Skip to content
2000
Volume 32, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cancer encompasses a group of diseases characterized by uncontrolled cell growth and the ability to invade or spread to other parts of the body. It is considered a major public health issue, being the second leading cause of death worldwide. A crucial signaling pathway altered in many cancers is the Mitogen-Activated Protein Kinase (MAPK) pathway, which is associated with the regulation of cell proliferation, differentiation, and survival, playing a central role in the development and maintenance of malignant tumors. Natural products have made significant contributions to pharmacotherapy, particularly in the field of cancer treatment. The Euphorbiaceae family, comprising approximately 300 genera and over 5,000 species, is known for its rich diversity of bioactive compounds. (Euphorbiaceae), a species predominantly found in Northeast Brazil, has recently garnered attention due to its novel phenylpropanoids isolated from its roots. Among these, (E)-4-(1-epoxy-7,8-propen) phenylbenzoate (CV2) has demonstrated potential cytotoxic activity against various human tumor cell lines, including B16F10, MCF-7, HL60, HCT-116, and HepG2. This review aims to highlight the antitumor activity of phenylpropanoids derived from the Euphorbiaceae family. Furthermore, through molecular docking studies, we explored the binding efficacy of CV2 with MAPKs (ERK, JNK, p38), comparing it to 25 other phenylpropanoid compounds reported in the literature, revealing promising interactions that could be further investigated for therapeutic applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357765250603105759
2025-06-19
2025-12-14
Loading full text...

Full text loading...

References

  1. YinW. WangJ. JiangL. James KangY. Cancer and stem cells.Exp. Biol. Med.2021246161791180110.1177/15353702211005390 33820469
    [Google Scholar]
  2. CheekD.M. NaxerovaK. Mapping the long road to cancer.Cell2022185693994010.1016/j.cell.2022.02.020 35263624
    [Google Scholar]
  3. ArnethB. Tumor microenvironment.Medicina20195611510.3390/medicina56010015 31906017
    [Google Scholar]
  4. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. Global cancer statistics, GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660
    [Google Scholar]
  6. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  7. VictoirB. CroixC. GouilleuxF. PriéG. Targeted therapeutic strategies for the treatment of cancer.Cancers202416246110.3390/cancers16020461 38275901
    [Google Scholar]
  8. Lohan-CodeçoM. Barambo-WagnerM.L. NasciuttiL.E. Ribeiro PintoL.F. Meireles Da CostaN. PalumboA. Molecular mechanisms associated with chemoresistance in esophageal cancer.Cell. Mol. Life Sci.202279211610.1007/s00018‑022‑04131‑6 35113247
    [Google Scholar]
  9. LiuB. ZhouH. TanL. SiuK.T.H. GuanX.Y. Exploring treatment options in cancer: Tumor treatment strategies.Signal Transduct. Target. Ther.20249117510.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  10. ShangL WangY LiJ Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J Ethnopharmacol2023302Pt A11587610.1016/j.jep.2022.11587636343798
    [Google Scholar]
  11. LuoL. ZhongA. WangQ. ZhengT. Structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET, and molecular dynamics (MD) simulation of potential inhibitors of PD-L1 from the library of marine natural products.Mar. Drugs20212012910.3390/md20010029 35049884
    [Google Scholar]
  12. ChopraB. DhingraA.K. Natural products: A lead for drug discovery and development.Phytother. Res.20213594660470210.1002/ptr.7099 33847440
    [Google Scholar]
  13. PadhyI. PaulP. SharmaT. BanerjeeS. MondalA. Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement.Life20221211179510.3390/life12111795 36362950
    [Google Scholar]
  14. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  15. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  16. SchiffP.B. HorwitzS.B. Taxol stabilizes microtubules in mouse fibroblast cells.Proc. Natl. Acad. Sci. USA19807731561156510.1073/pnas.77.3.1561 6103535
    [Google Scholar]
  17. NeussN. JohnsonI.S. ArmstrongJ.G. JansenC.J. The vinca alkaloids.Cancer Res.19642313317410.1016/B978‑1‑4831‑9929‑0.50010‑3 14070392
    [Google Scholar]
  18. KhaiwaN. MaaroufN.R. DarwishM.H. AlhamadD.W.M. SebastianA. HamadM. Camptothecin’s journey from discovery to WHO essential medicine: Fifty years of promise.Europ J. Med. Chem.2021522311363910.1016/j.ejmech.2021.113639
    [Google Scholar]
  19. AmtaghriS. AkdadM. SlaouiM. EddouksM. Traditional uses, pharmacological, and phytochemical studies of Euphorbia: A review.Curr. Top. Med. Chem.202222191553157010.2174/1568026622666220713143436 35838213
    [Google Scholar]
  20. WangY. YuX. WangL. ZhangF. ZhangY. Research progress on chemical constituents and anticancer pharmacological activities of Euphorbia lunulata bunge.BioMed Res. Int.202020201361894110.1155/2020/3618941 32420336
    [Google Scholar]
  21. ForzatoC. NittiP. New diterpenes with potential antitumoral activity isolated from plants in the years 2017–2022.Plants20221117224010.3390/plants11172240 36079622
    [Google Scholar]
  22. Duy KhangN.V. Hong DaoD.T. Thanh MaiN.T. Le QuanT. ThiY. NhiN. Cytotoxicity, anti-diabeticity, and phytocomposition investigation of Vietnamese Euphorbia tithymaloides Linn. (Euphorbiaceae).RSC Advances20231342291412915110.1039/D3RA05637F 37800131
    [Google Scholar]
  23. MwineJ.T. DammeP. Van. Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features.J. Med. Plant Res.201155652662
    [Google Scholar]
  24. ZhongN.F. HuangH.H. WeiJ.C. Euphorfiatnoids A-I: Diterpenoids from the roots of Euphorbia fischeriana with cytotoxic effects.Phytochemistry202220311337210.1016/j.phytochem.2022.113372 35964805
    [Google Scholar]
  25. DuK. YangX. LiJ. MengD. Antiproliferative diterpenoids and acetophenone glycoside from the roots of Euphorbia fischeriana.Phytochemistry202017711243710.1016/j.phytochem.2020.112437 32559489
    [Google Scholar]
  26. MaL. ChenZ. LiJ. ZhangH. JiaY. LiuJ. DP from Euphorbia fischeriana S. mediated apoptosis in leukemia cells via the PI3k/Akt signaling pathways.J. Ethnopharmacol.202127911388910.1016/j.jep.2021.113889 33524514
    [Google Scholar]
  27. MesasC. MartínezR. DoelloK. In vivo antitumor activity of Euphorbia lathyris ethanol extract in colon cancer models.Biomed. Pharmacother.202214911288310.1016/j.biopha.2022.112883 35692123
    [Google Scholar]
  28. de AbrantesR.A. BatistaT.M. MangueiraV.M. Antitumor and antiangiogenic effects of Tonantzitlolone B, an uncommon diterpene from Stillingia loranthacea.Naunyn Schmiedebergs Arch. Pharmacol.2022395226727410.1007/s00210‑021‑02185‑0 34854946
    [Google Scholar]
  29. MartinsC.G. AppelM.H. CoutinhoD.S.S. Consumption of latex from Euphorbia tirucalli L. promotes a reduction of tumor growth and cachexia, and immunomodulation in Walker 256 tumor-bearing rats.J. Ethnopharmacol.202025511272210.1016/j.jep.2020.112722 32114165
    [Google Scholar]
  30. AbdolmohammadiM.H. FallahianF. GhanadianM. MirjaniA. AghaeiM. New diterpene compound from Euphorbia connate Boiss., 3,7,14,15-Tetraacetyl-5-Propanoyl-13(17)-Epoxy-8,10(18)-Myrsinadiene, inhibits the growth of ovarian cancer cells by promoting mitochondrial-mediated apoptosis.Nutr. Cancer202173102030203810.1080/01635581.2020.1820049 32933316
    [Google Scholar]
  31. MaslovskayaL.A. SavchenkoA.I. GordonV.A. The first casbane hydroperoxides EBC-304 and EBC-320 from the Australian rainforest.Chemistry20172353754010.1002/chem.201604674 27862493
    [Google Scholar]
  32. MengX.H. WangK. ChaiT. GuoZ.Y. ZhaoM. YangJ.L. Ingenane and jatrophane diterpenoids from Euphorbia kansui and their antiproliferative effects.Phytochemistry202017211225710.1016/j.phytochem.2020.112257 31986448
    [Google Scholar]
  33. LiM. HeF. ZhouY. Correction to: Three new ent-abietane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxicity in human tumor cell lines.Arch. Pharm. Res.202043998210.1007/s12272‑020‑01267‑6 32889664
    [Google Scholar]
  34. TangY. SunL. WeiJ. Network pharmacology identification and in vivo validation of key pharmacological pathways of Phyllanthus reticulatus (Euphorbiaceae) leaf extract in liver cancer treatment.J. Ethnopharmacol.202229711547910.1016/j.jep.2022.115479 35777610
    [Google Scholar]
  35. SaaheneR.O. AgboE. BarnesP. A review: Mechanism of Phyllanthus urinaria in Cancers-NF-κB, P13K/AKT, and MAPKs signaling activation.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/4514342
    [Google Scholar]
  36. IsyakaS.M. LangatM.K. Mas-ClaretE. MbalaB.M. MvinguB.K. MulhollandD.A. Ent-abietane and ent-pimarane diterpenoids from Croton mubango (Euphorbiaceae).Phytochemistry202017011221710.1016/j.phytochem.2019.112217 31812109
    [Google Scholar]
  37. CamposA.R. AlbuquerqueF.A.A. RaoV.S.N. MacielM.A.M. PintoA.C. Investigations on the antinociceptive activity of crude extracts from Croton cajucara leaves in mice.Fitoterapia200273211612010.1016/S0367‑326X(02)00004‑7 11978425
    [Google Scholar]
  38. De LimaS.G. CitóA.M.G.L. LopesJ.A.D. NetoJ.M.M. ChavesM.H. SilveiraE.R. Fixed and volatile constituents of genus Croton plants: C. adenocalyx baill–Euphorbiaceae.Rev. Latinoam. Quím.2010383133144
    [Google Scholar]
  39. RaoV.S. GurgelL.A. Lima-JúniorR.C.P. MartinsD.T.O. Cechinel-FilhoV. SantosF.A. Dragon’s blood from Croton urucurana (Baill.) attenuates visceral nociception in mice.J. Ethnopharmacol.2007113235736010.1016/j.jep.2007.06.009 17681724
    [Google Scholar]
  40. LimaL.R. LopesS.J.F. ArcanjoD.D.R. MacielM.A.M. Croton cajucara: Patents and nanotechnological advances.Recent Pat. Nanotechnol.202418438939410.2174/1872210517666230816090220 37587801
    [Google Scholar]
  41. LimaE.J.S.P. AlvesR.G. D’EliaG.M.A. Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae).Molecules20182311297410.3390/molecules23112974 30441836
    [Google Scholar]
  42. TianJ.L. LiC.X. ShangX.Y. Sesquiterpenoids from the roots of Croton crassifolius.J. Asian Nat. Prod. Res.201921766667210.1080/10286020.2018.1465413 29888617
    [Google Scholar]
  43. HuangW. LiangY. ChungH.Y. WangG. HuangJ.J. LiY. Cyperenoic acid, a sesquiterpene derivative from Croton crassifolius, inhibits tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in breast cancer.Phytomedicine20207615325310.1016/j.phymed.2020.153253 32531699
    [Google Scholar]
  44. LiuC. ZhangR. WangY. Supercritical CO2 fluid extraction of croton crassifolius Geisel root: Chemical composition and anti-proliferative, autophagic, apoptosis-inducing, and related molecular effects on A549 tumour cells.Phytomedicine20196115284610.1016/j.phymed.2019.152846 31035041
    [Google Scholar]
  45. SuXM LiangQ HuJX ZhangXM JiaRL XuWH Diterpenoids from the whole plants of Croton yunnanensis and their bioactivities.Bioorg Med Chem202151116495-, 51, 116495.10.1016/j.bmc.2021.11649534781083
    [Google Scholar]
  46. FanR.Z. ChenL. SuT. Discovery of 8,9-seco- ent-Kaurane diterpenoids as potential leads for the treatment of triple-negative breast cancer.J. Med. Chem.202164149926994210.1021/acs.jmedchem.1c00166 34236840
    [Google Scholar]
  47. FanY.Y. ShiS.Q. DengG.Z. Crokonoids A-C, A highly rearranged and dual-bridged spiro diterpenoid and two other diterpenoids from Croton kongensis.Org. Lett.202022392993310.1021/acs.orglett.9b04484 31916776
    [Google Scholar]
  48. SittithumchareeG. KariyaR. KasemsukT. SaeengR. OkadaS. Antitumor effect of acanthoic acid against primary effusion lymphoma via inhibition of c‐FLIP.Phytother. Res.202135127018702610.1002/ptr.7322 34779075
    [Google Scholar]
  49. MartínezG.P. MijaresM.R. ChávezK. Caracasine, an ent-kaurane diterpene with proapoptotic and pro-differentiator activity in human leukaemia cell lines.Anticancer. Agents Med. Chem.202323101145115510.2174/1871520622666220415105615 35430982
    [Google Scholar]
  50. ZhangT. LiuZ. SunX. Botany, traditional uses, phytochemistry, pharmacological and toxicological effects of Croton tiglium Linn.: A comprehensive review.J. Pharm. Pharmacol.20227481061108410.1093/jpp/rgac040 35723937
    [Google Scholar]
  51. NiuQ. SunH. LiuC. Croton tiglium essential oil compounds have anti-proliferative and pro-apoptotic effects in A549 lung cancer cell lines.PLoS One2020155e023143710.1371/journal.pone.0231437 32357169
    [Google Scholar]
  52. MaY. ChenS. ChenM. Combination of diethyldithiocarbamate with 12-O-tetradecanoyl phorbol-13-acetate inhibits the growth of human myeloid leukemia HL-60 cells in vitro and in xenograft model.Biosci. Biotechnol. Biochem.202084102069207610.1080/09168451.2020.1789837 32640883
    [Google Scholar]
  53. GullS. FarooqK. TayyebA. Imran ArshadM. ShahzadN. Ethanolic extracts of Pakistani euphorbiaceous plants induce apoptosis in breast cancer cells through induction of DNA damage and caspase-dependent pathway.Gene202282414640110.1016/j.gene.2022.146401 35276236
    [Google Scholar]
  54. KimJ.Y. YunJ.W. KimY.S. Mutagenicity and tumor-promoting effects of Tiglium seed extract via PKC and MAPK signaling pathways.Biosci. Biotechnol. Biochem.201579337438310.1080/09168451.2014.980217 25391291
    [Google Scholar]
  55. ParkH.B. BaekK.H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers.Biochim. Biophys. Acta Rev. Cancer20221877318873610.1016/j.bbcan.2022.188736 35589008
    [Google Scholar]
  56. WangJ. QinL. ZhaoB. Crotonols A and B, two rare tigliane diterpenoid derivatives against K562 cells from Croton tiglium.Org. Biomol. Chem.201917119520210.1039/C8OB02519C 30534799
    [Google Scholar]
  57. LiuL. YuH. WuH. Toxic proteins from Croton tiglium L. exert a proinflammatory effect by inducing release of proinflammatory cytokines and activating the p38-MAPK signaling pathway.Mol. Med. Rep.201716163163810.3892/mmr.2017.6617 28560398
    [Google Scholar]
  58. DíazJ.G. FernándezR.G. ArranzJ.C.E. Inhibitory effect on nitric oxide release in LPS-stimulated macrophages and free radical scavenging activity of croton linearis Jacq. leaves.Antioxidants202211191510.3390/antiox11101915
    [Google Scholar]
  59. AbreuL.S. do NascimentoY.M. do Espirito-SantoR.F. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory activities.Fitoterapia202014510463210.1016/j.fitote.2020.104632 32446709
    [Google Scholar]
  60. García-HernándezL. García-OrtegaM.B. Ruiz-AlcaláG. CarrilloE. MarchalJ.A. GarcíaM.Á. The p38 MAPK components and modulators as biomarkers and molecular targets in cancer.Int. J. Mol. Sci.202123137010.3390/ijms23010370 35008796
    [Google Scholar]
  61. RovidaE. TusaI. Targeting MAPK in cancer 2.0.Int. J. Mol. Sci.20222310570210.3390/ijms23105702 35628511
    [Google Scholar]
  62. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms21031102 32046099
    [Google Scholar]
  63. PuaL.J.W. MaiC.W. ChungF.F.L. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma.Int. J. Mol. Sci.2022233110810.3390/ijms23031108 35163030
    [Google Scholar]
  64. DrostenM. BarbacidM. Targeting the MAPK pathway in KRAS-driven tumors.Cancer Cell202037454355010.1016/j.ccell.2020.03.013
    [Google Scholar]
  65. YuanJ. DongX. YapJ. HuJ. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy.J. Hematol. Oncol.202013111310.1186/s13045‑020‑00949‑4 32807225
    [Google Scholar]
  66. PaudelR. FusiL. SchmidtM. The MEK5/ERK5 pathway in health and disease.Int. J. Mol. Sci.20212214759410.3390/ijms22147594 34299213
    [Google Scholar]
  67. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis (Review).Exp. Ther. Med.20201931997200710.3892/etm.2020.8454 32104259
    [Google Scholar]
  68. SugiuraR. SatohR. TakasakiT. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer.Cells20211010250910.3390/cells10102509 34685488
    [Google Scholar]
  69. NiZ. SunP. ZhengJ. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA.Cancer Res.20228291789180210.1158/0008‑5472.CAN‑21‑1323 35502544
    [Google Scholar]
  70. LiuJ. LinA. Role of JNK activation in apoptosis: A double-edged sword.Cell Res.2005151364210.1038/sj.cr.7290262 15686625
    [Google Scholar]
  71. WuQ. WuW. FuB. ShiL. WangX. KucaK. JNK signaling in cancer cell survival.Med. Res. Rev.20193962082210410.1002/med.21574 30912203
    [Google Scholar]
  72. HammoudaM. FordA. LiuY. ZhangJ. The JNK signaling pathway in inflammatory skin disorders and cancer.Cells20209485710.3390/cells9040857 32252279
    [Google Scholar]
  73. LiuX. ZhangY. WangY. YangM. HongF. YangS. Protein phosphorylation in cancer: Role of nitric oxide signaling pathway.Biomolecules2021117100910.3390/biom11071009 34356634
    [Google Scholar]
  74. GraveN. ScheffelT.B. CruzF.F. The functional role of p38 MAPK pathway in malignant brain tumors.Front. Pharmacol.20221397519710.3389/fphar.2022.975197 36299892
    [Google Scholar]
  75. SunL. YaoC. LiX. Anastasis confers ovarian cancer cells increased malignancy through elevated p38 MAPK activation.Cell Death Differ.202330380982410.1038/s41418‑022‑01081‑1 36447048
    [Google Scholar]
  76. Martínez-LimónA. JoaquinM. CaballeroM. PosasF. de NadalE. The p38 pathway: From biology to cancer therapy.Int. J. Mol. Sci.2020216191310.3390/ijms21061913 32168915
    [Google Scholar]
  77. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231A363398 12680238
    [Google Scholar]
  78. AggarwalB.B. BhardwajA. AggarwalR.S. SeeramN.P. ShishodiaS. TakadaY. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies.Anticancer Res.2004245A27832840 15517885
    [Google Scholar]
  79. KimS.O. ChunK.S. KunduJ.K. SurhY.J. Inhibitory effects of [6]‐gingerol on PMA‐induced COX‐2 expression and activation of NF‐κB and p38 MAPK in mouse skin.Biofactors2004211-4273110.1002/biof.552210107 15630166
    [Google Scholar]
  80. MinJ.K. HanK.Y. KimE.C. Capsaicin inhibits in vitro and in vivo angiogenesis.Cancer Res.200464264465110.1158/0008‑5472.CAN‑03‑3250 14744780
    [Google Scholar]
  81. KhanN. AfaqF. SaleemM. AhmadN. MukhtarH. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate.Cancer Res.20066652500250510.1158/0008‑5472.CAN‑05‑3636 16510563
    [Google Scholar]
  82. SarkarF. AdsuleS. PadhyeS. KulkarniS. LiY. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy.Mini Rev. Med. Chem.20066440140710.2174/138955706776361439 16613577
    [Google Scholar]
  83. TakadaY. AggarwalB.B. Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of Ikappa Balpha kinase and p65 phosphorylation: Abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9.J. Biol. Chem.200427964750475910.1074/jbc.M304546200 14630924
    [Google Scholar]
  84. GazákR. WalterováD. KrenV. Silybin and silymarin-new and emerging applications in medicine.Curr. Med. Chem.200714331533810.2174/092986707779941159 17305535
    [Google Scholar]
  85. DeorukhkarA. KrishnanS. SethiG. AggarwalB.B. Back to basics: How natural products can provide the foundation for new therapeutics.Expert Opin. Investig. Drugs2007161117531773
    [Google Scholar]
  86. AndradeM.A. BragaM.A. CesarP.H.S. Anticancer properties of essential oils: An overview.Curr. Cancer Drug Targets2018181095796610.2174/1568009618666180102105843 29295695
    [Google Scholar]
  87. DongN.Q. LinH.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions.J. Integr. Plant Biol.202163118020910.1111/jipb.13054 33325112
    [Google Scholar]
  88. ChengZ. LuX. FengB. A review of research progress of antitumor drugs based on tubulin targets.Transl. Cancer Res.2020964020402710.21037/tcr‑20‑682 35117769
    [Google Scholar]
  89. GuoM. JinJ. ZhaoD. Research advances on anti-cancer natural products.Front. Oncol.2022121286615410.3389/fonc.2022.866154 35646647
    [Google Scholar]
  90. CarvalhoA.A. AndradeL.N. de SousaÉ.B.V. de SousaD.P. Antitumor phenylpropanoids found in essential oils.BioMed Res. Int.2015201512110.1155/2015/392674 25949996
    [Google Scholar]
  91. KimW. SeongK.M. YounB. Phenylpropanoids in radioregulation: Double edged sword.Exp. Mol. Med.201143632333310.3858/emm.2011.43.6.034 21483230
    [Google Scholar]
  92. QiS.Z. LiuT. WangM. New phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum with their antiproliferative activities on cancer cells.Bioorg. Chem.202110710462810.1016/j.bioorg.2021.104628 33461038
    [Google Scholar]
  93. QiS.Z. ZhangX.X. JinY. Phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum induced cell apoptosis via MAPK and Akt pathways in human hepatocellular carcinoma cells.Bioorg. Chem.202111110488610.1016/j.bioorg.2021.104886 33836342
    [Google Scholar]
  94. PangM. XieX. ZhangY. LasterK.V. LiuK. KimD.J. Ethyl ferulate suppresses Esophageal squamous cell carcinoma tumor growth through inhibiting the mTOR signaling pathway.Front. Oncol.2022111178001110.3389/fonc.2021.780011 35155187
    [Google Scholar]
  95. PatilA.S. IbrahimM.K. SathayeS. Mitochondriotropic derivative of ethyl ferulate, a dietary phenylpropanoid, exhibits enhanced cytotoxicity in cancer cells via mitochondrial superoxide-mediated activation of JNK and AKT signalling.Appl. Biochem. Biotechnol.202319532057207610.1007/s12010‑022‑04252‑5 36409426
    [Google Scholar]
  96. LinY. HanC. XuQ. Integrative countercurrent chromatography for the target isolation of lysine-specific demethylase 1 inhibitors from the roots of Salvia miltiorrhiza.Talanta202020620612019510.1016/j.talanta.2019.120195 31514831
    [Google Scholar]
  97. HeiB. WangJ. WuG. OuyangJ. LiuR. Verbascoside suppresses the migration and invasion of human glioblastoma cells via targeting c-Met-mediated epithelial-mesenchymal transition.Biochem. Biophys. Res. Commun.201951441270127710.1016/j.bbrc.2019.05.096 31113618
    [Google Scholar]
  98. LebraudH. WrightD.J. EastC.E. HoldingF.P. O’ReillyM. HeightmanT.D. In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor.Mol. Biosyst.20161292867287410.1039/C6MB00367B 27385078
    [Google Scholar]
  99. LiuM. XinZ. ClampitJ.E. Synthesis and SAR of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as novel, selective c-Jun N-terminal kinase inhibitors.Bioorg. Med. Chem. Lett.200616102590259410.1016/j.bmcl.2006.02.046 16527482
    [Google Scholar]
  100. YurtseverZ. ScheafferS.M. RomeroA.G. HoltzmanM.J. BrettT.J. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation.Acta Crystallogr. D Biol. Crystallogr.201571479079910.1107/S1399004715001212 25849390
    [Google Scholar]
  101. PrakoeswaC.R.S. PurwantoD.A. EndaryantoA. Molecullar docking of epigallocatechin-3-gallate (EGCG) on Keap1-Nrf2 complex protein in photoaging prevention.Med.-Leg. Update2020203305311
    [Google Scholar]
  102. BernsteinF.C. KoetzleT.F. WilliamsG.J.B. The protein data bank. A computer-based archival file for macromolecular structures.Eur. J. Biochem.197780231932410.1111/j.1432‑1033.1977.tb11885.x 923582
    [Google Scholar]
  103. Marvin sketch.Available from: https://chemaxon.com/products/marvin
  104. Mollegro virtual docker 6.0.Available from: https://molegrovirtualdocker.weebly.com/
  105. De AzevedoW. WalterF. MolDock applied to structure-based virtual screening.Curr. Drug Targets201011332733410.2174/138945010790711941 20210757
    [Google Scholar]
  106. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e 16722650
    [Google Scholar]
  107. FerreiraR.C. DuarteS.S. de SousaV.M. The essential oil from Conyza bonariensis (L.) cronquist (asteraceae) exerts an in vitro antimelanoma effect by inducing apoptosis and modulating the MAPKs, NF-κB, and PKB/AKT signaling pathways.Pharmaceuticals20231611155310.3390/ph16111553 38004419
    [Google Scholar]
  108. PiresH.F.O. da SilvaP.R. DiasA.L. Mechanisms involved in the therapeutic effect of cannabinoid compounds on gliomas: A review with experimental approach.Curr. Protein Pept. Sci.2024251274310.2174/1389203724666230830125423 37649287
    [Google Scholar]
  109. Moreira CostaM.A. de SousaN.F. Mansur PontesC.L. Inhibitory effects against SARSCoV-2 main protease (Mpro) of biflavonoids and benzophenones from the fruit of Platonia insignis.Fitoterapia202417310578410.1016/j.fitote.2023.105784 38128621
    [Google Scholar]
  110. MohamedK.M. Phenylpropanoid glucosides from Chrozophora obliqua.Phytochemistry200158461561810.1016/S0031‑9422(01)00262‑X 11576610
    [Google Scholar]
  111. BritoJ.A.G. PintoL.S. ChavesC.F. Ribeiro da SilvaA.J. SilvaM.F.G.F. CotinguibaF. Chemophenetic significance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools.Molecules202126492510.3390/molecules26040925 33572445
    [Google Scholar]
  112. JiaH.Y. LiaoZ.X. LiuF.Y. WuL. XuC. ZuoB. A new phenylpropanoid from the roots of Euphorbia nematocypha.Nat. Prod. Res.201529765065510.1080/14786419.2014.980256 25421575
    [Google Scholar]
  113. NomotoY. SugimotoS. MatsunamiK. OtsukaH. Hirtionosides A–C, gallates of megastigmane glucosides, 3-hydroxyoctanoic acid glucosides and a phenylpropanoid glucoside from the whole plants of Euphorbia hirta.J. Nat. Med.201367235035810.1007/s11418‑012‑0692‑5 22836810
    [Google Scholar]
  114. Nguyen-NgocH. AlilouM. DerbréS. Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds.Phytochemistry202220211330010.1016/j.phytochem.2022.113300 35798090
    [Google Scholar]
  115. NazemiyehH. KazemiE.M. ZareK. JodariM. NaharL. SarkerS.D. Free radical scavengers from the aerial parts of Euphorbia petiolata.J. Nat. Med.201064218719010.1007/s11418‑009‑0382‑0 20037800
    [Google Scholar]
  116. SilvaC.G.V. ZagoH.B. JúniorH.J.G.S. Composition and insecticidal activity of the essential oil of Croton grewioides Baill. against Mexican bean weevil (Zabrotes subfasciatus Boheman).J. Essent. Oil Res.200820217918210.1080/10412905.2008.9699985
    [Google Scholar]
  117. TobimatsuY. ChenF. NakashimaJ. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats.Plant Cell20132572587260010.1105/tpc.113.113142 23903315
    [Google Scholar]
  118. WittayalaiS. MahidolC. PrachyawarakornV. PrawatH. RuchirawatS. Terpenoids from the roots of Drypetes hoaensis and their cytotoxic activities.Phytochemistry20149912112610.1016/j.phytochem.2013.12.017 24472391
    [Google Scholar]
  119. YusufD. DavisA.M. KleywegtG.J. SchmittS. An alternative method for the evaluation of docking performance: RSR vs RMSD.J. Chem. Inf. Model.20084871411142210.1021/ci800084x 18598022
    [Google Scholar]
  120. SchneiderN. HindleS. LangeG. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function.J. Comput. Aided Mol. Des.201226670172310.1007/s10822‑011‑9531‑0 22203423
    [Google Scholar]
  121. PanJ. YuanC. LinC. JiaZ. ZhengR. Pharmacological activities and mechanisms of natural phenylpropanoid glycosides.Pharmazie2003581176777510.1002/chin.200405273 14664330
    [Google Scholar]
  122. SyedR.U. MoniS.S. BreakM.K.B. Broccoli: A multi-faceted vegetable for health: An in-depth review of its nutritional attributes, antimicrobial abilities, and anti-inflammatory properties.Antibiotics (Basel)2023127115710.3390/antibiotics12071157 37508253
    [Google Scholar]
  123. XiaoH. ParkinK. Isolation and identification of phase II enzyme-inducing agents from nonpolar extracts of green onion (Allium spp.).J. Agric. Food Chem.200654228417842410.1021/jf061582s 17061815
    [Google Scholar]
  124. de AndradeC.C.N. de Oliveira LopesA.L. Sousa DuarteS. Potential in vitro antimelanoma effect of the essential oil from Croton grewioides Baill.Chem. Biodivers.2024e20240186710.1002/cbdv.202401867 39375157
    [Google Scholar]
  125. NemalaA. NandagopalA. The anti-tumour effect of Aleurites moluccana on HCT-116 cells.Preprints202410.21203/rs.3.rs‑4748200/v1
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357765250603105759
Loading
/content/journals/cpd/10.2174/0113816128357765250603105759
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): cancer; croton; euphorbiaceae; MAPK; molecular docking; Phenylpropanoids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test