Skip to content
2000
image of New Phenylpropanoid from Croton velutinus (Euphorbiaceae) as Potential Anticancer Natural Product Targeting MAPKs: Review with Docking Approach

Abstract

Cancer encompasses a group of diseases characterized by uncontrolled cell growth and the ability to invade or spread to other parts of the body. It is considered a major public health issue, being the second leading cause of death worldwide. A crucial signaling pathway altered in many cancers is the Mitogen-Activated Protein Kinase (MAPK) pathway, which is associated with the regulation of cell proliferation, differentiation, and survival, playing a central role in the development and maintenance of malignant tumors. Natural products have made significant contributions to pharmacotherapy, particularly in the field of cancer treatment. The Euphorbiaceae family, comprising approximately 300 genera and over 5,000 species, is known for its rich diversity of bioactive compounds. (Euphorbiaceae), a species predominantly found in Northeast Brazil, has recently garnered attention due to its novel phenylpropanoids isolated from its roots. Among these, (E)-4-(1-epoxy-7,8-propen) phenylbenzoate (CV2) has demonstrated potential cytotoxic activity against various human tumor cell lines, including B16F10, MCF-7, HL60, HCT-116, and HepG2. This review aims to highlight the antitumor activity of phenylpropanoids derived from the Euphorbiaceae family. Furthermore, through molecular docking studies, we explored the binding efficacy of CV2 with MAPKs (ERK, JNK, p38), comparing it to 25 other phenylpropanoid compounds reported in the literature, revealing promising interactions that could be further investigated for therapeutic applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357765250603105759
2025-06-19
2025-10-24
Loading full text...

Full text loading...

References

  1. Yin W. Wang J. Jiang L. James Kang Y. Cancer and stem cells. Exp. Biol. Med. 2021 246 16 1791 1801 10.1177/15353702211005390 33820469
    [Google Scholar]
  2. Cheek D.M. Naxerova K. Mapping the long road to cancer. Cell 2022 185 6 939 940 10.1016/j.cell.2022.02.020 35263624
    [Google Scholar]
  3. Arneth B. Tumor microenvironment. Medicina 2019 56 1 15 10.3390/medicina56010015 31906017
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  5. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics, GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660
    [Google Scholar]
  6. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  7. Victoir B. Croix C. Gouilleux F. Prié G. Targeted therapeutic strategies for the treatment of cancer. Cancers 2024 16 2 461 10.3390/cancers16020461 38275901
    [Google Scholar]
  8. Lohan-Codeço M. Barambo-Wagner M.L. Nasciutti L.E. Ribeiro Pinto L.F. Meireles Da Costa N. Palumbo A. Jr Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell. Mol. Life Sci. 2022 79 2 116 10.1007/s00018‑022‑04131‑6 35113247
    [Google Scholar]
  9. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  10. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023 302 Pt A 115876 10.1016/j.jep.2022.115876 36343798
    [Google Scholar]
  11. Luo L. Zhong A. Wang Q. Zheng T. Structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET, and molecular dynamics (MD) simulation of potential inhibitors of PD-L1 from the library of marine natural products. Mar. Drugs 2021 20 1 29 10.3390/md20010029 35049884
    [Google Scholar]
  12. Chopra B. Dhingra A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021 35 9 4660 4702 10.1002/ptr.7099 33847440
    [Google Scholar]
  13. Padhy I. Paul P. Sharma T. Banerjee S. Mondal A. Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement. Life 2022 12 11 1795 10.3390/life12111795 36362950
    [Google Scholar]
  14. Yue J. López J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020 21 7 2346 10.3390/ijms21072346 32231094
    [Google Scholar]
  15. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  16. Schiff P.B. Horwitz S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 1980 77 3 1561 1565 10.1073/pnas.77.3.1561 6103535
    [Google Scholar]
  17. Neuss N. Johnson I.S. Armstrong J.G. Jansen C.J. The vinca alkaloids. Cancer Res. 1964 23 133 174 10.1016/B978‑1‑4831‑9929‑0.50010‑3 14070392
    [Google Scholar]
  18. Khaiwa N Maarouf NR Darwish MH Alhamad DWM Sebastian A Hamad M Camptothecin’s journey from discovery to WHO essential medicine: Fifty years of promise. Europ. J. Med. Chem. 2021 5 223 113639 10.1016/j.ejmech.2021.113639
    [Google Scholar]
  19. Amtaghri S. Akdad M. Slaoui M. Eddouks M. Traditional uses, pharmacological, and phytochemical studies of Euphorbia : A review. Curr. Top. Med. Chem. 2022 22 19 1553 1570 10.2174/1568026622666220713143436 35838213
    [Google Scholar]
  20. Wang Y. Yu X. Wang L. Zhang F. Zhang Y. Research progress on chemical constituents and anticancer pharmacological activities of Euphorbia lunulata bunge. BioMed Res. Int. 2020 2020 1 3618941 10.1155/2020/3618941 32420336
    [Google Scholar]
  21. Forzato C. Nitti P. New diterpenes with potential antitumoral activity isolated from plants in the years 2017–2022. Plants 2022 11 17 2240 10.3390/plants11172240 36079622
    [Google Scholar]
  22. Duy Khang N.V. Hong Dao D.T. Thanh Mai N.T. Le Quan T. Thi Y Nhi N. Cytotoxicity, anti-diabeticity, and phytocomposition investigation of Vietnamese Euphorbia tithymaloides Linn. (Euphorbiaceae). RSC Advances 2023 13 42 29141 29151 10.1039/D3RA05637F 37800131
    [Google Scholar]
  23. Mwine JT Damme P Van Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features. J. Med. Plant Res. 2011 5 5 652 662
    [Google Scholar]
  24. Zhong N.F. Huang H.H. Wei J.C. Yang Y.C. Gao X.X. Wei X.Y. Wang A.H. Jia J.M. Euphorfiatnoids A−I: Diterpenoids from the roots of Euphorbia fischeriana with cytotoxic effects. Phytochemistry 2022 203 113372 10.1016/j.phytochem.2022.113372 35964805
    [Google Scholar]
  25. Du K. Yang X. Li J. Meng D. Antiproliferative diterpenoids and acetophenone glycoside from the roots of Euphorbia fischeriana. Phytochemistry 2020 177 112437 10.1016/j.phytochem.2020.112437 32559489
    [Google Scholar]
  26. Ma L. Chen Z. Li J. Zhang H. Jia Y. Liu J. DP from Euphorbia fischeriana S. mediated apoptosis in leukemia cells via the PI3k/Akt signaling pathways. J. Ethnopharmacol. 2021 279 113889 10.1016/j.jep.2021.113889 33524514
    [Google Scholar]
  27. Mesas C. Martínez R. Doello K. Ortiz R. López-Jurado M. Bermúdez F. Quiñonero F. Prados J. Porres J.M. Melguizo C. In vivo antitumor activity of Euphorbia lathyris ethanol extract in colon cancer models. Biomed. Pharmacother. 2022 149 112883 10.1016/j.biopha.2022.112883 35692123
    [Google Scholar]
  28. de Abrantes R.A. Batista T.M. Mangueira V.M. de Sousa T.K.G. Ferreira R.C. Moura A.P.G. Abreu L.S. Alves A.F. Velozo E.S. Batista L.M. da Silva M.S. Tavares J.F. Sobral M.V. Antitumor and antiangiogenic effects of Tonantzitlolone B, an uncommon diterpene from Stillingia loranthacea. Naunyn Schmiedebergs Arch. Pharmacol. 2022 395 2 267 274 10.1007/s00210‑021‑02185‑0 34854946
    [Google Scholar]
  29. Martins C.G. Appel M.H. Coutinho D.S.S. Soares I.P. Fischer S. de Oliveira B.C. Fachi M.M. Pontarolo R. Bonatto S.J.R. Fernandes L.C. Iagher F. de Souza L.M. Consumption of latex from Euphorbia tirucalli L. promotes a reduction of tumor growth and cachexia, and immunomodulation in Walker 256 tumor-bearing rats. J. Ethnopharmacol. 2020 255 112722 10.1016/j.jep.2020.112722 32114165
    [Google Scholar]
  30. Abdolmohammadi M.H. Fallahian F. Ghanadian M. Mirjani A. Aghaei M. New diterpene compound from Euphorbia connate Boiss., 3,7,14,15-Tetraacetyl-5-Propanoyl-13(17)-Epoxy-8,10(18)-Myrsinadiene, inhibits the growth of ovarian cancer cells by promoting mitochondrial-mediated apoptosis. Nutr. Cancer 2021 73 10 2030 2038 10.1080/01635581.2020.1820049 32933316
    [Google Scholar]
  31. Maslovskaya L.A. Savchenko A.I. Gordon V.A. Reddell P.W. Pierce C.J. Parsons P.G. Williams C.M. The first casbane hydroperoxides EBC-304 and EBC-320 from the Australian rainforest. Chemistry 2017 23 537 540 10.1002/chem.201604674 27862493
    [Google Scholar]
  32. Meng X.H. Wang K. Chai T. Guo Z.Y. Zhao M. Yang J.L. Ingenane and jatrophane diterpenoids from Euphorbia kansui and their antiproliferative effects. Phytochemistry 2020 172 112257 10.1016/j.phytochem.2020.112257 31986448
    [Google Scholar]
  33. Li M. He F. Zhou Y. Wang M. Tao P. Tu Q. Lv G. Chen X. Correction to: Three new ent-abietane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxicity in human tumor cell lines. Arch. Pharm. Res. 2020 43 9 982 10.1007/s12272‑020‑01267‑6 32889664
    [Google Scholar]
  34. Tang Y. Sun L. Wei J. Sun C. Gan C. Xie X. Liang C. Peng C. Wu H. Zheng Z. Pan Z. Huang Y. Network pharmacology identification and in vivo validation of key pharmacological pathways of Phyllanthus reticulatus (Euphorbiaceae) leaf extract in liver cancer treatment. J. Ethnopharmacol. 2022 297 115479 10.1016/j.jep.2022.115479 35777610
    [Google Scholar]
  35. Saahene R.O. Agbo E. Barnes P. Yahaya E.S. Amoani B. Nuvor S.V. Okyere P. A review: Mechanism of Phyllanthus urinaria in Cancers—NF-κB, P13K/AKT, and MAPKs signaling activation. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/4514342
    [Google Scholar]
  36. Isyaka S.M. Langat M.K. Mas-Claret E. Mbala B.M. Mvingu B.K. Mulholland D.A. Ent-abietane and ent-pimarane diterpenoids from Croton mubango (Euphorbiaceae). Phytochemistry 2020 170 112217 10.1016/j.phytochem.2019.112217 31812109
    [Google Scholar]
  37. Campos A.R. Albuquerque F.A.A. Rao V.S.N. Maciel M.A.M. Pinto A.C. Investigations on the antinociceptive activity of crude extracts from Croton cajucara leaves in mice. Fitoterapia 2002 73 2 116 120 10.1016/S0367‑326X(02)00004‑7 11978425
    [Google Scholar]
  38. De Lima S.G. Citó A.M.G.L. Lopes J.A.D. Neto J.M.M. Chaves M.H. Silveira E.R. Fixed and volatile constituents of genus Croton plants: C. adenocalyx baill–Euphorbiaceae. Rev. Latinoam. Quím. 2010 38 3 133 144
    [Google Scholar]
  39. Rao V.S. Gurgel L.A. Lima-Júnior R.C.P. Martins D.T.O. Cechinel-Filho V. Santos F.A. Dragon’s blood from Croton urucurana (Baill.) attenuates visceral nociception in mice. J. Ethnopharmacol. 2007 113 2 357 360 10.1016/j.jep.2007.06.009 17681724
    [Google Scholar]
  40. Lima L.R. Lopes S.J.F. Arcanjo D.D.R. Maciel M.A.M. Croton cajucara: Patents and nanotechnological advances. Recent Pat. Nanotechnol. 2023 18 18 389 394 10.2174/1872210517666230816090220 37587801
    [Google Scholar]
  41. Lima E.J.S.P. Alves R.G. D´Elia G.M.A. Anunciação T.A. Silva V.R. Santos L.S. Soares M.B.P. Cardozo N.M.D. Costa E.V. Silva F.M.A. Koolen H.H.F. Bezerra D.P. Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2018 23 11 2974 10.3390/molecules23112974 30441836
    [Google Scholar]
  42. Tian J.L. Li C.X. Shang X.Y. Hou X.W. Zhang Y. Li L.Z. Huang X.X. Song S.J. Sesquiterpenoids from the roots of Croton crassifolius. J. Asian Nat. Prod. Res. 2019 21 7 666 672 10.1080/10286020.2018.1465413 29888617
    [Google Scholar]
  43. Huang W. Liang Y. Chung H.Y. Wang G. Huang J.J. Li Y. Cyperenoic acid, a sesquiterpene derivative from Croton crassifolius, inhibits tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in breast cancer. Phytomedicine 2020 76 153253 10.1016/j.phymed.2020.153253 32531699
    [Google Scholar]
  44. Liu C. Zhang R. Wang Y. Zhang J. Wang Q. Cheng A. Guo X. Wang X. Sun J. Supercritical CO2 fluid extraction of croton crassifolius Geisel root: Chemical composition and anti-proliferative, autophagic, apoptosis-inducing, and related molecular effects on A549 tumour cells. Phytomedicine 2019 61 152846 10.1016/j.phymed.2019.152846 31035041
    [Google Scholar]
  45. Su X.M. Liang Q. Hu J.X. Zhang X.M. Jia R.L. Xu W.H. Diterpenoids from the whole plants of Croton yunnanensis and their bioactivities. Bioorg. Med. Chem. 2021 51 116495 , 51, 116495 10.1016/j.bmc.2021.116495 34781083
    [Google Scholar]
  46. Fan R.Z. Chen L. Su T. Li W. Huang J.L. Sang J. Tang G.H. Yin S. Discovery of 8,9-seco- ent -Kaurane diterpenoids as potential leads for the treatment of triple-negative breast cancer. J. Med. Chem. 2021 64 14 9926 9942 10.1021/acs.jmedchem.1c00166 34236840
    [Google Scholar]
  47. Fan Y.Y. Shi S.Q. Deng G.Z. Liu H.C. Xu C.H. Ding J. Wang G.W. Yue J.M. Crokonoids A–C, A highly rearranged and dual-bridged spiro diterpenoid and two other diterpenoids from Croton kongensis. Org. Lett. 2020 22 3 929 933 10.1021/acs.orglett.9b04484 31916776
    [Google Scholar]
  48. Sittithumcharee G. Kariya R. Kasemsuk T. Saeeng R. Okada S. Antitumor effect of acanthoic acid against primary effusion lymphoma via inhibition of c‐FLIP. Phytother. Res. 2021 35 12 7018 7026 10.1002/ptr.7322 34779075
    [Google Scholar]
  49. Martínez G.P. Mijares M.R. Chávez K. Chirinos P. Suárez A.I. Compagnone R.S. De Sanctis J.B. Caracasine, an ent-kaurane diterpene with proapoptotic and pro-differentiator activity in human leukaemia cell lines. Anticancer. Agents Med. Chem. 2023 23 10 1145 1155 10.2174/1871520622666220415105615 35430982
    [Google Scholar]
  50. Zhang T. Liu Z. Sun X. Liu Z. Zhang L. Zhang Q. Peng W. Wu C. Botany, traditional uses, phytochemistry, pharmacological and toxicological effects of Croton tiglium Linn.: A comprehensive review. J. Pharm. Pharmacol. 2022 74 8 1061 1084 10.1093/jpp/rgac040 35723937
    [Google Scholar]
  51. Niu Q. Sun H. Liu C. Li J. Liang C. Zhang R. Ge F. Liu W. Croton tiglium essential oil compounds have anti-proliferative and pro-apoptotic effects in A549 lung cancer cell lines. PLoS One 2020 15 5 e0231437 10.1371/journal.pone.0231437 32357169
    [Google Scholar]
  52. Ma Y. Chen S. Chen M. Ren X. Patel N. Liu W. Huang H. Zhou R. Zhang K. Goodin S. Li D. Zheng X. Combination of diethyldithiocarbamate with 12-O-tetradecanoyl phorbol-13-acetate inhibits the growth of human myeloid leukemia HL-60 cells in vitro and in xenograft model. Biosci. Biotechnol. Biochem. 2020 84 10 2069 2076 10.1080/09168451.2020.1789837 32640883
    [Google Scholar]
  53. Gull S. Farooq K. Tayyeb A. Imran Arshad M. Shahzad N. Ethanolic extracts of Pakistani euphorbiaceous plants induce apoptosis in breast cancer cells through induction of DNA damage and caspase-dependent pathway. Gene 2022 824 146401 10.1016/j.gene.2022.146401 35276236
    [Google Scholar]
  54. Kim J.Y. Yun J.W. Kim Y.S. Kwon E. Choi H.J. Yeom S.C. Kang B.C. Mutagenicity and tumor-promoting effects of Tiglium seed extract via PKC and MAPK signaling pathways. Biosci. Biotechnol. Biochem. 2015 79 3 374 383 10.1080/09168451.2014.980217 25391291
    [Google Scholar]
  55. Park H.B. Baek K.H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim. Biophys. Acta Rev. Cancer 2022 1877 3 188736 10.1016/j.bbcan.2022.188736 35589008
    [Google Scholar]
  56. Wang J. Qin L. Zhao B. Cai L. Zhong Z. Liu Y. Zhou X. Crotonols A and B, two rare tigliane diterpenoid derivatives against K562 cells from Croton tiglium. Org. Biomol. Chem. 2019 17 1 195 202 10.1039/C8OB02519C 30534799
    [Google Scholar]
  57. Liu L. Yu H. Wu H. Yang X. Pan Y. Chen Y. Wang K. Wang W. Zhang W. Jin Y. Zhang C. Jiang A. Xia C. Toxic proteins from Croton tiglium L. exert a proinflammatory effect by inducing release of proinflammatory cytokines and activating the p38-MAPK signaling pathway. Mol. Med. Rep. 2017 16 1 631 638 10.3892/mmr.2017.6617 28560398
    [Google Scholar]
  58. Cezar H.M. Phytochemical study of the stems of Croton velutinus baill and analysis of the components of the essential oil of Ocimum basilicum var. purpurascens BENTH and its derivatives by diffusion-ordered spectroscopy (DOSY). Dissertation (Master in Chemistry) Universidade Federal do Ceará 2016
    [Google Scholar]
  59. Abreu L.S. do Nascimento Y.M. do Espirito-Santo R.F. Meira C.S. Santos I.P. Brandão R.B. Souto A.L. Guedes M.L.S. Soares M.B.P. Villarreal C.F. da Silva M.S. Velozo E.S. Tavares J.F. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory activities. Fitoterapia 2020 145 104632 10.1016/j.fitote.2020.104632 32446709
    [Google Scholar]
  60. García-Hernández L. García-Ortega M.B. Ruiz-Alcalá G. Carrillo E. Marchal J.A. García M.Á. The p38 MAPK components and modulators as biomarkers and molecular targets in cancer. Int. J. Mol. Sci. 2021 23 1 370 10.3390/ijms23010370 35008796
    [Google Scholar]
  61. Rovida E. Tusa I. Targeting MAPK in cancer 2.0. Int. J. Mol. Sci. 2022 23 10 5702 10.3390/ijms23105702 35628511
    [Google Scholar]
  62. Lee S. Rauch J. Kolch W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 2020 21 3 1102 10.3390/ijms21031102 32046099
    [Google Scholar]
  63. Pua L.J.W. Mai C.W. Chung F.F.L. Khoo A.S.B. Leong C.O. Lim W.M. Hii L.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int. J. Mol. Sci. 2022 23 3 1108 10.3390/ijms23031108 35163030
    [Google Scholar]
  64. Drosten M. Barbacid M. Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell 2020 37 4 543 550 10.1016/j.ccell.2020.03.013
    [Google Scholar]
  65. Yuan J. Dong X. Yap J. Hu J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020 13 1 113 10.1186/s13045‑020‑00949‑4 32807225
    [Google Scholar]
  66. Paudel R. Fusi L. Schmidt M. The MEK5/ERK5 pathway in health and disease. Int. J. Mol. Sci. 2021 22 14 7594 10.3390/ijms22147594 34299213
    [Google Scholar]
  67. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med. 2020 19 3 1997 2007 10.3892/etm.2020.8454 32104259
    [Google Scholar]
  68. Sugiura R. Satoh R. Takasaki T. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells 2021 10 10 2509 10.3390/cells10102509 34685488
    [Google Scholar]
  69. Ni Z. Sun P. Zheng J. Wu M. Yang C. Cheng M. Yin M. Cui C. Wang G. Yuan L. Gao Q. Li Y. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022 82 9 1789 1802 10.1158/0008‑5472.CAN‑21‑1323 35502544
    [Google Scholar]
  70. Liu J. Lin A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res. 2005 15 1 36 42 10.1038/sj.cr.7290262 15686625
    [Google Scholar]
  71. Wu Q. Wu W. Fu B. Shi L. Wang X. Kuca K. JNK signaling in cancer cell survival. Med. Res. Rev. 2019 39 6 2082 2104 10.1002/med.21574 30912203
    [Google Scholar]
  72. Hammouda M. Ford A. Liu Y. Zhang J. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 2020 9 4 857 10.3390/cells9040857 32252279
    [Google Scholar]
  73. Liu X. Zhang Y. Wang Y. Yang M. Hong F. Yang S. Protein phosphorylation in cancer: Role of nitric oxide signaling pathway. Biomolecules 2021 11 7 1009 10.3390/biom11071009 34356634
    [Google Scholar]
  74. Grave N. Scheffel T.B. Cruz F.F. Rockenbach L. Goettert M.I. Laufer S. Morrone F.B. The functional role of p38 MAPK pathway in malignant brain tumors. Front. Pharmacol. 2022 13 975197 10.3389/fphar.2022.975197 36299892
    [Google Scholar]
  75. Sun L. Yao C. Li X. Wang Y. Wang R. Wang M. Liu Q. Montell D.J. Shao C. Gong Y. Sun G. Anastasis confers ovarian cancer cells increased malignancy through elevated p38 MAPK activation. Cell Death Differ. 2023 30 3 809 824 10.1038/s41418‑022‑01081‑1 36447048
    [Google Scholar]
  76. Martínez-Limón A. Joaquin M. Caballero M. Posas F. de Nadal E. The p38 pathway: From biology to cancer therapy. Int. J. Mol. Sci. 2020 21 6 1913 10.3390/ijms21061913 32168915
    [Google Scholar]
  77. Aggarwal B.B. Kumar A. Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003 23 1A 363 398 12680238
    [Google Scholar]
  78. Aggarwal B.B. Bhardwaj A. Aggarwal R.S. Seeram N.P. Shishodia S. Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004 24 5A 2783 2840 15517885
    [Google Scholar]
  79. Kim S.O. Chun K.S. Kundu J.K. Surh Y.J. Inhibitory effects of [6]‐gingerol on PMA‐induced COX‐2 expression and activation of NF‐κB and p38 MAPK in mouse skin. Biofactors 2004 21 1-4 27 31 10.1002/biof.552210107 15630166
    [Google Scholar]
  80. Min J.K. Han K.Y. Kim E.C. Kim Y.M. Lee S.W. Kim O.H. Kim K.W. Gho Y.S. Kwon Y.G. Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 2004 64 2 644 651 10.1158/0008‑5472.CAN‑03‑3250 14744780
    [Google Scholar]
  81. Khan N. Afaq F. Saleem M. Ahmad N. Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006 66 5 2500 2505 10.1158/0008‑5472.CAN‑05‑3636 16510563
    [Google Scholar]
  82. Sarkar F. Adsule S. Padhye S. Kulkarni S. Li Y. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev. Med. Chem. 2006 6 4 401 407 10.2174/138955706776361439 16613577
    [Google Scholar]
  83. Takada Y. Aggarwal B.B. Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: Abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J. Biol. Chem. 2004 279 6 4750 4759 10.1074/jbc.M304546200 14630924
    [Google Scholar]
  84. Gazák R. Walterová D. Kren V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem. 2007 14 3 315 338 10.2174/092986707779941159 17305535
    [Google Scholar]
  85. Deorukhkar A. Krishnan S. Sethi G. Aggarwal B.B. Back to basics: How natural products can provide the foundation for new therapeutics. Expert Opin. Investig. Drugs 2007 16 11 1753 1773
    [Google Scholar]
  86. Andrade M.A. Braga M.A. Cesar P.H.S. Trento M.V.C. Espósito M.A. Silva L.F. Marcussi S. Anticancer properties of essential oils: An overview. Curr. Cancer Drug Targets 2018 18 10 957 966 10.2174/1568009618666180102105843 29295695
    [Google Scholar]
  87. Dong N.Q. Lin H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021 63 1 180 209 10.1111/jipb.13054 33325112
    [Google Scholar]
  88. Cheng Z. Lu X. Feng B. A review of research progress of antitumor drugs based on tubulin targets. Transl. Cancer Res. 2020 9 6 4020 4027 10.21037/tcr‑20‑682 35117769
    [Google Scholar]
  89. Guo M. Jin J. Zhao D. Rong Z. Cao L.Q. Li A.H. Sun X.Y. Jia L.Y. Wang Y.D. Huang L. Li Y.H. He Z.J. Li L. Ma R.K. Lv Y.F. Shao K.K. Cao H.L. Research advances on anti-cancer natural products. Front. Oncol. 2022 12 12 866154 10.3389/fonc.2022.866154 35646647
    [Google Scholar]
  90. Carvalho A.A. Andrade L.N. de Sousa É.B.V. de Sousa D.P. Antitumor phenylpropanoids found in essential oils. BioMed Res. Int. 2015 2015 1 21 10.1155/2015/392674 25949996
    [Google Scholar]
  91. Kim W. Seong K.M. Youn B. Phenylpropanoids in radioregulation: Double edged sword. Exp. Mol. Med. 2011 43 6 323 333 10.3858/emm.2011.43.6.034 21483230
    [Google Scholar]
  92. Qi S.Z. Liu T. Wang M. Zhang X.X. Yang Y.R. Jing W.H. Long L.P. Song K.R. Jin Y. Gao H.Y. New phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum with their antiproliferative activities on cancer cells. Bioorg. Chem. 2021 107 104628 10.1016/j.bioorg.2021.104628 33461038
    [Google Scholar]
  93. Qi S.Z. Zhang X.X. Jin Y. Wang M. Long L.P. Jing W.H. Song K.R. Wang D. Gao H.Y. Phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum induced cell apoptosis via MAPK and Akt pathways in human hepatocellular carcinoma cells. Bioorg. Chem. 2021 111 104886 10.1016/j.bioorg.2021.104886 33836342
    [Google Scholar]
  94. Pang M. Xie X. Zhang Y. Laster K.V. Liu K. Kim D.J. Ethyl ferulate suppresses Esophageal squamous cell carcinoma tumor growth through inhibiting the mTOR signaling pathway. Front. Oncol. 2022 11 11 780011 10.3389/fonc.2021.780011 35155187
    [Google Scholar]
  95. Patil A.S. Ibrahim M.K. Sathaye S. Degani M.S. Pal D. Checker R. Sharma D. Sandur S.K. Mitochondriotropic derivative of ethyl ferulate, a dietary phenylpropanoid, exhibits enhanced cytotoxicity in cancer cells via mitochondrial superoxide-mediated activation of JNK and AKT signalling. Appl. Biochem. Biotechnol. 2023 195 3 2057 2076 10.1007/s12010‑022‑04252‑5 36409426
    [Google Scholar]
  96. Lin Y. Han C. Xu Q. Wang W. Li L. Zhu D. Luo J. Kong L. Integrative countercurrent chromatography for the target isolation of lysine-specific demethylase 1 inhibitors from the roots of Salvia miltiorrhiza. Talanta 2020 206 206 120195 10.1016/j.talanta.2019.120195 31514831
    [Google Scholar]
  97. Hei B. Wang J. Wu G. Ouyang J. Liu R. Verbascoside suppresses the migration and invasion of human glioblastoma cells via targeting c-Met-mediated epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 2019 514 4 1270 1277 10.1016/j.bbrc.2019.05.096 31113618
    [Google Scholar]
  98. Lebraud H. Wright D.J. East C.E. Holding F.P. O’Reilly M. Heightman T.D. In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor. Mol. Biosyst. 2016 12 9 2867 2874 10.1039/C6MB00367B 27385078
    [Google Scholar]
  99. Liu M. Xin Z. Clampit J.E. Wang S. Gum R.J. Haasch D.L. Trevillyan J.M. Abad-Zapatero C. Fry E.H. Sham H.L. Liu G. Synthesis and SAR of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as novel, selective c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett. 2006 16 10 2590 2594 10.1016/j.bmcl.2006.02.046 16527482
    [Google Scholar]
  100. Yurtsever Z. Scheaffer S.M. Romero A.G. Holtzman M.J. Brett T.J. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation. Acta Crystallogr. D Biol. Crystallogr. 2015 71 4 790 799 10.1107/S1399004715001212 25849390
    [Google Scholar]
  101. Prakoeswa C.R.S. Purwanto D.A. Endaryanto A. Molecullar docking of epigallocatechin-3-gallate (EGCG) on Keap1-Nrf2 complex protein in photoaging prevention. Med.-Leg. Update 2020 20 3 305 311
    [Google Scholar]
  102. Bernstein F.C. Koetzle T.F. Williams G.J.B. Meyer E.F. Jr Brice M.D. Rodgers J.R. Kennard O. Shimanouchi T. Tasumi M. The protein data bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem. 1977 80 2 319 324 10.1111/j.1432‑1033.1977.tb11885.x 923582
    [Google Scholar]
  103. ChemAxon Marvin sketch. Available from: https://chemaxon.com/products/marvin
  104. CLC Bio Company Mollegro virtual docker 6.0. Available from: https://molegrovirtualdocker.weebly.com/
  105. De Azevedo W. Jr Walter F. MolDock applied to structure-based virtual screening. Curr. Drug Targets 2010 11 3 327 334 10.2174/138945010790711941 20210757
    [Google Scholar]
  106. Thomsen R. Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006 49 11 3315 3321 10.1021/jm051197e 16722650
    [Google Scholar]
  107. Ferreira R.C. Duarte S.S. de Sousa V.M. de Souza R.R.M. Marques K.K.G. de Abrantes R.A. do Nascimento Y.M. de Sousa N.F. Scotti M.T. Scotti L. Tavares J.F. Gonçalves J.C.R. da Silva M.S. Sobral M.V. The essential oil from Conyza bonariensis (L.) cronquist (asteraceae) exerts an in vitro antimelanoma effect by inducing apoptosis and modulating the MAPKs, NF-κB, and PKB/AKT signaling pathways. Pharmaceuticals 2023 16 11 1553 10.3390/ph16111553 38004419
    [Google Scholar]
  108. Pires H.F.O. da Silva P.R. Dias A.L. de Sousa Gomes C. de Sousa N.F. dos Santos A.M.F. Souza L.R.P. de Figueiredo Lima J.L. Oliveira M.C.N. Felipe C.F.B. de Almeida R.N. de Castro R.D. da Silva Stiebbe Salvadori M.G. Scotti M.T. Scotti L. Mechanisms involved in the therapeutic effect of cannabinoid compounds on gliomas: A review with experimental approach. Curr. Protein Pept. Sci. 2024 25 1 27 43 10.2174/1389203724666230830125423 37649287
    [Google Scholar]
  109. Moreira Costa M.A. de Sousa N.F. Mansur Pontes C.L. Scotti M.T. de Assis F.F. Braga A.L. Sandjo L.P. Inhibitory effects against SARSCoV-2 main protease (Mpro) of biflavonoids and benzophenones from the fruit of Platonia insignis. Fitoterapia 2024 173 105784 10.1016/j.fitote.2023.105784 38128621
    [Google Scholar]
  110. Mohamed K.M. Phenylpropanoid glucosides from Chrozophora obliqua. Phytochemistry 2001 58 4 615 618 10.1016/S0031‑9422(01)00262‑X 11576610
    [Google Scholar]
  111. Brito J.A.G. Pinto L.S. Chaves C.F. Ribeiro da Silva A.J. Silva M.F.G.F. Cotinguiba F. Chemophenetic significance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools. Molecules 2021 26 4 925 10.3390/molecules26040925 33572445
    [Google Scholar]
  112. Jia H.Y. Liao Z.X. Liu F.Y. Wu L. Xu C. Zuo B. A new phenylpropanoid from the roots of Euphorbia nematocypha. Nat. Prod. Res. 2015 29 7 650 655 10.1080/14786419.2014.980256 25421575
    [Google Scholar]
  113. Nomoto Y. Sugimoto S. Matsunami K. Otsuka H. Hirtionosides A–C, gallates of megastigmane glucosides, 3-hydroxyoctanoic acid glucosides and a phenylpropanoid glucoside from the whole plants of Euphorbia hirta. J. Nat. Med. 2013 67 2 350 358 10.1007/s11418‑012‑0692‑5 22836810
    [Google Scholar]
  114. Nguyen-Ngoc H. Alilou M. Derbré S. Blanchard P. Pham G.N. Nghiem D.T. Richomme P. Stuppner H. Ganzera M. Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds. Phytochemistry 2022 202 113300 10.1016/j.phytochem.2022.113300 35798090
    [Google Scholar]
  115. Nazemiyeh H. Kazemi E.M. Zare K. Jodari M. Nahar L. Sarker S.D. Free radical scavengers from the aerial parts of Euphorbia petiolata. J. Nat. Med. 2010 64 2 187 190 10.1007/s11418‑009‑0382‑0 20037800
    [Google Scholar]
  116. Silva C.G.V. Zago H.B. Júnior H.J.G.S. da Camara C.A.G. de Oliveira J.V. Barros R. Schwartz M.O.E. Lucena M.F.A. Composition and insecticidal activity of the essential oil of Croton grewioides Baill. against Mexican bean weevil ( Zabrotes subfasciatus Boheman). J. Essent. Oil Res. 2008 20 2 179 182 10.1080/10412905.2008.9699985
    [Google Scholar]
  117. Tobimatsu Y. Chen F. Nakashima J. Escamilla-Treviño L.L. Jackson L. Dixon R.A. Ralph J. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 2013 25 7 2587 2600 10.1105/tpc.113.113142 23903315
    [Google Scholar]
  118. Wittayalai S. Mahidol C. Prachyawarakorn V. Prawat H. Ruchirawat S. Terpenoids from the roots of Drypetes hoaensis and their cytotoxic activities. Phytochemistry 2014 99 121 126 10.1016/j.phytochem.2013.12.017 24472391
    [Google Scholar]
  119. Yusuf D. Davis A.M. Kleywegt G.J. Schmitt S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model. 2008 48 7 1411 1422 10.1021/ci800084x 18598022
    [Google Scholar]
  120. Schneider N. Hindle S. Lange G. Klein R. Albrecht J. Briem H. Beyer K. Claußen H. Gastreich M. Lemmen C. Rarey M. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J. Comput. Aided Mol. Des. 2012 26 6 701 723 10.1007/s10822‑011‑9531‑0 22203423
    [Google Scholar]
  121. Pan J. Yuan C. Lin C. Jia Z. Zheng R. Pharmacological activities and mechanisms of natural phenylpropanoid glycosides. Pharmazie 2003 58 11 767 775 10.1002/chin.200405273 14664330
    [Google Scholar]
  122. Vasanthi H.R. Mukherjee S. Das D.K. Retraction notice to: Potential health benefits of broccoli-a chemico-biological overview. Mini Rev. Med. Chem. 2021 21 13 1796 10.2174/138955752113210607115023 34602028
    [Google Scholar]
  123. Xiao H. Parkin K. Isolation and identification of phase II enzyme-inducing agents from nonpolar extracts of green onion (Allium spp.). J. Agric. Food Chem. 2006 54 22 8417 8424 10.1021/jf061582s 17061815
    [Google Scholar]
  124. de Andrade C.C.N. de Oliveira Lopes A.L. Sousa Duarte S. Assunção Araújo de Azevedo F.L. Araújo Loureiro P.B. Wanderley Amorim G.M. de Abreu A.R. Junior Sobral da Silva M. Fechine Tavares J. Santos Golzio S.D. Ramos Gonçalves J.C. Vieira Sobral M. Potential in vitro antimelanoma effect of the essential oil from Croton grewioides Baill. Chem. Biodivers. 2024 e202401867 10.1002/cbdv.202401867 39375157
    [Google Scholar]
  125. Nemala A. Nandagopal A. The anti-tumour effect of Aleurites moluccana on HCT-116 cells. Preprints 2024 10.21203/rs.3.rs‑4748200/v1
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357765250603105759
Loading
/content/journals/cpd/10.2174/0113816128357765250603105759
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: molecular docking ; Phenylpropanoids ; croton ; MAPK ; euphorbiaceae ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test