Skip to content
2000
image of Exploration of Pharmacological Mechanism of Kaempferol in Treating Rheumatoid Arthritis based on Network Pharmacology, Molecular Modelling, and Experimental Validation

Abstract

Background

The autoimmune inflammatory disease known as rheumatoid arthritis (RA) has a complicated and poorly understood etiology. Fibroblast-like synoviocytes (FLSs) have tumor-like characteristics in RA, including aggressive growth and heightened activation that leads to the release of pro-inflammatory factors. These processes are essential for the gradual deterioration of joint tissues. Kaempferol, with the chemical formula 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, is found in many different types of plants and plant families. The pharmacological effects of this substance have been well-documented. The benefits of this substance encompass protection for the heart and brain, as well as fighting inflammation, bacteria, cancer, osteoporosis, and allergies. It also has properties that can help with anxiety, pain relief, and hormonal balance. However, its precise function in the management of RA is still unclear.

Objective

To investigate the effect of kaempferol on apoptosis in RA FLSs and elucidate the underlying mechanisms.

Methods

We used the CCK-8 assay to assess the effects of different kaempferol concentrations on RA FLSs. We also used flow cytometry with Annexin V-FITC/PI staining to analyse cell cycle distribution and quantify apoptotic cells. To verify apoptosis, the TUNEL test was employed. Important proteins associated with apoptosis were verified to be expressed using western blotting. Finally, network pharmacology analysis was used to identify potential kaempferol targets, and their interactions with AKT1, PIK3R1, and HSP90AA1 proteins were studied using molecular docking and molecular dynamics simulations.

Results

Kaempferol treatment significantly increased apoptosis in RA FLSs, up-regulating the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl-2. Specifically, kaempferol at 100 and 200 μM increased the apoptosis index to 29.77 ± 6.02% and 55.63 ± 11.05%, respectively, compared to the control. The induction of caspase-9 and caspase-3 cleavage was observed, indicating the activation of the mitochondrial pathway. Kaempferol also inhibited the phosphorylation of PI3K and Akt, with a significant reduction in their activation. Molecular docking studies demonstrated that kaempferol interacted with AKT1, PIK3R1, and HSP90AA1 proteins, with binding energies of -6.51, -4.26, and -6.51 kcal/mol, respectively, suggesting a strong affinity and potential direct impact on these proteins.

Conclusion

Kaempferol induces apoptosis in RA FLSs by inhibiting phosphorylation of the PI3K/Akt signaling pathway, increasing levels of pro-apoptotic proteins, and decreasing levels of anti-apoptotic proteins. Thus, kaempferol, a naturally occurring flavonoid, has great promise in the management of RA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357060250611173717
2025-06-30
2025-09-10
Loading full text...

Full text loading...

References

  1. Aletaha D. Smolen J.S. Diagnosis and management of rheumatoid arthritis. JAMA 2018 320 13 1360 1372 10.1001/jama.2018.13103 30285183
    [Google Scholar]
  2. Wang T. Jiao Y. Zhang X. Immunometabolic pathways and its therapeutic implication in autoimmune diseases. Clin. Rev. Allergy Immunol. 2021 60 1 55 67 10.1007/s12016‑020‑08821‑6 33179144
    [Google Scholar]
  3. McInnes I.B. Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017 389 10086 2328 2337 10.1016/S0140‑6736(17)31472‑1 28612747
    [Google Scholar]
  4. Nygaard G. Firestein G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 2020 16 6 316 333 10.1038/s41584‑020‑0413‑5 32393826
    [Google Scholar]
  5. Kronzer V.L. Davis J.M. III Etiologies of rheumatoid arthritis: Update on mucosal, genetic, and cellular pathogenesis. Curr. Rheumatol. Rep. 2021 23 4 21 10.1007/s11926‑021‑00993‑0 33646410
    [Google Scholar]
  6. Ouyang Z.H. Wang W.J. Yan Y.G. Wang B. Lv G.H. The PI3K/Akt pathway: A critical player in intervertebral disc degeneration. Oncotarget 2017 8 34 57870 57881 10.18632/oncotarget.18628 28915718
    [Google Scholar]
  7. Wu X. Long L. Liu J. Gambogic acid suppresses inflammation in rheumatoid arthritis rats via PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep. 2017 16 5 7112 7118 10.3892/mmr.2017.7459 28901512
    [Google Scholar]
  8. Jia Q. Cheng W. Yue Y. Cucurbitacin E inhibits TNF-α-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-κB pathways. Int. Immunopharmacol. 2015 29 2 884 890 10.1016/j.intimp.2015.08.026 26453509
    [Google Scholar]
  9. Li S. Li F. Chen W. Deng C. AB0109 Autophagy inhibitor regulates apoptosis and proliferation of synovial fibroblasts through the inhibition of pi3k/akt pathway in collagen-induced arthritis rat model. Ann. Rheum. Dis. 2017 76 2 1084 10.1136/annrheumdis‑2017‑eular.2044
    [Google Scholar]
  10. Jie L. Du H. Huang Q. Wei S. Huang R. Sun W. Tanshinone IIA induces apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis via blockade of the cell cycle in the G2/M phase and a mitochondrial pathway. Biol. Pharm. Bull. 2014 37 8 1366 1372 10.1248/bpb.b14‑00301 24920239
    [Google Scholar]
  11. Chai Y.S. Hu J. Lei F. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt. Eur. J. Pharmacol. 2013 708 1-3 44 55 10.1016/j.ejphar.2013.02.041 23499694
    [Google Scholar]
  12. Lee G.A. Choi K.C. Hwang K.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol. 2017 49 48 57 10.1016/j.etap.2016.11.016 27902959
    [Google Scholar]
  13. Pan D. Li N. Liu Y. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol. 2018 55 174 182 10.1016/j.intimp.2017.12.011 29268189
    [Google Scholar]
  14. Kashafi E. Moradzadeh M. Mohamadkhani A. Erfanian S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother. 2017 89 573 577 10.1016/j.biopha.2017.02.061 28258039
    [Google Scholar]
  15. Xie F. Su M. Qiu W. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int. J. Mol. Sci. 2013 14 11 21215 21226 10.3390/ijms141121215 24284390
    [Google Scholar]
  16. Qiu W. Lin J. Zhu Y. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell. Physiol. Biochem. 2017 41 4 1325 1335 10.1159/000464435 28278502
    [Google Scholar]
  17. Karsh J. Keystone E.C. Haraoui B. Canadian recommendations for clinical trials of pharmacologic interventions in rheumatoid arthritis: Inclusion criteria and study design. J. Rheumatol. 2011 38 10 2095 2104 10.3899/jrheum.110188 21765109
    [Google Scholar]
  18. Song H. Bao J. Wei Y. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncol. Rep. 2015 33 2 868 874 10.3892/or.2014.3662 25500692
    [Google Scholar]
  19. Cho H.J. Park J.H.Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J. Cancer Prev. 2013 18 3 257 263 10.15430/JCP.2013.18.3.257 25337553
    [Google Scholar]
  20. Ru J. Li P. Wang J. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  21. Daina A. Michielin O. Zoete V. Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357-64 10.1093/nar/gkz382 31106366
    [Google Scholar]
  22. Xu H.Y. Zhang Y.Q. Liu Z.M. ETCM: An encyclopaedia of traditional chinese medicine. Nucleic Acids Res. 2019 47 D1 D976 D982 10.1093/nar/gky987 30365030
    [Google Scholar]
  23. Stelzer G Rosen N Plaschkes I The genecards suite: From gene data mining to disease genome sequence analyses Curr Protoc Bioinforma 2016 54 1 30.30.1-, 33 10.1002/cpbi.5 27322403
    [Google Scholar]
  24. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  25. Whirl-Carrillo M. McDonagh E.M. Hebert J.M. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012 92 4 414 417 10.1038/clpt.2012.96 22992668
    [Google Scholar]
  26. Zhou Y. Zhang Y. Zhao D. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res. 2024 52 D1 D1465 D1477 10.1093/nar/gkad751 37713619
    [Google Scholar]
  27. Wishart D.S. Feunang Y.D. Guo A.C. DrugBank 5.0: A major update to the drugbank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  28. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019 48 D1 D845 D855 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  29. Szklarczyk D. Gable A.L. Nastou K.C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  30. Sherman B.T. Hao M. Qiu J. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216-21 10.1093/nar/gkac194 35325185
    [Google Scholar]
  31. Burley S.K. Bhikadiya C. Bi C. RCSB protein data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci. 2022 31 12 e4482 10.1002/pro.4482 36281733
    [Google Scholar]
  32. Chen H. Lou Y. Lin S. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation. J. Ethnopharmacol. 2024 322 117576 10.1016/j.jep.2023.117576 38104880
    [Google Scholar]
  33. Ahmed S. John P. Paracha R.Z. Bhatti A. Guma M. Docking and molecular dynamics study to identify novel phytobiologics from Dracaena trifasciata against metabolic reprogramming in rheumatoid arthritis. Life (Basel) 2022 12 8 1148 10.3390/life12081148 36013327
    [Google Scholar]
  34. Zhao Y. Tian B. Wang Y. Ding H. Kaempferol sensitizes human ovarian cancer cells-OVCAR-3 and SKOV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and up-regulation of death receptors 4 and 5. Med. Sci. Monit. 2017 23 5096 5105 10.12659/MSM.903552 29070784
    [Google Scholar]
  35. Imran M. Salehi B. Sharifi-Rad J. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019 24 12 2277 10.3390/molecules24122277 31248102
    [Google Scholar]
  36. Korb A. Pavenstädt H. Pap T. Cell death in rheumatoid arthritis. Apoptosis 2009 14 4 447 454 10.1007/s10495‑009‑0317‑y 19199037
    [Google Scholar]
  37. Araya L.E. Soni I.V. Hardy J.A. Julien O. Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem. Biol. 2021 16 11 2280 2296 10.1021/acschembio.1c00456 34553588
    [Google Scholar]
  38. Yetişir A. Sariyildiz A. Türk İ. Coskun Benlidayi I. Evaluation of inflammatory biomarkers and the ratio of hemoglobin-red cell distribution width in patients with rheumatoid arthritis treated with tumor necrosis factor-alpha inhibitors. Clin. Rheumatol. 2024 43 6 1815 1821 10.1007/s10067‑024‑06963‑y 38622428
    [Google Scholar]
  39. Bangar S.P. Chaudhary V. Sharma N. Bansal V. Ozogul F. Lorenzo J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2023 63 28 9580 9604 10.1080/10408398.2022.2067121 35468008
    [Google Scholar]
  40. Wang J. Hu K. Cai X. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B 2022 12 1 18 32 10.1016/j.apsb.2021.07.023 35127370
    [Google Scholar]
  41. Yuan Y. Long H. Zhou Z. Fu Y. Jiang B. PI3K–AKT-targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules 2023 13 1 93 10.3390/biom13010093 36671478
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357060250611173717
Loading
/content/journals/cpd/10.2174/0113816128357060250611173717
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: apoptosis ; osteoporosis ; kaempferol ; fibroblast-like synoviocyt ; Rheumatoid arthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test