Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The phenomenon of Liquid-Liquid Phase Separation (LLPS) serves as a vital mechanism for the spatial organization of biomolecules, significantly influencing the elementary processes within the cellular milieu. Intrinsically disordered proteins, or proteins endowed with intrinsically disordered regions, are pivotal in driving this biophysical process, thereby dictating the formation of non-membranous cellular compartments. Compelling evidence has linked aberrations in LLPS to the pathogenesis of various neurodegenerative diseases, underscored by the disordered proteins’ proclivity to form pathological aggregates. This study meticulously evaluates the arsenal of contemporary experimental and computational methodologies dedicated to the examination of intrinsically disordered proteins within the context of LLPS. Through a discerning discourse on the capabilities and constraints of these investigative techniques, we unravel the intricate contributions of these ubiquitous proteins to LLPS and neurodegeneration. Moreover, we project a future trajectory for the field, contemplating on innovative research tools and their potential to elucidate the underlying mechanisms of LLPS, with the ultimate goal of fostering new therapeutic avenues for combating neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037314062240618193044
2025-07-08
2025-11-16
Loading full text...

Full text loading...

References

  1. HymanA.A. WeberC.A. JülicherF. Liquid-liquid phase separation in biology.Annu. Rev. Cell Dev. Biol.2014301395810.1146/annurev‑cellbio‑100913‑01332525288112
    [Google Scholar]
  2. KamimuraY.R. KanaiM. Chemical insights into liquid-liquid phase separation in molecular biology.Bull. Chem. Soc. Jpn.20219431045105810.1246/bcsj.20200397
    [Google Scholar]
  3. FengZ. JiaB. ZhangM. Liquid–liquid phase separation in biology: Specific stoichiometric molecular interactions vs. promiscuous interactions mediated by disordered sequences.Biochemistry202160312397240610.1021/acs.biochem.1c0037634291921
    [Google Scholar]
  4. MurthyA.C. FawziN.L. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.J. Biol. Chem.202029582375238410.1074/jbc.REV119.00984731911439
    [Google Scholar]
  5. NesterovS.V. IlyinskyN.S. UverskyV.N. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses.Biochim. Biophys. Acta Mol. Cell Res.202118681111910210.1016/j.bbamcr.2021.11910234293345
    [Google Scholar]
  6. UverskyV.N. KuznetsovaI.M. TuroverovK.K. ZaslavskyB. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates.FEBS Lett.20155891152210.1016/j.febslet.2014.11.02825436423
    [Google Scholar]
  7. UverskyV.N. Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles.Adv. Colloid Interface Sci.20172399711410.1016/j.cis.2016.05.01227291647
    [Google Scholar]
  8. Coskuner-WeberO. MirzanliO. UverskyV.N. Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases.Biophys. Rev.202214367970710.1007/s12551‑022‑00968‑035791387
    [Google Scholar]
  9. AliciH. HasekiogluO. UverskyV.N. Coskuner-WeberO. Methods to Study the Effect of Solution Variables on the Conformational Dynamics of Intrinsically Disordered Proteins. Advances in Protein Molecular and Structural Biology Methods.Elsevier202255156310.1016/B978‑0‑323‑90264‑9.00033‑7
    [Google Scholar]
  10. FataftaH. SamantrayS. Sayyed-AhmadA. Coskuner-WeberO. StrodelB. Molecular Simulations of IDPs: From Ensemble Generation to IDP Interactions Leading to Disorder-to-Order Transitions. Progress in Molecular Biology and Translational Science.Elsevier2021183135185
    [Google Scholar]
  11. AntifeevaI.A. FoninA.V. FefilovaA.S. StepanenkoO.V. PovarovaO.I. SilonovS.A. KuznetsovaI.M. UverskyV.N. TuroverovK.K. Liquid–liquid phase separation as an organizing principle of intracellular space: Overview of the evolution of the cell compartmentalization concept.Cell. Mol. Life Sci.202279525110.1007/s00018‑022‑04276‑435445278
    [Google Scholar]
  12. ZaslavskyB.Y. UverskyV.N. In Aqua Veritas : The indispensable yet mostly ignored role of water in phase separation and membrane-less organelles.Biochemistry201857172437245110.1021/acs.biochem.7b0121529303563
    [Google Scholar]
  13. AlbertiS. DormannD. Liquid–liquid phase separation in disease.Annu. Rev. Genet.201953117119410.1146/annurev‑genet‑112618‑04352731430179
    [Google Scholar]
  14. ZbindenA. Pérez-BerlangaM. De RossiP. PolymenidouM. Phase separation and neurodegenerative diseases: A disturbance in the force.Dev. Cell2020551456810.1016/j.devcel.2020.09.01433049211
    [Google Scholar]
  15. ShinY. Rich phase separation behavior of biomolecules.Mol. Cells202245161510.14348/molcells.2021.020434966005
    [Google Scholar]
  16. LiJ. ZhangM. MaW. YangB. LuH. ZhouF. ZhangL. Post-translational modifications in liquid-liquid phase separation: A comprehensive review.Molec. Biomed.2022311310.1186/s43556‑022‑00075‑235543798
    [Google Scholar]
  17. LiZ. LiuX. LiuM. Stress granule homeostasis, aberrant phase transition, and amyotrophic lateral sclerosis.ACS Chem. Neurosci.202213162356237010.1021/acschemneuro.2c0026235905138
    [Google Scholar]
  18. Baradaran-HeraviY. Van BroeckhovenC. van der ZeeJ. Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum.Neurobiol. Dis.202013410463910.1016/j.nbd.2019.10463931626953
    [Google Scholar]
  19. BrightF. ChanG. van HummelA. IttnerL.M. KeY.D. TDP-43 and Inflammation: Implications for amyotrophic lateral sclerosis and frontotemporal dementia.Int. J. Mol. Sci.20212215778110.3390/ijms2215778134360544
    [Google Scholar]
  20. CareyJ.L. GuoL. Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases.Front. Mol. Biosci.2022982671910.3389/fmolb.2022.82671935187086
    [Google Scholar]
  21. BabinchakW.M. SurewiczW.K. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation.J. Mol. Biol.202043271910192510.1016/j.jmb.2020.03.00432169484
    [Google Scholar]
  22. SudhakarS. ManoharA. ManiE. Liquid–liquid phase separation (LLPS)-driven fibrilization of amyloid-β protein.ACS Chem. Neurosci.202314193655366410.1021/acschemneuro.3c0028637718544
    [Google Scholar]
  23. AinaniH. BouchmaaN. BenM.R. El FatimyR. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer’s disease pathogenesis.Neurobiol. Dis.202317810601110.1016/j.nbd.2023.10601136702317
    [Google Scholar]
  24. WegmannS. Liquid-liquid phase separation of tau protein in neurobiology and pathology.Adv. Exp. Med. Biol.2019118434135710.1007/978‑981‑32‑9358‑8_25
    [Google Scholar]
  25. Ukmar-GodecT. WegmannS. ZweckstetterM. Biomolecular condensation of the microtubule-associated protein tau.Semin. Cell Dev. Biol.20209920221410.1016/j.semcdb.2019.06.00731260737
    [Google Scholar]
  26. AhmadA. UverskyV.N. KhanR.H. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases.Int. J. Biol. Macromol.202222070372010.1016/j.ijbiomac.2022.08.13235998851
    [Google Scholar]
  27. DarlingA.L. ShorterJ. Combating deleterious phase transitions in neurodegenerative disease.Biochim. Biophys. Acta Mol. Cell Res.20211868511898410.1016/j.bbamcr.2021.11898433549703
    [Google Scholar]
  28. YangJ. YangX. Phase transition of huntingtin: Factors and pathological relevance.Front. Genet.20201175410.3389/fgene.2020.0075432849783
    [Google Scholar]
  29. Ishikawa-AnkerholdH. AnkerholdR. DrummenG. Fluorescence Recovery After Photobleaching (FRAP). Encyclopedia of Life Sciences.Wiley201410.1002/9780470015902.a0003114
    [Google Scholar]
  30. HubatschL. JawerthL.M. LoveC. BauermannJ. TangT.Y.D. BoS. HymanA.A. WeberC.A. Quantitative theory for the diffusive dynamics of liquid condensates.eLife202110e6862010.7554/eLife.6862034636323
    [Google Scholar]
  31. LevinB. MittaschM. Ferreira GomesB. ManteigaJ. PatelA. ZamudioA. BeutelO. MitreaD.M. Harnessing the power of fluorescence to characterize biomolecular condensates. Meth. Microbiol.20214814710.1016/bs.mim.2020.11.005
    [Google Scholar]
  32. OwyongT.C. ZhaoJ. HongY. Small molecule fluorescent probes for the study of protein phase separation.Curr. Opin. Chem. Biol.20237610235410.1016/j.cbpa.2023.10235437364418
    [Google Scholar]
  33. BerkeleyR.F. DebelouchinaG.T. Chemical tools for study and modulation of biomolecular phase transitions.Chem. Sci.20221348142261424510.1039/D2SC04907D36545140
    [Google Scholar]
  34. AlshareedahI. KaurT. BanerjeeP.R. Methods for characterizing the material properties of biomolecular condensates.Methods in Enzymology.Elsevier2021646143183
    [Google Scholar]
  35. MoudA.A. Fluorescence recovery after photobleaching in colloidal science: Introduction and application.ACS Biomater. Sci. Eng.2022831028104810.1021/acsbiomaterials.1c0142235201752
    [Google Scholar]
  36. AxelrodD. KoppelD.E. SchlessingerJ. ElsonE. WebbW.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.Biophys. J.19761691055106910.1016/S0006‑3495(76)85755‑4786399
    [Google Scholar]
  37. LorénN. HagmanJ. JonassonJ.K. DeschoutH. BerninD. Cella-ZanacchiF. DiasproA. McNallyJ.G. AmelootM. SmisdomN. NydénM. HermanssonA.M. RudemoM. BraeckmansK. Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice.Q. Rev. Biophys.201548332338710.1017/S003358351500001326314367
    [Google Scholar]
  38. GalvanettoN. IvanovićM.T. ChowdhuryA. SottiniA. NüeschM.F. NettelsD. BestR.B. SchulerB. Extreme dynamics in a biomolecular condensate.Nature2023619797187688310.1038/s41586‑023‑06329‑537468629
    [Google Scholar]
  39. BhopatkarA.A. DhakalS. AbernathyH.G. MorganS.E. RangachariV. Charge and redox states modulate granulin—TDP-43 coacervation toward phase separation or aggregation.Biophys. J.2022121112107212610.1016/j.bpj.2022.04.03435490297
    [Google Scholar]
  40. PetronilhoE.C. PedroteM.M. MarquesM.A. PassosY.M. MotaM.F. JakobusB. SousaG.S. Pereira da CostaF. FelixA.L. FerrettiG.D.S. AlmeidaF.P. CordeiroY. VieiraT.C.R.G. de OliveiraG.A.P. SilvaJ.L. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands.Chem. Sci.202112217334734910.1039/D1SC01739J34163823
    [Google Scholar]
  41. CoskunerO. MurrayI.V.J. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.J. Alzheimers Dis.201441256157410.3233/JAD‑13230024625803
    [Google Scholar]
  42. CoskunerO. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms.J. Biol. Inorg. Chem.201621895797310.1007/s00775‑016‑1392‑527659954
    [Google Scholar]
  43. Coskuner-WeberO. UverskyV. Insights into the molecular mechanisms of alzheimer’s and parkinson’s diseases with molecular simulations: Understanding the roles of artificial and pathological missense mutations in intrinsically disordered proteins related to pathology.Int. J. Mol. Sci.201819233610.3390/ijms1902033629364151
    [Google Scholar]
  44. PoseyA.E. HolehouseA.S. PappuR.V. Phase separation of intrinsically disordered proteins. Methods in Enzymology.Elsevier2018611130
    [Google Scholar]
  45. GiakoumakisN.N. RapsomanikiM.A. LygerouZ. Analysis of protein kinetics using fluorescence recovery after photobleaching (FRAP). In Light Microscopy. MarkakiY. HarzH. Methods in Molecular BiologySpringerNew York, NY20171563243267
    [Google Scholar]
  46. AllisonT.C. CoskunerO. GonzalezC.A. Metallic Systems: A Quantum Chemist’s PerspectiveCRC Press2011
    [Google Scholar]
  47. Coskuner-WeberO. Revisiting Cu(II) bound amyloid-B40 and amyloid-B42 Peptides: Varying coordination chemistries.J. Turk. Chem. Soc. Sect. A.Chem20182018981100810.18596/jotcsa.424144
    [Google Scholar]
  48. MajumdarA. DograP. MaityS. MukhopadhyayS. Liquid–liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules.J. Phys. Chem. Lett.201910143929393610.1021/acs.jpclett.9b0173131260322
    [Google Scholar]
  49. Van MunsterE.B. GadellaT.W.J. Fluorescence lifetime imaging microscopy (FLIM). In microscopy techniques. RietdorfJ. Advances in Biochemical Engineering/BiotechnologySpringer Berlin HeidelbergBerlin, Heidelberg200595143175
    [Google Scholar]
  50. YinJ. HuangL. WuL. LiJ. JamesT.D. LinW. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions.Chem. Soc. Rev.20215021120981215010.1039/D1CS00645B34550134
    [Google Scholar]
  51. BaggaleyE. WeinsteinJ.A. WilliamsJ.A.G. Time-resolved emission imaging microscopy using phosphorescent metal complexes: Taking FLIM and PLIM to new lengths.Luminescent and photoactive transition metal complexes as biomolecular probes and cellular reagents K.K.W. Springer Berlin HeidelbergBerlin, Heidelberg2014165205256
    [Google Scholar]
  52. BeckerW. Fluorescence lifetime imaging techniques and applications.J. Microsc.2012247211913610.1111/j.1365‑2818.2012.03618.x22621335
    [Google Scholar]
  53. WangX.F. PeriasamyA. HermanB. ColemanD.M. Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications.Crit. Rev. Anal. Chem.199223536939510.1080/10408349208051651
    [Google Scholar]
  54. SarderP. MajiD. AchilefuS. Molecular probes for fluorescence lifetime imaging.Bioconjug. Chem.201526696397410.1021/acs.bioconjchem.5b0016725961514
    [Google Scholar]
  55. MekonnenG. DjajaN. YuanX. MyongS. Advanced imaging techniques for studying protein phase separation in living cells and at single-molecule level.Curr. Opin. Chem. Biol.20237610237110.1016/j.cbpa.2023.10237137523989
    [Google Scholar]
  56. NasirI. OnuchicP.L. LabraS.R. DenizA.A. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation.Biochim. Biophys. Acta. Proteins Proteomics201918671098098710.1016/j.bbapap.2019.04.00731054969
    [Google Scholar]
  57. LlèresD. SwiftS. LamondA.I. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM).Curr. Protoc. Cytom.20074211010.1002/0471142956.cy1210s4218770849
    [Google Scholar]
  58. PeregoE. ZapponeS. CastagnettiF. MarianiD. VitielloE. RupertJ. ZaccoE. TartagliaG.G. BozzoniI. SlendersE. VicidominiG. Single-photon microscopy to study biomolecular condensates.Nat. Commun.2023141822410.1038/s41467‑023‑43969‑738086853
    [Google Scholar]
  59. CervinkaM. CervinkovaZ. RudolfE. The role of time-lapse fluorescent microscopy in the characterization of toxic effects in cell populations cultivated in vitro.Toxicol. in vitro 20082251382138610.1016/j.tiv.2008.03.01118462916
    [Google Scholar]
  60. LongfieldS.F. MollazadeM. WallisT.P. GormalR.S. JoensuuM. WarkJ.R. van WaardenbergA.J. SmallC. GrahamM.E. MeunierF.A. Martínez-MármolR. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles.Nat. Commun.2023141727710.1038/s41467‑023‑43130‑437949856
    [Google Scholar]
  61. WolozinB. IvanovP. Stress granules and neurodegeneration.Nat. Rev. Neurosci.2019201164966610.1038/s41583‑019‑0222‑531582840
    [Google Scholar]
  62. RayS. SinghN. PatelK. KrishnamoorthyG. MajiS.K. FRAP and FRET Investigation of α-synuclein fibrillization via liquid-liquid phase separation in vitro and in hela cells. Protein Aggregation CieplakA.S. SpringerUS: New York, NY2023255139542310.1007/978‑1‑0716‑2597‑2_26
    [Google Scholar]
  63. ComesM.C. CastiP. MencattiniA. Di GiuseppeD. Mermet-MeillonF. De NinnoA. ParriniM.C. BusinaroL. Di NataleC. MartinelliE. The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: A systematic study for time-lapse microscopy applications.Sci. Rep.201991678910.1038/s41598‑019‑42475‑531043687
    [Google Scholar]
  64. TheilletF.X. BinolfiA. Frembgen-KesnerT. HingoraniK. SarkarM. KyneC. LiC. CrowleyP.B. GieraschL. PielakG.J. ElcockA.H. GershensonA. SelenkoP. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs).Chem. Rev.2014114136661671410.1021/cr400695p24901537
    [Google Scholar]
  65. HoebeR.A. Van OvenC.H. GadellaT.W.J.Jr DhonuksheP.B. Van NoordenC.J.F. MandersE.M.M. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.Nat. Biotechnol.200725224925310.1038/nbt127817237770
    [Google Scholar]
  66. LiuZ. YangY. GuA. XuJ. MaoY. LuH. HuW. LeiQ.Y. LiZ. ZhangM. CaiY. WenW. Par complex cluster formation mediated by phase separation.Nat. Commun.2020111226610.1038/s41467‑020‑16135‑632385244
    [Google Scholar]
  67. HilditchA.T. RomanyukA. CrossS.J. ObexerR. McManusJ.J. WoolfsonD.N. Assembling membraneless organelles from de novo designed proteins.Nat. Chem.2024161899710.1038/s41557‑023‑01321‑y37710047
    [Google Scholar]
  68. KouS.S. WallerL. BarbastathisG. SheppardC.J.R. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging.Opt. Lett.201035344744910.1364/OL.35.00044720125750
    [Google Scholar]
  69. Do AmaralM.J. PassosY.M. AlmeidaM.S. PinheiroA.S. CordeiroY. In Vitro characterization of protein:nucleic acid liquid–liquid phase separation by microscopy methods and nanoparticle tracking analysis.Protein Aggregation CieplakA.S. SpringerUS: New York, NY20232551605631
    [Google Scholar]
  70. RivensonY. LiuT. WeiZ. ZhangY. de HaanK. OzcanA. PhaseStain: The digital staining of label-free quantitative phase microscopy images using deep learning.Light Sci. Appl.2019812310.1038/s41377‑019‑0129‑y30728961
    [Google Scholar]
  71. ShakyaA. KingJ.T. Modern optical microscopy methods to study biomolecular condensates.Curr. Opin. Colloid Interface Sci.20215210142110.1016/j.cocis.2021.101421
    [Google Scholar]
  72. Barone-NugentE.D. BartyA. NugentK.A. Quantitative phase-amplitude microscopy I: Optical microscopy.J. Microsc.2002206319420310.1046/j.1365‑2818.2002.01027.x12067363
    [Google Scholar]
  73. UverskyV.N. A decade and a half of protein intrinsic disorder: Biology still waits for physics.Protein Sci.201322669372410.1002/pro.226123553817
    [Google Scholar]
  74. Claeys BouuaertC. PuS. WangJ. OgerC. DaccacheD. XieW. PatelD.J. KeeneyS. DNA-driven condensation assembles the meiotic DNA break machinery.Nature2021592785214414910.1038/s41586‑021‑03374‑w33731927
    [Google Scholar]
  75. VoA. FleischmanN.M. FroehlichM.J. LeeC.Y. CosmanJ.A. GlynnC.A. HassanZ.O. PerlsteinD.L. Identifying the protein interactions of the cytosolic iron–sulfur cluster targeting complex essential for its assembly and recognition of apo-targets.Biochemistry201857162349235810.1021/acs.biochem.7b0007228539047
    [Google Scholar]
  76. HurtleB.T. XieL. DonnellyC.J. Disrupting pathologic phase transitions in neurodegeneration.J. Clin. Invest.202313313e16854910.1172/JCI16854937395272
    [Google Scholar]
  77. PłocińskiP. LaubitzD. CysewskiD. StoduśK. KowalskaK. DziembowskiA. Identification of protein partners in mycobacteria using a single-step affinity purification method.PLoS One201493e9138010.1371/journal.pone.009138024664103
    [Google Scholar]
  78. LiuZ. HuangY. Advantages of proteins being disordered.Protein Sci.201423553955010.1002/pro.244324532081
    [Google Scholar]
  79. SehgalP.B. WestleyJ. LereaK.M. DiSenso-BrowneS. EtlingerJ.D. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).Anal. Biochem.202059711369110.1016/j.ab.2020.11369132194074
    [Google Scholar]
  80. RodenC. GladfelterA.S. RNA contributions to the form and function of biomolecular condensates.Nat. Rev. Mol. Cell Biol.202122318319510.1038/s41580‑020‑0264‑632632317
    [Google Scholar]
  81. CoskunerO. UverskyV.N. Intrinsically Disordered Proteins in Various Hypotheses on the Pathogenesis of Alzheimer’s and Parkinson’s Diseases. Progress in Molecular Biology and Translational Science.Elsevier2019166145223
    [Google Scholar]
  82. SridharanS. Hernandez-ArmendarizA. KurzawaN. PotelC.M. MemonD. BeltraoP. BantscheffM. HuberW. Cuylen-HaeringS. SavitskiM.M. Systematic discovery of biomolecular condensate-specific protein phosphorylation.Nat. Chem. Biol.202218101104111410.1038/s41589‑022‑01062‑y35864335
    [Google Scholar]
  83. AhmedF.E. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry.J. Sep. Sci.2009325-677179810.1002/jssc.20080062219219839
    [Google Scholar]
  84. MukhopadhyayS. The dynamism of intrinsically disordered proteins: Binding-induced folding, amyloid formation, and phase separation.J. Phys. Chem. B202012451115411156010.1021/acs.jpcb.0c0759833108190
    [Google Scholar]
  85. SchmidS.Y. LachowskiK. ChiangH.T. PozzoL. De YoreoJ. ZhangS. Mechanisms of biomolecular self-assembly investigated through In Situ observations of structures and dynamics.Angew. Chem. Int. Ed.20236248e20230972510.1002/anie.20230972537702227
    [Google Scholar]
  86. MaguireC.M. RössleinM. WickP. Prina-MelloA. Characterisation of particles in solution a perspective on light scattering and comparative technologies.Sci. Technol. Adv. Mater.201819173274510.1080/14686996.2018.151758730369998
    [Google Scholar]
  87. ShapiroD.M. NeyM. EghtesadiS.A. ChilkotiA. Protein phase separation arising from intrinsic disorder: First-principles to bespoke applications.J. Phys. Chem. B2021125256740675910.1021/acs.jpcb.1c0114634143622
    [Google Scholar]
  88. do AmaralM.J. MohapatraS. PassosA.R. Lopes da SilvaT.S. CarvalhoR.S. da Silva AlmeidaM. PinheiroA.S. WegmannS. CordeiroY. Copper drives prion protein phase separation and modulates aggregation.Sci. Adv.2023944eadi734710.1126/sciadv.adi734737922348
    [Google Scholar]
  89. LondoñoO.M. TancrediP. RivasP. MuracaD. SocolovskyL.M. KnobelM. Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. Handbook of Materials Characterization. SharmaS.K. ChamSpringer International Publishing2018377510.1007/978‑3‑319‑92955‑2_2
    [Google Scholar]
  90. CinarH. FetahajZ. CinarS. VernonR.M. ChanH.S. WinterR.H.A. Temperature, hydrostatic pressure, and osmolyte effects on liquid–liquid phase separation in protein condensates: Physical chemistry and biological implications.Chemistry20192557130491306910.1002/chem.20190221031237369
    [Google Scholar]
  91. ProsaT.J. BauerB.J. AmisE.J. From stars to spheres: A SAXS analysis of dilute dendrimer solutions.Macromolecules200134144897490610.1021/ma0002186
    [Google Scholar]
  92. SauterA. ZhangF. SzekelyN.K. PipichV. SztuckiM. SchreiberF. Structural evolution of metastable protein aggregates in the presence of trivalent salt studied by (V)SANS and SAXS.J. Phys. Chem. B2016120245564557110.1021/acs.jpcb.6b0355927285548
    [Google Scholar]
  93. DelhommelF. Martínez-LumbrerasS. SattlerM. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods in Enzymology.Elsevier2023678263297
    [Google Scholar]
  94. KangJ.Y. WenZ. PanD. ZhangY. LiQ. ZhongA. YuX. WuY.C. ChenY. ZhangX. KouP.C. GengJ. WangY.Y. HuaM.M. ZongR. LiB. ShiH.J. LiD. FuX.D. LiJ. NelsonD.L. GuoX. ZhouY. GouL.T. HuangY. LiuM.F. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs.Science20223776607eabj664710.1126/science.abj664735951695
    [Google Scholar]
  95. KurupS.P. MoiofferS.J. PeweL.L. HartyJ.T. p53 Hinders CRISPR/Cas9-mediated targeted gene disruption in memory CD8 T cells In Vivo.J. Immunol.202020582222223010.4049/jimmunol.200065432887747
    [Google Scholar]
  96. ShanG. RNA interference as a gene knockdown technique.Int. J. Biochem. Cell Biol.20104281243125110.1016/j.biocel.2009.04.02319442757
    [Google Scholar]
  97. UrsuA. Childs-DisneyJ.L. AndrewsR.J. O’LearyC.A. MeyerS.M. AngelbelloA.J. MossW.N. DisneyM.D. Design of small molecules targeting RNA structure from sequence.Chem. Soc. Rev.202049207252727010.1039/D0CS00455C32935689
    [Google Scholar]
  98. CoskunerO. UverskyV.N. Tyrosine regulates β-sheet structure formation in amyloid-β42: A new clustering algorithm for disordered proteins.J. Chem. Inf. Model.20175761342135810.1021/acs.jcim.6b0076128474890
    [Google Scholar]
  99. Coskuner-WeberO. UverskyV.N. Alanine scanning effects on the biochemical and biophysical properties of intrinsically disordered proteins: A case study of the histidine to alanine mutations in amyloid-β 42.J. Chem. Inf. Model.201959287188410.1021/acs.jcim.8b0092630694660
    [Google Scholar]
  100. CoskunerO. Wise-SciraO. Arginine and disordered amyloid-β peptide structures: Molecular level insights into the toxicity in Alzheimer’s disease.ACS Chem. Neurosci.20134121549155810.1021/cn400138924041422
    [Google Scholar]
  101. WebberC.J. LeiS. (Eric); Wolozin, B. The Pathophysiology of Neurodegenerative Disease: Disturbing the Balance between Phase Separation and Irreversible Aggregation. Progress in Molecular Biology and Translational Science.Elsevier2020174187223
    [Google Scholar]
  102. FarinaS. EspositoF. BattistoniM. BiamontiG. FranciaS. Post-translational modifications modulate proteinopathies of TDP-43, FUS and hnRNP-A/B in amyotrophic lateral sclerosis.Front. Mol. Biosci.2021869332510.3389/fmolb.2021.69332534291086
    [Google Scholar]
  103. ConicellaA.E. ZerzeG.H. MittalJ. FawziN.L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain.Structure20162491537154910.1016/j.str.2016.07.00727545621
    [Google Scholar]
  104. AldersonT.R. KayL.E. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function.Cell2021184357759510.1016/j.cell.2020.12.03433545034
    [Google Scholar]
  105. KimT.H. PaylissB.J. NosellaM.L. LeeI.T.W. ToyamaY. Forman-KayJ.D. KayL.E. Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase.Proc. Natl. Acad. Sci.202111823e210489711810.1073/pnas.210489711834074792
    [Google Scholar]
  106. AbyzovA. BlackledgeM. ZweckstetterM. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry.Chem. Rev.202212266719674810.1021/acs.chemrev.1c0077435179885
    [Google Scholar]
  107. WongL.E. KimT.H. MuhandiramD.R. Forman-KayJ.D. KayL.E. NMR experiments for studies of dilute and condensed protein phases: Application to the phase-separating protein CAPRIN1.J. Am. Chem. Soc.202014252471248910.1021/jacs.9b1220831898464
    [Google Scholar]
  108. AkbayrakI.Y. CaglayanS.I. OzcanZ. UverskyV.N. Coskuner-WeberO. Current challenges and limitations in the studies of intrinsically disordered proteins in neurodegenerative diseases by computer simulations.Curr. Alzheimer Res.202117980581810.2174/156720501766620110909490833167839
    [Google Scholar]
  109. KosolS. Contreras-MartosS. CedeñoC. TompaP. Structural characterization of intrinsically disordered proteins by NMR spectroscopy.Molecules2013189108021082810.3390/molecules18091080224008243
    [Google Scholar]
  110. FujiwaraT. RamamoorthyA. How far can the sensitivity of NMR be increased?Annual Reports on NMR Spectroscopy.Elsevier200658155175
    [Google Scholar]
  111. MunariF. D’OnofrioM. AssfalgM. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins.Arch. Biochem. Biophys.202068310830410.1016/j.abb.2020.10830432097611
    [Google Scholar]
  112. TejedorA.R. Collepardo-GuevaraR. RamírezJ. EspinosaJ.R. Time-dependent material properties of aging biomolecular condensates from different viscoelasticity measurements in molecular dynamics simulations.J. Phys. Chem. B2023127204441445910.1021/acs.jpcb.3c0129237194953
    [Google Scholar]
  113. Wise-SciraO. XuL. KitaharaT. PerryG. CoskunerO. Amyloid-β peptide structure in aqueous solution varies with fragment size.J. Chem. Phys.20111352020510110.1063/1.366249022128957
    [Google Scholar]
  114. CoskunerO. Wise-SciraO. PerryG. KitaharaT. The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms.ACS Chem. Neurosci.20134231032010.1021/cn300149j23421682
    [Google Scholar]
  115. Wise-SciraO. AlogluA.K. DunnA. SakalliogluI.T. CoskunerO. Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics.ACS Chem. Neurosci.20134348649710.1021/cn300198q23374072
    [Google Scholar]
  116. Wise-SciraO. DunnA. AlogluA.K. SakalliogluI.T. CoskunerO. Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein.ACS Chem. Neurosci.20134349850810.1021/cn300202723374074
    [Google Scholar]
  117. MinJ. BrittM. SukharevS.I. BrooksB.R. KlaudaJ.B. Exploring the effectiveness of the CHARMM36m force field in depicting arginine-phosphate interactions.Biophys. J.20241233473a474a10.1016/j.bpj.2023.11.2876
    [Google Scholar]
  118. LohD. ReiterR.J. Melatonin: Regulation of biomolecular condensates in neurodegenerative disorders.Antioxidants2021109148310.3390/antiox1009148334573116
    [Google Scholar]
  119. HnathB. ChenJ. ReynoldsJ. ChoiE. WangJ. ZhangD. ShaC.M. DokholyanN.V. Big versus small: The impact of aggregate size in disease.Protein Sci.2023327e468610.1002/pro.468637243896
    [Google Scholar]
  120. ChatterjeeS. SalimiA. LeeJ.Y. Insights into amyotrophic lateral sclerosis linked Pro525Arg mutation in the fused in sarcoma protein through in silico analysis and molecular dynamics simulation.J. Biomol. Struct. Dyn.202139165963597610.1080/07391102.2020.179496732687767
    [Google Scholar]
  121. GirdharA. BharathiV. TiwariV.R. AbhishekS. DeekshaW. MahawarU.S. RajuG. SinghS.K. PrabusankarG. RajakumaraE. PatelB.K. Computational insights into mechanism of AIM4-mediated inhibition of aggregation of TDP-43 protein implicated in ALS and evidence for in vitro inhibition of liquid-liquid phase separation (LLPS) of TDP-432C-A315T by AIM4.Int. J. Biol. Macromol.202014711713010.1016/j.ijbiomac.2020.01.03231917988
    [Google Scholar]
  122. WorkmanR.J. DrakeJ.A. PettittB.M. Thermodynamic perspective of protein disorder and phase separation: Model systems. Structure and Intrinsic Disorder in Enzymology.Elsevier20239712610.1016/B978‑0‑323‑99533‑7.00015‑7
    [Google Scholar]
  123. BariK.J. PrakashchandD.D. Fundamental challenges and outlook in simulating liquid–liquid phase separation of intrinsically disordered proteins.J. Phys. Chem. Lett.20211261644165610.1021/acs.jpclett.0c0340433555894
    [Google Scholar]
  124. MurthyA.C. DignonG.L. KanY. ZerzeG.H. ParekhS.H. MittalJ. FawziN.L. Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain.Nat. Struct. Mol. Biol.201926763764810.1038/s41594‑019‑0250‑x31270472
    [Google Scholar]
  125. DangM. LiY. SongJ. Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1.Sci. Rep.2021111103410.1038/s41598‑020‑80524‑633441818
    [Google Scholar]
  126. FaragM. CohenS.R. BorcherdsW.M. BremerA. MittagT. PappuR.V. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations.Nat. Commun.2022131772210.1038/s41467‑022‑35370‑736513655
    [Google Scholar]
  127. WangJ. DevarajanD.S. KimY. NikoubashmanA. MittalJ. Conformational preferences of disordered proteins in biomolecular condensates.Biophys. J.20241233492a493a10.1016/j.bpj.2023.11.2983
    [Google Scholar]
  128. WangH. XiongR. LaiL. Rational drug design targeting intrinsically disordered proteins.Wiley Interdiscip. Rev. Comput. Mol. Sci.2023136e168510.1002/wcms.1685
    [Google Scholar]
  129. GaoP. ZhangQ. KeelyD. ClevelandD.W. YeY. ZhengW. ShenM. YuH. Molecular graph-based deep learning algorithm facilitates an imaging-based strategy for rapid discovery of small molecules modulating biomolecular condensates.J. Med. Chem.20236622150841509310.1021/acs.jmedchem.3c0049037937963
    [Google Scholar]
  130. GongX. ZhangY. ChenJ. Advanced sampling methods for multiscale simulation of disordered proteins and dynamic interactions.Biomolecules20211110141610.3390/biom1110141634680048
    [Google Scholar]
  131. StrodelB. Coskuner-WeberO. Transition metal ion interactions with disordered amyloid-β peptides in the pathogenesis of Alzheimer’s disease: Insights from computational chemistry studies.J. Chem. Inf. Model.20195951782180510.1021/acs.jcim.8b0098330933519
    [Google Scholar]
  132. LiaoQ. Enhanced sampling and free energy calculations for protein simulations. Progress in Molecular Biology and Translational Science.Elsevier2020170177213
    [Google Scholar]
  133. QiR. WeiG. MaB. NussinovR. Replica exchange molecular dynamics: A practical application protocol with solutions to common problems and a peptide aggregation and self-assembly example.Methods Mol. Biol.2018177710111910.1007/978‑1‑4939‑7811‑3_529744830
    [Google Scholar]
  134. ChipotC. Frontiers in free-energy calculations of biological systems.Wiley Interdiscip. Rev. Comput. Mol. Sci.201441718910.1002/wcms.1157
    [Google Scholar]
  135. AdcockS.A. McCammonJ.A. Molecular dynamics: Survey of methods for simulating the activity of proteins.Chem. Rev.200610651589161510.1021/cr040426m16683746
    [Google Scholar]
  136. CaliskanM. MandaciS.Y. UverskyV.N. Coskuner-WeberO. Secondary structure dependence of amyloid-β(1–40) on simulation techniques and force field parameters.Chem. Biol. Drug Des.20219751100110810.1111/cbdd.1383033580600
    [Google Scholar]
  137. MandaciS.Y. CaliskanM. SariaslanM.F. UverskyV.N. Coskuner-WeberO. Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α-synuclein on simulation techniques and force field parameters.Chem. Biol. Drug Des.202096165966710.1111/cbdd.13662
    [Google Scholar]
  138. Coskuner-WeberO. CaglayanS.I. Secondary structure dependence on simulation techniques and force field parameters: From disordered to ordered proteins.Biophys. Rev.20211361173117810.1007/s12551‑021‑00850‑535059035
    [Google Scholar]
  139. MuJ. LiuH. ZhangJ. LuoR. ChenH.F. Recent force field strategies for intrinsically disordered proteins.J. Chem. Inf. Model.20216131037104710.1021/acs.jcim.0c0117533591749
    [Google Scholar]
  140. LiuM. DasA.K. LincoffJ. SasmalS. ChengS.Y. VernonR.M. Forman-KayJ.D. Head-GordonT. Configurational entropy of folded proteins and its importance for intrinsically disordered proteins.Int. J. Mol. Sci.2021227342010.3390/ijms2207342033810353
    [Google Scholar]
  141. WeberO.C. UverskyV.N. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β 42 in water.Intrinsically Disord. Proteins201751e137781310.1080/21690707.2017.137781330250773
    [Google Scholar]
  142. ShabaneP.S. IzadiS. OnufrievA.V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins.J. Chem. Theory Comput.20191542620263410.1021/acs.jctc.8b0112330865832
    [Google Scholar]
  143. CoskunerO. DeitersU.K. Hydrophobic interactions by monte carlo simulations.Z. Phys. Chem.20062203_200634936910.1524/zpch.2006.220.3.349
    [Google Scholar]
  144. CoskunerO. DeitersU.K. Hydrophobic interactions of xenon by monte carlo simulations.Z. Phys. Chem.2007221678579910.1524/zpch.2007.221.6.785
    [Google Scholar]
  145. DignonG.L. ZhengW. KimY.C. BestR.B. MittalJ. Sequence determinants of protein phase behavior from a coarse-grained model.PLOS Comput. Biol.2018141e100594110.1371/journal.pcbi.100594129364893
    [Google Scholar]
  146. KroeseD.P. BreretonT. TaimreT. BotevZ.I. Why the Monte Carlo method is so important today.Wiley Interdiscip. Rev. Comput. Stat.20146638639210.1002/wics.1314
    [Google Scholar]
  147. FrigessiA. StefanoP. HwangC.R. SheuS.J. Convergence rates of the gibbs sampler, the metropolis algorithm and other single-site updating dynamics.J. R. Stat. Soc. Series B Stat. Methodol.199355120521910.1111/j.2517‑6161.1993.tb01479.x
    [Google Scholar]
  148. NguyenP. DerreumauxP. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.Acc. Chem. Res.201447260361110.1021/ar400207524368046
    [Google Scholar]
  149. Nasica-LabouzeJ. NguyenP.H. SterponeF. BerthoumieuO. BucheteN.V. CotéS. De SimoneA. DoigA.J. FallerP. GarciaA. LaioA. LiM.S. MelchionnaS. MousseauN. MuY. ParavastuA. PasqualiS. RosenmanD.J. StrodelB. TarusB. VilesJ.H. ZhangT. WangC. DerreumauxP. Amyloid β protein and alzheimer’s disease: When computer simulations complement experimental studies.Chem. Rev.201511593518356310.1021/cr500638n25789869
    [Google Scholar]
  150. RaimondiD. OrlandoG. MichielsE. PakravanD. Bratek-SkickiA. Van Den BoschL. MoreauY. RousseauF. SchymkowitzJ. In silico prediction of in vitro protein liquid–liquid phase separation experiments outcomes with multi-head neural attention.Bioinformatics202137203473347910.1093/bioinformatics/btab35033983381
    [Google Scholar]
  151. HassanS.A. Self-adaptive multiscaling algorithm for efficient simulations of many-protein systems in crowded conditions.Phys. Chem. Chem. Phys.20182045285442855710.1039/C8CP05517C30421760
    [Google Scholar]
  152. ElsonE.L. FriedE. DolbowJ.E. GeninG.M. Phase separation in biological membranes: Integration of theory and experiment.Annu. Rev. Biophys.201039120722610.1146/annurev.biophys.093008.13123820192775
    [Google Scholar]
  153. EthayarajaM. DuttaK. BandyopadhyayaR. Mechanism of nanoparticle formation in self-assembled colloidal templates: Population balance model and Monte Carlo simulation.J. Phys. Chem. B200611033164711648110.1021/jp062364516913778
    [Google Scholar]
  154. FalahatiH. Haji-AkbariA. Thermodynamically driven assemblies and liquid–liquid phase separations in biology.Soft Matter20191561135115410.1039/C8SM02285B30672955
    [Google Scholar]
  155. LimaI.T.Jr KalraA. SherifS.S. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography.Biomed. Opt. Express2011251069108110.1364/BOE.2.00106921559120
    [Google Scholar]
  156. RobertsG.O. RosenthalJ.S. General state space Markov chains and MCMC algorithms.Probability Surveys20041207110.1214/154957804100000024
    [Google Scholar]
  157. LlorenteF. CurbeloE. MartinoL. ElviraV. DelgadoD. MCMC-driven importance samplers.Appl. Math. Model.202211131033110.1016/j.apm.2022.06.027
    [Google Scholar]
  158. JainG. LimaM.T. MatlahovI. DolgaA. van der WelP.C. Polyphenol-based modulation of structure and toxicity of huntingtin protein aggregates.Biophys. J.20241233488a489a10.1016/j.bpj.2023.11.2955
    [Google Scholar]
  159. KästnerJ. Umbrella sampling.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111693294210.1002/wcms.66
    [Google Scholar]
  160. SasmalS. GillS.C. LimN.M. MobleyD.L. Sampling conformational changes of bound ligands using nonequilibrium candidate monte carlo and molecular dynamics.J. Chem. Theory Comput.20201631854186510.1021/acs.jctc.9b0106632058713
    [Google Scholar]
  161. ComerJ. RouxB. ChipotC. Achieving ergodic sampling using replica-exchange free-energy calculations.Mol. Simul.2014401-321822810.1080/08927022.2013.841909
    [Google Scholar]
  162. ThachukC. ShmygelskaA. HoosH.H. A replica exchange monte carlo algorithm for protein folding in the HP model.BMC Bioinformatics20078134210.1186/1471‑2105‑8‑34217875212
    [Google Scholar]
  163. BolhuisP.G. SwensonD.W.H. Transition path sampling as markov chain monte carlo of trajectories: Recent algorithms, software, applications, and future outlook.Adv. Theory Simul.202144200023710.1002/adts.202000237
    [Google Scholar]
  164. TakadaS. KanadaR. TanC. TerakawaT. LiW. KenzakiH. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations.Acc. Chem. Res.201548123026303510.1021/acs.accounts.5b0033826575522
    [Google Scholar]
  165. BrandaniG.B. GopiS. YamauchiM. TakadaS. Molecular dynamics simulations for the study of chromatin biology.Curr. Opin. Struct. Biol.20227710248510.1016/j.sbi.2022.10248536274422
    [Google Scholar]
  166. RegyR.M. DignonG.L. ZhengW. KimY.C. MittalJ. Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations.Nucleic Acids Res.20204822125931260310.1093/nar/gkaa109933264400
    [Google Scholar]
  167. HeoL. SugitaY. FeigM. Protein assembly and crowding simulations.Curr. Opin. Struct. Biol.20227310234010.1016/j.sbi.2022.10234035219215
    [Google Scholar]
  168. ChristenM. van GunsterenW.F. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review.J. Comput. Chem.200829215716610.1002/jcc.2072517570138
    [Google Scholar]
  169. LinY-H. WessénJ. PalT. DasS. ChanH.S. Numerical techniques for applications of analytical theories to sequence-dependent phase separations of intrinsically disordered proteins.Methods Mol. Biol.20232563519410.1007/978‑1‑0716‑2663‑4_3
    [Google Scholar]
  170. ZhangZ. HuangG. SongZ. GatchA.J. DingF. amyloid aggregation and liquid–liquid phase separation from the perspective of phase transitions.J. Phys. Chem. B2023127286241625010.1021/acs.jpcb.3c0142637414583
    [Google Scholar]
  171. FujisakiH. MoritsuguK. MatsunagaY. Exploring configuration space and path space of biomolecules using enhanced sampling techniques—searching for mechanism and kinetics of biomolecular functions.Int. J. Mol. Sci.20181910317710.3390/ijms1910317730326661
    [Google Scholar]
  172. BarducciA. BonomiM. ParrinelloM. Metadynamics.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111582684310.1002/wcms.31
    [Google Scholar]
  173. DignonG.L. ZhengW. KimY.C. MittalJ. Temperature-controlled liquid–liquid phase separation of disordered proteins.ACS Cent. Sci.20195582183010.1021/acscentsci.9b0010231139718
    [Google Scholar]
  174. YangT. ZhangW. ChengJ. NieY. XinQ. YuanS. DouY. Formation mechanism of ion channel in channelrhodopsin-2: Molecular dynamics simulation and steering molecular dynamics simulations.Int. J. Mol. Sci.20192015378010.3390/ijms2015378031382458
    [Google Scholar]
  175. IsralewitzB. BaudryJ. GullingsrudJ. KosztinD. SchultenK. Steered molecular dynamics investigations of protein function.J. Mol. Graph. Model.2001191132510.1016/S1093‑3263(00)00133‑911381523
    [Google Scholar]
  176. RauscherS. NealeC. PomèsR. Simulated tempering distributed replica sampling, virtual replica exchange, and other generalized-ensemble methods for conformational sampling.J. Chem. Theory Comput.20095102640266210.1021/ct900302n26631779
    [Google Scholar]
  177. AwasthiS. NairN.N. Exploring high-dimensional free energy landscapes of chemical reactions.Wiley Interdiscip. Rev. Comput. Mol. Sci.201993e139810.1002/wcms.1398
    [Google Scholar]
  178. ZhangY. LiuX. ChenJ. Re-balancing replica exchange with solute tempering for sampling dynamic protein conformations.J. Chem. Theory Comput.20231951602161410.1021/acs.jctc.2c0113936791464
    [Google Scholar]
  179. ComerJ. GumbartJ.C. HéninJ. LelièvreT. PohorilleA. ChipotC. The adaptive biasing force method: Everything you always wanted to know but were afraid to ask.J. Phys. Chem. B201511931129115110.1021/jp506633n25247823
    [Google Scholar]
  180. WangJ. OlssonS. WehmeyerC. PérezA. CharronN.E. de FabritiisG. NoéF. ClementiC. Machine learning of coarse- grained molecular dynamics force fields.ACS Cent. Sci.20195575576710.1021/acscentsci.8b0091331139712
    [Google Scholar]
  181. WanM. SongJ. YangY. GaoL. FangW. A top-down and bottom-up combined strategy for parameterization of coarse-grained force fields for phospholipids.Phys. Chem. Chem. Phys.20232596757676710.1039/D2CP05384E36789502
    [Google Scholar]
  182. ForsterM.J. Molecular modelling in structural biology.Micron200233436538410.1016/S0968‑4328(01)00035‑X11814876
    [Google Scholar]
  183. WebbB. SaliA. Comparative protein structure modeling using modeller.Curr. Protoc. Bioinformatics20165413710.1002/cpbi.327322406
    [Google Scholar]
  184. SchwedeT. KoppJ. GuexN. PeitschM.C. SWISS-MODEL: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg52012824332
    [Google Scholar]
  185. RoyA. KucukuralA. ZhangY. I-TASSER: A unified platform for automated protein structure and function prediction.Nat. Protoc.20105472573810.1038/nprot.2010.520360767
    [Google Scholar]
  186. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.05325950237
    [Google Scholar]
  187. KaufmannK.W. LemmonG.H. DeLucaS.L. SheehanJ.H. MeilerJ. Practically useful: what the Rosetta protein modeling suite can do for you.Biochemistry201049142987299810.1021/bi902153g20235548
    [Google Scholar]
  188. SödingJ. BiegertA. LupasA.N. The HHpred interactive server for protein homology detection and structure prediction.Nucleic Acids Res.200533Web ServerW244W24810.1093/nar/gki40815980461
    [Google Scholar]
  189. KällbergM. MargaryanG. WangS. MaJ. XuJ. RaptorX Server: A resource for template-based protein structure modeling. KiharaD. Protein Structure Prediction. Methods in Molecular BiologyHumana PressNew York, NY20141137172710.1007/978‑1‑4939‑0366‑5_2
    [Google Scholar]
  190. JonesD.T. GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences.J. Mol. Biol.1999287479781510.1006/jmbi.1999.258310191147
    [Google Scholar]
  191. GuoH.B. PerminovA. BekeleS. KedzioraG. FarajollahiS. VaraljayV. HinkleK. MolineroV. MeisterK. HungC. DennisP. Kelley-LoughnaneN. BerryR. AlphaFold2 models indicate that protein sequence determines both structure and dynamics.Sci. Rep.20221211069610.1038/s41598‑022‑14382‑935739160
    [Google Scholar]
  192. AbramsonJ. AdlerJ. DungerJ. EvansR. GreenT. PritzelA. RonnebergerO. WillmoreL. BallardA.J. BambrickJ. BodensteinS.W. EvansD.A. HungC.C. O’NeillM. ReimanD. TunyasuvunakoolK. WuZ. ŽemgulytėA. ArvanitiE. BeattieC. BertolliO. BridglandA. CherepanovA. CongreveM. Cowen-RiversA.I. CowieA. FigurnovM. FuchsF.B. GladmanH. JainR. KhanY.A. LowC.M.R. PerlinK. PotapenkoA. SavyP. SinghS. SteculaA. ThillaisundaramA. TongC. YakneenS. ZhongE.D. ZielinskiM. ŽídekA. BapstV. KohliP. JaderbergM. HassabisD. JumperJ.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3.Nature20241310.1038/s41586‑024‑07487‑w38718835
    [Google Scholar]
  193. PancsaR. VrankenW. MészárosB. Computational resources for identifying and describing proteins driving liquid–liquid phase separation.Brief. Bioinform.2021225bbaa40810.1093/bib/bbaa40833517364
    [Google Scholar]
  194. ShenB. ChenZ. YuC. ChenT. ShiM. LiT. Computational screening of phase-separating proteins.Genom. Proteom. Bioinform.2021191132410.1016/j.gpb.2020.11.00333610793
    [Google Scholar]
  195. NithinC. GhoshP. BujnickiJ. Bioinformatics tools and benchmarks for computational docking and 3D structure prediction of rna-protein complexes.Genes20189943210.3390/genes909043230149645
    [Google Scholar]
  196. BradleyD. The evolution of post-translational modifications.Curr. Opin. Genet. Dev.20227610195610.1016/j.gde.2022.10195635843204
    [Google Scholar]
  197. TejeraE. BernardesJ. RebeloI. Preeclampsia: A bioinformatics approach through protein-protein interaction networks analysis.BMC Syst. Biol.2012619710.1186/1752‑0509‑6‑9722873350
    [Google Scholar]
  198. TosoliniD. AntonialiG. DallaE. TellG. Role of phase partitioning in coordinating DNA damage response: Focus on the Apurinic Apyrimidinic Endonuclease 1 interactome.Biomol. Concepts202011120922010.1515/bmc‑2020‑001934233432
    [Google Scholar]
  199. SarkerI.H. Machine Learning: Algorithms, real-world applications and research directions.SN Computer Science20212316010.1007/s42979‑021‑00592‑x33778771
    [Google Scholar]
  200. FarahiN. LazarT. WodakS.J. TompaP. PancsaR. Integration of data from liquid–liquid phase separation databases highlights concentration and dosage sensitivity of LLPS drivers.Int. J. Mol. Sci.2021226301710.3390/ijms2206301733809541
    [Google Scholar]
  201. LiaoS. ZhangY. HanX. WangT. WangX. YanQ. LiQ. QiY. ZhangZ. A sequence-based model for identifying proteins undergoing liquid–liquid phase separation/forming fibril aggregates via machine learning.Protein Sci.2024333e492710.1002/pro.492738380794
    [Google Scholar]
  202. HelmJ.M. SwiergoszA.M. HaeberleH.S. KarnutaJ.M. SchafferJ.L. KrebsV.E. SpitzerA.I. RamkumarP.N. Machine learning and artificial intelligence: Definitions, applications, and future directions.Curr. Rev. Musculoskelet. Med.2020131697610.1007/s12178‑020‑09600‑831983042
    [Google Scholar]
  203. ReelP.S. ReelS. PearsonE. TruccoE. JeffersonE. Using machine learning approaches for multi-omics data analysis: A review.Biotechnol. Adv.20214910773910.1016/j.biotechadv.2021.10773933794304
    [Google Scholar]
  204. FamiliA. ShenW.M. WeberR. SimoudisE. Data preprocessing and intelligent data analysis.Intell. Data Anal.19971132310.3233/IDA‑1997‑1102
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037314062240618193044
Loading
/content/journals/cpps/10.2174/0113892037314062240618193044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test