Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation. This minireview describes molecular mechanisms of IgG light-chain aggregation, as well as the consequences and therapeutic implications of IgG light chain misfolding in these disorders. By elucidating the mechanisms of IgG light chain misfolding and aggregation, researchers can identify specific molecular and cellular pathways. This knowledge opens the door to novel therapeutic targets, offering the potential for interventions that can either prevent the initial misfolding events, promote the proper folding and processing of immunoglobulins, or enhance the clearance of misfolded proteins and aggregates. These protein folding-related issues persist even after the successful elimination of the malignant B cells. Such targeted protein-folding therapies could significantly improve patients' quality of life and contribute to their recovery. Thus, a deep understanding of IgG light chain misfolding and its consequences not only sheds light on the complex biology of oncohematological dyscrasias but also opens the way for innovative treatment strategies that could transform patient care in these conditions, instilling hope and motivation in the healthcare professionals and researchers in this field.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037336731241029075530
2025-01-02
2025-12-16
Loading full text...

Full text loading...

References

  1. RostagnoA. FrizzeraG. YlaganL. KumarA. GhisoJ. GalloG. Tumoral non-amyloidotic monoclonal immunoglobulin light chain deposits (‘aggregoma’): Presenting feature of B-cell dyscrasia in three cases with immunohistochemical and biochemical analyses.Br. J. Haematol.20021191626910.1046/j.1365‑2141.2002.03781.x12358904
    [Google Scholar]
  2. HarrisL.J. LarsonS.B. HaselK.W. McPhersonA. Refined structure of an intact IgG2a monoclonal antibody.Biochemistry19973671581159710.1021/bi962514+9048542
    [Google Scholar]
  3. MorganG.J. YanN.L. MortensonD.E. RennellaE. BlundonJ.M. GwinR.M. LinC.Y. StanfieldR.L. BrownS.J. RosenH. SpicerT.P. Fernandez-VegaV. MerliniG. KayL.E. WilsonI.A. KellyJ.W. Stabilization of amyloidogenic immunoglobulin light chains by small molecules.Proc. Natl. Acad. Sci. USA2019116178360836910.1073/pnas.181756711630971495
    [Google Scholar]
  4. DžupponováV. HuntošováV. ŽoldákG. A kinetic coupling between protein unfolding and aggregation controls time-dependent solubility of the human myeloma antibody light chain.Protein Sci.202029122408242110.1002/pro.396833030218
    [Google Scholar]
  5. DžupponováV. ŽoldákG. Aggregation mechanism and branched 3D morphologies of pathological human light chain proteins under reducing conditions.Colloids Surf. B Biointerfaces202322111298310.1016/j.colsurfb.2022.11298336401959
    [Google Scholar]
  6. DulJ.L. DavisD.P. WilliamsonE.K. StevensF.J. ArgonY. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains.J. Cell Biol.2001152470571610.1083/jcb.152.4.70511266462
    [Google Scholar]
  7. KatzA. ZentR. BargmanJ. IgG heavy-chain deposition disease.Mod. Pathol.788748787838842
    [Google Scholar]
  8. PickenM.M. ShenS. Immunoglobulin light chains and the kidney: An overview.Ultrastruct. Pathol.1994181-210511210.3109/019131294090162798191615
    [Google Scholar]
  9. MosmannT. WilliamsonA.R. Structural mutations in a mouse immunoglobulin light chain resulting in failure to be secreted.Cell198020228329210.1016/0092‑8674(80)90614‑56156005
    [Google Scholar]
  10. MosmannT.R. BaumalR. WilliamsonA.R. Mutations affecting immunoglobulin light chain secretion by myeloma cells I. Functional analysis by cell fusion.Eur. J. Immunol.19799751151610.1002/eji.1830090705115698
    [Google Scholar]
  11. SeidmanJ.G. MaxE.E. LederP. A κ-immunoglobulin gene is formed by site-specific recombination without further somatic mutation.Nature1979280572137037510.1038/280370a0111146
    [Google Scholar]
  12. van der BurgM. TümkayaT. BoermaM. de Bruin-VersteegS. LangerakA.W. van DongenJ.J.M. Ordered recombination of immunoglobulin light chain genes occurs at the IGK locus but seems less strict at theIGL locus.Blood20019741001100810.1182/blood.V97.4.100111159529
    [Google Scholar]
  13. DavisD.P. GalloG. VogenS.M. DulJ.L. SciarrettaK.L. KumarA. RaffenR. StevensF.J. ArgonY. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain.J. Mol. Biol.200131351021103410.1006/jmbi.2001.509211700059
    [Google Scholar]
  14. MisraP. Blancas-MejiaL.M. Ramirez-AlvaradoM. Mechanistic insights into the early events in the aggregation of immunoglobulin light chains.Biochemistry201958293155316810.1021/acs.biochem.9b0031131287666
    [Google Scholar]
  15. Van BurenN. RehderD. GadgilH. MatsumuraM. JacobJ. Elucidation of two major aggregation pathways in an IgG2 antibody.J. Pharm. Sci.20099893013303010.1002/jps.2151418680168
    [Google Scholar]
  16. BellesiaG. SheaJ.E. Diversity of kinetic pathways in amyloid fibril formation.J. Chem. Phys.20091311111110210.1063/1.321610319778093
    [Google Scholar]
  17. AndrichK. HegenbartU. KimmichC. KediaN. BergenH.R. SchönlandS. WankerE. BieschkeJ. Aggregation of full-length immunoglobulin light chains from systemic light chain amyloidosis (AL) Patients is remodeled by epigallocatechin-3-gallate.J. Biol. Chem.201729262328234410.1074/jbc.M116.75032328031465
    [Google Scholar]
  18. MorrisA.M. FinkeR.G. α-Synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke–Watzky 2-step model of nucleation and autocatalytic growth.Biophys. Chem.20091401-391510.1016/j.bpc.2008.11.00319101068
    [Google Scholar]
  19. MorrisA.M. WatzkyM.A. AgarJ.N. FinkeR.G. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s razor” model: The Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth.Biochemistry20084782413242710.1021/bi701899y18247636
    [Google Scholar]
  20. MorrisA.M. WatzkyM.A. FinkeR.G. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature.Biochim. Biophys. Acta. Proteins Proteomics20091794337539710.1016/j.bbapap.2008.10.01619071235
    [Google Scholar]
  21. WatzkyM.A. MorrisA.M. RossE.D. FinkeR.G. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.Biochemistry20084740107901080010.1021/bi800726m18785757
    [Google Scholar]
  22. del Pozo YaunerL. OrtizE. BecerrilB. The CDR1 of the human λVI light chains adopts a new canonical structure.Proteins200662112212910.1002/prot.2077916288453
    [Google Scholar]
  23. del Pozo YaunerL. OrtizE. SánchezR. Sánchez-LópezR. GüerecaL. MurphyC.L. AllenA. WallJ.S. Fernández-VelascoD.A. SolomonA. BecerrilB. Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains.Proteins200872268469210.1002/prot.2193418260098
    [Google Scholar]
  24. González-AndradeM. Becerril-LujánB. Sánchez-LópezR. Ceceña-ÁlvarezH. Pérez-CarreónJ.I. OrtizE. Fernández-VelascoD.A. del Pozo-YaunerL. Mutational and genetic determinants of λ6 light chain amyloidogenesis.FEBS J.2013280236173618310.1111/febs.1253824107228
    [Google Scholar]
  25. MishimaT. OhkuriT. MonjiA. KanemaruT. AbeY. UedaT. Residual structures in the acid-unfolded states of Vlambda6 proteins affect amyloid fibrillation.J. Mol. Biol.200939241033104310.1016/j.jmb.2009.07.07819647748
    [Google Scholar]
  26. PokkuluriP.R. SolomonA. WeissD.T. StevensF.J. SchifferM. Tertiary structure of human γ6 light chains.Amyloid19996316517110.3109/1350612990900732210524280
    [Google Scholar]
  27. WallJ. SchellM. MurphyC. HrncicR. StevensF.J. SolomonA. Thermodynamic instability of human lambda 6 light chains: Correlation with fibrillogenicity.Biochemistry19993842141011410810.1021/bi991131j10529258
    [Google Scholar]
  28. WallJ.S. GuptaV. WilkersonM. SchellM. LorisR. AdamsP. SolomonA. StevensF. DealwisC. Structural basis of light chain amyloidogenicity: Comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four V λ 6 proteins.J. Mol. Recognit.200417432333110.1002/jmr.68115227639
    [Google Scholar]
  29. WolwertzM.L. NguyenP.T. QuittotN. BourgaultS. Probing the role of λ6 immunoglobulin light chain dimerization in amyloid formation.Biochim. Biophys. Acta. Proteins Proteomics20161864440941810.1016/j.bbapap.2016.01.00926802902
    [Google Scholar]
  30. DžupponováV. TomáškováN. AntošováA. SedlákE. ŽoldákG. Salt-specific suppression of the cold denaturation of thermophilic multidomain initiation factor 2.Int. J. Mol. Sci.2023247678710.3390/ijms2407678737047761
    [Google Scholar]
  31. CohenG. HörlW.H. Free immunoglobulin light chains as a risk factor in renal and extrarenal complications.Semin. Dial.200922436937210.1111/j.1525‑139X.2009.00582.x19708983
    [Google Scholar]
  32. CohenG. Immunoglobulin light chains in uremia.Kidney Int.20036384S15S1810.1046/j.1523‑1755.63.s84.8.x12694299
    [Google Scholar]
  33. WangP.X. SandersP.W. Immunoglobulin light chains generate hydrogen peroxide.J. Am. Soc. Nephrol.20071841239124510.1681/ASN.200611129917360948
    [Google Scholar]
  34. BasnayakeK. YingW.Z. WangP.X. SandersP.W. Immunoglobulin light chains activate tubular epithelial cells through redox signaling.J. Am. Soc. Nephrol.20102171165117310.1681/ASN.200910108920558542
    [Google Scholar]
  35. YingW.Z. LiX. RangarajanS. FengW. CurtisL.M. SandersP.W. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury.J. Clin. Invest.201912972792280610.1172/JCI12551731205024
    [Google Scholar]
  36. KdimatiS. MullinsC.S. LinnebacherM. Cancer-cell-derived IgG and its potential role in tumor development.Int. J. Mol. Sci.202122211159710.3390/ijms22211159734769026
    [Google Scholar]
  37. ShahD.D. ZhangJ. MaityH. MallelaK.M.G. Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody.Int. J. Pharm.20185471-243844910.1016/j.ijpharm.2018.06.00729883793
    [Google Scholar]
  38. RandallR.E. WilliamsonW.C. MullinaxF. TungM.Y. StillW.J.S. Manifestations of systemic light chain deposition.Am. J. Med.197660229329910.1016/0002‑9343(76)90440‑X814812
    [Google Scholar]
  39. RoblesM.D.M. García-BragaJ.M.N.-O. CaroJ.L.M. AlonsoJ.V. LagunasI.L. Jaundice secondary to intrahepatic deposit of light chains as a presenting form of multiple myeloma.An. Med. Interna12274-76
    [Google Scholar]
  40. BaptistaB. CasianA. GunawardenaH. D’CruzD. RiceC.M. Neurological manifestations of IgG4-related disease.Curr. Treat. Options Neurol.2017194747610.1007/s11940‑017‑0450‑928374231
    [Google Scholar]
  41. ParkK. ChoiY.W. KangB-K. LeeJ.Y. ParkJ.S. ShinS-J. KooH.R. Systemic manifestations of immunoglobulin G4-related disease: A pictorial essay.J. Korean Soc. Radiol.202182357510.3348/jksr.2020.0141
    [Google Scholar]
  42. KhosroshahiA. DeshpandeV. StoneJ.H. The clinical and pathological features of IgG4-related disease.Curr. Rheumatol. Rep.201113647348110.1007/s11926‑011‑0213‑721964954
    [Google Scholar]
  43. BackhusJ. SeufferleinT. PerkhoferL. HermannP.C. KlegerA. IgG4-related diseases in the gastrointestinal tract: Clinical presentation, diagnosis and treatment challenges.Digestion2019100111410.1159/00049281430384361
    [Google Scholar]
  44. CarruthersM.N. StoneJ.H. KhosroshahiA. The latest on IgG4-RD: A rapidly emerging disease.Curr. Opin. Rheumatol.2012241606910.1097/BOR.0b013e32834ddb4a22157413
    [Google Scholar]
  45. RoncoP. PlaisierE. MougenotB.C.A.A. AucouturierP. Immunoglobulin light (heavy)-chain deposition disease: From molecular medicine to pathophysiology-driven therapy.Clin. J. Am. Soc. Nephrol.2006161342135010.2215/CJN.0173050617699367
    [Google Scholar]
  46. IaccarinoL. TalaricoR. ScirèC.A. AmouraZ. BurmesterG. DoriaA. FaizK. FrankC. HachullaE. HieM. LaunayD. MontecuccoC. MontiS. MouthonL. TincaniA. ToniatiP. Van HagenP.M. Van VollenhovenR.F. BombardieriS. Mueller-LadnerU. SchneiderM. SmithV. CutoloM. MoscaM. AlexanderT. IgG4-related diseases: State of the art on clinical practice guidelines.RMD Open20194Suppl. 1e00078710.1136/rmdopen‑2018‑00078730729031
    [Google Scholar]
  47. KamisawaT. ZenY. PillaiS. StoneJ.H. IgG4-related disease.Lancet201538599761460147110.1016/S0140‑6736(14)60720‑025481618
    [Google Scholar]
  48. YadlapatiS. VerheyenE. EfthimiouP. IgG4-related disease: A complex under-diagnosed clinical entity.Rheumatol. Int.201838216917710.1007/s00296‑017‑3765‑728681251
    [Google Scholar]
  49. GradosA. EbboM. BoucrautJ. VélyF. AucouturierP. RigoletA. TerrierB. SaadounD. Ghillani-DalbinP. Costedoat-ChalumeauN. HarléJ.R. SchleinitzN. Serum immunoglobulin free light chain assessment in IgG4-related disease.Int. J. Rheumatol.201320131610.1155/2013/42675923878543
    [Google Scholar]
  50. MagnanoL. Fernández de LarreaC. ElenaM. CibeiraM.T. TovarN. ArósteguiJ.I. PedrosaF. RosiñolL. FilellaX. YagüeJ. BladéJ. Prognostic impact of serum heavy/light chain pairs in patients with monoclonal gammopathy of undetermined significance and smoldering myeloma: Long-term results from a single institution.Clin. Lymphoma Myeloma Leuk.2016166e71e7710.1016/j.clml.2016.02.03427013181
    [Google Scholar]
  51. AvetLoiseauH. HarousseauJ-L. MoreauP. MathiotC. FaconT. AttalM. BradwellA. HardingS. Heavy/light chain specific immunoglobulin ratios at presentation are prognostic for progression free survival in the IFM 2005-01 myeloma trial.Blood2009114221818181810.1182/blood.V114.22.1818.1818
    [Google Scholar]
  52. Lopez-AngladaL. Cueto-FelguerosoC. RosiñolL. OriolA. TeruelA.I. Lopez de la GuiaA. BengoecheaE. PalomeraL. de ArribaF. HernandezJ.M. GranellM. PeñalverF.J. Garcia-SanzR. BesalduchJ. GonzalezY. MartinezR.B. HernandezM.T. GutierrezN.C. PuertaP. ValeriA. PaivaB. BladeJ. MateosM.V. San MiguelJ. LahuertaJ.J. Martinez-LopezJ. Prognostic utility of serum free light chain ratios and heavy-light chain ratios in multiple myeloma in three PETHEMA/GEM phase III clinical trials.PLoS One2018139e020339210.1371/journal.pone.020339230192814
    [Google Scholar]
  53. BradwellA. HardingS. FourrierN. MathiotC. AttalM. MoreauP. HarousseauJ-L. Avet-LoiseauH. Prognostic utility of intact immunoglobulin Ig′κ/Ig′λ ratios in multiple myeloma patients.Leukemia201327120220710.1038/leu.2012.15922699454
    [Google Scholar]
  54. RajkumarS.V. DimopoulosM.A. PalumboA. BladeJ. MerliniG. MateosM.V. KumarS. HillengassJ. KastritisE. RichardsonP. LandgrenO. PaivaB. DispenzieriA. WeissB. LeLeuX. ZweegmanS. LonialS. RosinolL. ZamagniE. JagannathS. SezerO. KristinssonS.Y. CaersJ. UsmaniS.Z. LahuertaJ.J. JohnsenH.E. BeksacM. CavoM. GoldschmidtH. TerposE. KyleR.A. AndersonK.C. DurieB.G.M. MiguelJ.F.S. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma.Lancet Oncol.20141512e538e54810.1016/S1470‑2045(14)70442‑525439696
    [Google Scholar]
  55. FaliniB. MartelliM.P. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia.Am. J. Hematol.202398348149210.1002/ajh.2681236606297
    [Google Scholar]
  56. ZeidanA.M. PlatzbeckerU. BewersdorfJ.P. StahlM. AdèsL. BorateU. BowenD. BucksteinR. BrunnerA. CarrawayH.E. DaverN. Díez-CampeloM. de WitteT. DeZernA.E. EfficaceF. Garcia-ManeroG. GarciaJ.S. GermingU. GiagounidisA. GriffithsE.A. HasserjianR.P. Hellström-LindbergE. IastrebnerM. KomrokjiR. KulasekararajA.G. MalcovatiL. MiyazakiY. OdenikeO. SantiniV. SanzG. ScheinbergP. StauderR. van de LoosdrechtA.A. WeiA.H. SekeresM.A. FenauxP. Consensus proposal for revised International Working Group 2023 response criteria for higher-risk myelodysplastic syndromes.Blood2023141172047206136724453
    [Google Scholar]
  57. FontanaD. ElliE.M. PagniF. PiazzaR. Myelodysplastic syndromes/myeloproliferative overlap neoplasms and differential diagnosis in the WHO and ICC 2022 Era: A focused review.Cancers (Basel)20231512317510.3390/cancers1512317537370785
    [Google Scholar]
  58. MouawadN. CapassoG. RuggeriE. MartinelloL. SeverinF. VisentinA. FaccoM. TrentinL. FrezzatoF. Is it still possible to think about HSP70 as a therapeutic target in onco-hematological diseases?Biomolecules202313460410.3390/biom1304060437189352
    [Google Scholar]
  59. SinghR.B. SinghalS. SinhaS. ChoJ. NguyenA.X.L. DhingraL.S. KaurS. SharmaV. AgarwalA. Ocular complications of plasma cell dyscrasias.Eur. J. Ophthalmol.20233351786180010.1177/1120672123115597436760117
    [Google Scholar]
  60. MandalaE. LafaraK. KokkinovasilisD. KalafatisI. KoukoulitsaV. KatodritouE. LafarasC. Applied cardio-oncology in hematological malignancies: A narrative review.Life (Basel)202414452410.3390/life1404052438672794
    [Google Scholar]
  61. WiebkeR. AltenbuchingerM. BaeßlerB. BeissbarthT. BeutelT. BockR. BubnoffN.V. EckardtJ.-N. FoerschS. LoefflerC.M.L. An overview and a roadmap for artificial intelligence in hematology and oncology.J. Cancer Res. Clin. Oncol.149107997800610.1007/s00432‑023‑04667‑536920563
    [Google Scholar]
  62. HarounE. KumarP.A. SabaL. KassabJ. GhimireK. DuttaD. LimS.H. Intestinal barrier functions in hematologic and oncologic diseases.J. Transl. Med.202321123310.1186/s12967‑023‑04091‑w37004099
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037336731241029075530
Loading
/content/journals/cpps/10.2174/0113892037336731241029075530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test