
    [Google Scholar]
  175. TanC. NiitsuA. SugitaY. Highly charged proteins and their repulsive interactions antagonize biomolecular condensation.JACS Au20233383484810.1021/jacsau.2c0064637006777
    [Google Scholar]
  176. WellesR.M. SojitraK.A. GarabedianM.V. XiaB. WangW. GuanM. RegyR.M. GallagherE.R. HammerD.A. MittalJ. GoodM.C. Determinants that enable disordered protein assembly into discrete condensed phases.Nat. Chem.20241671062107210.1038/s41557‑023‑01423‑738316988
    [Google Scholar]
  177. ChewP.Y. JosephJ.A. Collepardo-GuevaraR. ReinhardtA. Thermodynamic origins of two-component multiphase condensates of proteins.Chem. Sci.20231471820183610.1039/D2SC05873A36819870
    [Google Scholar]
  178. DignonG.L. ZhengW. KimY.C. MittalJ. Temperature-controlled liquid–liquid phase separation of disordered proteins.ACS Cent. Sci.20195582183010.1021/acscentsci.9b0010231139718
    [Google Scholar]
  179. DongX. BeraS. QiaoQ. TangY. LaoZ. LuoY. GazitE. WeiG. Liquid–liquid phase separation of tau protein is encoded at the monomeric level.J. Phys. Chem. Lett.202112102576258610.1021/acs.jpclett.1c0020833686854
    [Google Scholar]
  180. LiM.S. KlimovD.K. StraubJ.E. ThirumalaiD. Probing the mechanisms of fibril formation using lattice models.J. Chem. Phys.20081291717510110.1063/1.298998119045373
    [Google Scholar]
  181. LiM.S. CoN.T. ReddyG. HuC.K. StraubJ.E. ThirumalaiD. Factors governing fibrillogenesis of polypeptide chains revealed by lattice models.Phys. Rev. Lett.20101052121810110.1103/PhysRevLett.105.21810121231356
    [Google Scholar]
  182. ChakrabortyD. StraubJ.E. ThirumalaiD. Differences in the free energies between the excited states of A β 40 and A β 42 monomers encode their aggregation propensities.Proc. Natl. Acad. Sci. USA202011733199261993710.1073/pnas.200257011732732434
    [Google Scholar]
  183. QiR. LuoY. WeiG. NussinovR. MaB. Aβ “stretching-and-packing” cross-seeding mechanism can trigger tau protein aggregation.J. Phys. Chem. Lett.20156163276328210.1021/acs.jpclett.5b01447
    [Google Scholar]
  184. SongZ. GatchA.J. SunY. DingF. Differential binding and conformational dynamics of tau microtubule-binding repeats with a preformed Amyloid-β Fibril seed.ACS Chem. Neurosci.20231471321133010.1021/acschemneuro.3c0001436975100
    [Google Scholar]
  185. LiuF. JiangL. SangJ. LuF. LiL. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations.Chin. J. Chem. Eng.20235517318010.1016/j.cjche.2022.04.021
    [Google Scholar]
  186. LiX. ChenY. YangZ. ZhangS. WeiG. ZhangL. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations.Int. J. Biol. Macromol.2024254Pt 212784110.1016/j.ijbiomac.2023.12784137924907
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037350729241129054701
Loading
/content/journals/cpps/10.2174/0113892037350729241129054701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test