Skip to content
2000
image of Sugammadex in Perioperative Neuromuscular Management: Current Advances and Best Practices Sugammadex in Neuromuscular Management

Abstract

Neuromuscular blocking agents (NMBAs) are crucial for anesthesia, enabling intubation and optimal surgical conditions. Timely reversal of blockade is critical for safe extubation and recovery. While neostigmine, a traditional reversal agent, is effective for moderate blockade, it has limitations in reversing deep blockade and requires anticholinergics to mitigate side effects. Sugammadex, a novel agent, addresses these limitations by selectively encapsulating aminosteroid NMBAs like rocuronium, providing rapid and reliable reversal. It demonstrates significant advantages, including faster recovery and reduced postoperative complications, especially in high-risk populations such as elderly patients or those with organ dysfunction. However, challenges such as high costs and potential adverse effects, including hypersensitivity and cardiovascular events, restrict its routine use. This review explores sugammadex’s pharmacological features, clinical applications, and cost-effectiveness, offering strategies to optimize its use in complex surgical scenarios while addressing current limitations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128379883250616051732
2025-07-01
2025-09-11
Loading full text...

Full text loading...

References

  1. Mirakhur R.K. New developments in nondepolarizing muscle relaxants. Yale J Biol Med 1993 66 5 463 7825348
    [Google Scholar]
  2. Paech M.J. Kaye R. Baber C. Nathan E.A. Recovery characteristics of patients receiving either sugammadex or neostigmine and glycopyrrolate for reversal of neuromuscular block: A randomised controlled trial. Anaesthesia 2018 73 3 340 347 29214645
    [Google Scholar]
  3. Bucheery B.A. Isa H.M. Rafiq O. Almansoori N.A. Razaq Z.A.A. Gawe Z.A. Almoosawi J.A. Residual neuromuscular blockade and postoperative pulmonary complications in the post-anesthesia care unit: A prospective observational study. Cureus 2023 15 12 e51013 10.7759/cureus.51013 38264400
    [Google Scholar]
  4. Naguib M. Kopman A.F. Ensor J.E. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br. J. Anaesth. 2007 98 3 302 316 10.1093/bja/ael3867 17307778
    [Google Scholar]
  5. Özbey N.B. Abdullah T. Deligöz Ö. Residual neuromuscular block in the postanesthesia care unit: Incidence, risk factors, and effect of neuromuscular monitoring and reversal agents. Turk. J. Med. Sci. 2022 52 5 1656 1664 36422506
    [Google Scholar]
  6. Yip P.C. Hannam J.A. Cameron A.J.D. Campbell D. Incidence of residual neuromuscular blockade in a post-anaesthetic care unit. Anaesth. Intensive Care 2010 38 1 91 95 10.1177/0310057X1003800116 20191783
    [Google Scholar]
  7. Yu B. Ouyang B. Ge S. Luo Y. Li J. Ni D. Hu S. Xu H. Liu J. Min S. Li L. Ma Z. Xie K. Miao C. Wu X. RECITE–China Investigators Incidence of postoperative residual neuromuscular blockade after general anesthesia: A prospective, multicenter, anesthetist-blind, observational study. Curr. Med. Res. Opin. 2016 32 1 1 9 10.1185/03007995.2015.1103213 26452561
    [Google Scholar]
  8. Brull S.J. Murphy G.S. Residual neuromuscular block: Lessons unlearned. Part II: Methods to reduce the risk of residual weakness. Anesth. Analg. 2010 111 1 129 140 10.1213/ANE.0b013e3181da8312 20442261
    [Google Scholar]
  9. Murphy G.S. Szokol J.W. Franklin M. Marymont J.H. Avram M.J. Vender J.S. Postanesthesia care unit recovery times and neuromuscular blocking drugs: A prospective study of orthopedic surgical patients randomized to receive pancuronium or rocuronium. Anesth. Analg. 2004 98 1 193 200 10.1213/01.ANE.0000095040.36648.F7 14693617
    [Google Scholar]
  10. Bissinger U. Schimek F. Lenz G. Postoperative residual paralysis and respiratory status: A comparative study of pancuronium and vecuronium. Physiol Res. 2000 49Z 4 455 10.33549/physiolres.930000.49.455
    [Google Scholar]
  11. Sundman E. Witt H. Olsson R. Ekberg O. Kuylenstierna R. Eriksson L.I. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: Pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000 92 4 977 984 10.1097/00000542‑200004000‑00014 10754616
    [Google Scholar]
  12. Naguib M. Brull S.J. Kopman A.F. Hunter J.M. Fülesdi B. Arkes H.R. Elstein A. Todd M.M. Johnson K.B. Consensus statement on perioperative use of neuromuscular monitoring. Anesth. Analg. 2018 127 1 71 80 10.1213/ANE.0000000000002670 29200077
    [Google Scholar]
  13. Brull S.J. Kopman A.F. Current status of neuromuscular reversal and monitoring. Anesthesiology 2017 126 1 173 190 10.1097/ALN.0000000000001409 27820709
    [Google Scholar]
  14. Anderson A. García-Fandiño R. Piñeiro Á. O’Connor M.S. Unraveling the molecular dynamics of sugammadex-rocuronium complexation: A blueprint for cyclodextrin drug design. Carbohydr. Polym. 2024 334 122018 38553217
    [Google Scholar]
  15. Honing G.H.M. Martini C.H. Bom A. van Velzen M. Niesters M. Aarts L.P.H.J. Dahan A. Boon M. Safety of sugammadex for reversal of neuromuscular block. Expert Opin. Drug Saf. 2019 18 10 883 891 10.1080/14740338.2019.1649393 31359807
    [Google Scholar]
  16. de Boer H.D. van Egmond J. van de Pol F. Bom A. Booij L.H.D.J. Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys. Anesthesiology 2006 104 4 718 723 10.1097/00000542‑200604000‑00016 16571967
    [Google Scholar]
  17. Hawkins J. Khanna S. Argalious M. Sugammadex for reversal of neuromuscular blockade: Uses and limitations. Curr. Pharm. Des. 2019 25 19 2140 2148 10.2174/1381612825666190704101145 31272347
    [Google Scholar]
  18. Sacan O. White P.F. Tufanogullari B. Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth. Analg. 2007 104 3 569 574 10.1213/01.ane.0000248224.42707.48 17312210
    [Google Scholar]
  19. Duvaldestin P. Kuizenga K. Saldien V. Claudius C. Servin F. Klein J. Debaene B. Heeringa M. A randomized, dose-response study of sugammadex given for the reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia. Anesth. Analg. 2010 110 1 74 82 10.1213/ANE.0b013e3181c3be3c 19933538
    [Google Scholar]
  20. Lin Y.T. Ting C.K. Hsu H.S. Sugammadex shortens operation time and improves operation turnover efficacy in video-assisted thoracoscopic surgery. J. Chin. Med. Assoc. 2024 87 4 448 452 10.1097/JCMA.0000000000001080 38391199
    [Google Scholar]
  21. Park Y.S. Kim J. Kim S.H. Moon Y.J. Kwon H.M. Park H.S. Kim W.J. Ha S. Comparison of recovery profiles in patients with Parkinson’s disease for 2 types of neuromuscular blockade reversal agent following deep brain stimulator implantation. Medicine (Baltimore) 2019 98 52 e18406 10.1097/MD.0000000000018406 31876713
    [Google Scholar]
  22. Kheterpal S. Vaughn M.T. Dubovoy T.Z. Shah N.J. Bash L.D. Colquhoun D.A. Shanks A.M. Mathis M.R. Soto R.G. Bardia A. Bartels K. McCormick P.J. Schonberger R.B. Saager L. Sugammadex versus Neostigmine for reversal of neuromuscular blockade and postoperative pulmonary complications (STRONGER). Anesthesiology 2020 132 6 1371 1381 10.1097/ALN.0000000000003256 32282427
    [Google Scholar]
  23. Ledowski T. Szabó-Maák Z. Loh P.S. Turlach B.A. Yang H.S. de Boer H.D. Asztalos L. Shariffuddin I.I. Chan L. Fülesdi B. Reversal of residual neuromuscular block with neostigmine or sugammadex and postoperative pulmonary complications: A prospective, randomised, double-blind trial in high-risk older patients. Br. J. Anaesth. 2021 127 2 316 323 10.1016/j.bja.2021.04.026 34127252
    [Google Scholar]
  24. Mat N.I.S.N. Yeoh C.N. Maaya M. Zain J.M. Ooi J.S.M. Effects of Sugammadex and Neostigmine on post-operative nausea and vomiting in ENT surgery. Front. Med. (Lausanne) 2022 9 905131 10.3389/fmed.2022.90513 35669920
    [Google Scholar]
  25. Martinez-Ubieto J. Aragón-Benedí C. de Pedro J. Cea-Calvo L. Morell A. Jiang Y. Cedillo S. Ramírez-Boix P. Pascual-Bellosta A.M. Economic impact of improving patient safety using Sugammadex for routine reversal of neuromuscular blockade in Spain. BMC Anesthesiol. 2021 21 1 55 33593283
    [Google Scholar]
  26. Linn D.D. Renew J.R. The impact of sugammadex dosing and administration practices on potential cost savings for pharmacy departments. Am. J. Health Syst. Pharm. 2024 81 19 e575 e583 10.1093/ajhp/zxae124 38725325
    [Google Scholar]
  27. Murphy GS, Szokol JW, Avram MJ, et al. Residual neuromuscular block in the elderly: Incidence and clinical implications. Anesthesiology 2015 123 6 1322-36 10.1097/ALN.0000000000000865 26448469
    [Google Scholar]
  28. Oh M.W. Mohapatra S.G. Pak T. Hermawan A. Chen C.A. Thota B. Chen J. Siu E. Park J. Moon T.S. Sugammadex versus Neostigmine for reversal of neuromuscular blockade in patients with severe renal impairment: A randomized, double-blinded study. Anesth. Analg. 2024 138 5 1043 1051 10.1213/ANE.0000000000006807 38190344
    [Google Scholar]
  29. Bijkerk V. Jacobs L.M. Albers K.I. Gurusamy K.S. van Laarhoven C.J. Keijzer C. Warlé M.C. Deep neuromuscular blockade in adults undergoing an abdominal laparoscopic procedure. Cochrane Database Syst. Rev. 2024 1 1 CD013197 10.1002/14651858.CD013197.pub2 38288876
    [Google Scholar]
  30. Hristovska A.M. Duch P. Allingstrup M. Afshari A. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2018 73 5 631 641 10.1111/anae.14160 29280475
    [Google Scholar]
  31. Huang C. Wang X. Gao S. Luo W. Zhao X. Zhou Q. Huang W. Xiao Y. Sugammadex versus Neostigmine for recovery of respiratory muscle strength measured by ultrasonography in the postextubation period: A randomized controlled trial. Anesth. Analg. 2023 136 3 559 568 10.1213/ANE.0000000000006219 36279410
    [Google Scholar]
  32. Abola R.E. Romeiser J. Rizwan S. Lung B. Gupta R. Bennett-Guerrero E. A randomized-controlled trial of sugammadex versus neostigmine: Impact on early postoperative strength. Can. J. Anaesth. 2020 67 8 959 969 10.1007/s12630‑020‑01695‑4 32405975
    [Google Scholar]
  33. Herring W.J. Mukai Y. Wang A. Lutkiewicz J. Lombard J.F. Lin L. Watkins M. Broussard D.M. Blobner M. A randomized trial evaluating the safety profile of sugammadex in high surgical risk ASA physical class 3 or 4 participants. BMC Anesthesiol. 2021 21 1 259 10.1186/s12871‑021‑01477‑5 34711192
    [Google Scholar]
  34. Schmidt M.T. Paredes S. Rössler J. Mukhia R. Pu X. Mao G. Turan A. Ruetzler K. Postoperative risk of transfusion after reversal of residual neuromuscular block with Sugammadex versus Neostigmine: A retrospective cohort study. Anesth. Analg. 2023 136 4 745 752 10.1213/ANE.0000000000006275 36651854
    [Google Scholar]
  35. Ruetzler K. Li K. Chhabada S. Maheshwari K. Chahar P. Khanna S. Schmidt M.T. Yang D. Turan A. Sessler D.I. Sugammadex versus Neostigmine for reversal of residual neuromuscular blocks after surgery: A retrospective cohort analysis of postoperative side effects. Anesth. Analg. 2022 134 5 1043 1053 10.1213/ANE.0000000000005842 35020636
    [Google Scholar]
  36. Ji Y. Yuan H. Chen Y. Zhang X. Wu F. Tang W. Lu Z. Huang C. Sugammadex is associated with reduced pulmonary complications in patients with respiratory dysfunction. J. Surg. Res. 2023 290 133 140 10.1016/j.jss.2023.04.023 37267702
    [Google Scholar]
  37. Li G. Freundlich R.E. Gupta R.K. Hayhurst C.J. Le C.H. Martin B.J. Shotwell M.S. Wanderer J.P. Postoperative pulmonary complications’ association with Sugammadex versus Neostigmine: A retrospective registry analysis. Anesthesiology 2021 134 6 862 873 10.1097/ALN.0000000000003735 33730169
    [Google Scholar]
  38. Kirmeier E. Eriksson L.I. Lewald H. Jonsson Fagerlund M. Hoeft A. Hollmann M. Meistelman C. Hunter J.M. Ulm K. Blobner M. POPULAR Contributors Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): A multicentre, prospective observational study. Lancet Respir. Med. 2019 7 2 129 140 10.1016/S2213‑2600(18)30294‑7 30224322
    [Google Scholar]
  39. Schlesinger T. Meybohm P. Kranke P. Postoperative nausea and vomiting: risk factors, prediction tools, and algorithms. Curr. Opin. Anaesthesiol. 2023 36 1 117 123 10.1097/ACO.0000000000001220 36550611
    [Google Scholar]
  40. Ju J.W. Hwang I.E. Cho H.Y. Yang S.M. Kim W.H. Lee H.J. Effects of Sugammadex versus neostigmine on postoperative nausea and vomiting after general anesthesia in adult patients: Asingle-center retrospective study. Sci. Rep. 2023 13 1 5422 10.1038/s41598‑023‑32730 37012336
    [Google Scholar]
  41. Chhabra R. Gupta R. Gupta L.K. Sugammadex versus Neostigmine for reversal of neuromuscular blockade in adults and children: A systematic review and meta-analysis of randomized controlled trials. Curr. Drug Saf. 2024 19 1 33 43 10.2174/1574886318666230302124634 36861797
    [Google Scholar]
  42. Yağan Ö. Taş N. Mutlu T. Hancı V. Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Braz. J. Anesthesiol. 2017 67 2 147 152 10.1016/j.bjane.2015.08.003 28236862
    [Google Scholar]
  43. Oh T.K. Ji E. Na H.S. The effect of neuromuscular reversal agent on postoperative pain after laparoscopic gastric cancer surgery: Comparison between the neostigmine and sugammadex. Medicine (Baltimore) 2019 98 26 e16142 10.1097/MD.0000000000016142 31261539
    [Google Scholar]
  44. Castro D.S. Jr Leão P. Borges S. Gomes L. Pacheco M. Figueiredo P. Sugammadex reduces postoperative pain after laparoscopic bariatric surgery: A randomized trial. Surg. Laparosc. Endosc. Percutan. Tech. 2014 24 5 420 423 10.1097/SLE.0000000000000049 24752165
    [Google Scholar]
  45. Renew J.R. Brull S.J. Moving perioperative care forward while reversing: Is there hidden benefit to neuromuscular blockade antagonism with sugammadex? J. Clin. Anesth. 2024 96 111357 10.1016/j.jclinane.2023.111357 38103989
    [Google Scholar]
  46. Bash L.D. Turzhitsky V. Mark R.J. Hofer I.S. Weingarten T.N. Post- operative urinary retention is impacted by neuromuscular block reversal agent choice: A retrospective cohort study in US hospital setting. J. Clin. Anesth. 2024 93 111344 10.1016/j.jclinane.2023.111344 38007845
    [Google Scholar]
  47. Deljou A. Soleimani J. Sprung J. Schroeder D.R. Weingarten T.N. Effects of reversal technique for neuromuscular paralysis on time to recovery of bowel function after Craniotomy. Am. Surg. 2023 89 5 1605 1609 10.1177/00031348211058631 34986061
    [Google Scholar]
  48. Mirakhur R.K. Sugammadex in clinical practice. Anaesthesia 2009 64 s1 Suppl. 1 45 54 10.1111/j.1365‑2044.2008.05870.x 19222431
    [Google Scholar]
  49. Wachtendorf L.J. Tartler T.M. Ahrens E. Witt A.S. Azimaraghi O. Fassbender P. Suleiman A. Linhardt F.C. Blank M. Nabel S.Y. Chao J.Y. Goriacko P. Mirhaji P. Houle T.T. Schaefer M.S. Eikermann M. Comparison of the effects of Sugammadex versus neostigmine for reversal of neuromuscular block on hospital costs of care. Br. J. Anaesth. 2023 130 2 133 141 10.1016/j.bja.2022.10.015 36564246
    [Google Scholar]
  50. Azimaraghi O. Ahrens E. Wongtangman K. Witt A.S. Rupp S. Suleiman A. Tartler T.M. Wachtendorf L.J. Fassbender P. Choice C. Houle T.T. Eikermann M. Schaefer M.S. Association of sugammadex reversal of neuromuscular block and postoperative length of stay in the ambulatory care facility: A multicentre hospital registry study. Br. J. Anaesth. 2023 130 3 296 304 10.1016/j.bja.2022.10.044 36535827
    [Google Scholar]
  51. Bowdle T.A. Haththotuwegama K.J. Jelacic S. Nguyen S.T. Togashi K. Michaelsen K.E. A dose-finding study of Sugammadex for reversal of rocuronium in cardiac surgery patients and postoperative monitoring for recurrent paralysis. Anesthesiology 2023 139 1 6 15 10.1097/ALN.0000000000004578 37027807
    [Google Scholar]
  52. Van Lancker P. Dillemans B. Bogaert T. Mulier J.P. De Kock M. Haspeslagh M. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia 2011 66 8 721 725 10.1111/j.1365‑2044.2011.06782.x 21692760
    [Google Scholar]
  53. Choi S.C. Han S. Kwak J. Lee J.Y. Anaphylaxis induced by sugammadex and sugammadex-rocuronium complex: A case report-. Korean J. Anesthesiol. 2020 73 4 342 346 10.4097/kja.19344 31619026
    [Google Scholar]
  54. Ebo D.G. Baldo B.A. Van Gasse A.L. Mertens C. Elst J. Sermeus L. Bridts C.H. Hagendorens M.M. De Clerck L.S. Sabato V. Anaphylaxis to sugammadex-rocuronium inclusion complex: An IgE-mediated reaction due to allergenic changes at the sugammadex primary rim. J. Allergy Clin. Immunol. Pract. 2020 8 4 1410 1415.e3 10.1016/j.jaip.2019.11.018 31785411
    [Google Scholar]
  55. Miyazaki Y. Sunaga H. Kida K. Hobo S. Inoue N. Muto M. Uezono S. Incidence of Anaphylaxis associated with Sugammadex. Anesth. Analg. 2018 126 5 1505 1508 10.1213/ANE.0000000000002562 29064876
    [Google Scholar]
  56. Horiuchi T. Takazawa T. Orihara M. Sakamoto S. Saito S. Drug-induced anaphylaxis during general anesthesia in 14 tertiary hospitals in Japan: A retrospective, multicenter, observational study. J Anesth 2021 35 1 154 160 10.1007/s00540‑020‑02886‑5
    [Google Scholar]
  57. Lopez-Raigada A. Vega de la Osada F. Lopez-Sanz C. Múgica García M.V. Alfranca A. Blanco C. Severe perioperative Anaphylaxis due to allergy to the Sugammadex-Rocuronium complex. J. Investig. Allergol. Clin. Immunol. 2022 32 2 163 164 10.18176/jiaci.0730 34213417
    [Google Scholar]
  58. Mao X. Zhang X. Liang X. Liu F. Wang M. A pharmacovigilance study of FDA adverse events for sugammadex. J Clin Anesth. 2024 97 111509 10.1016/j.jclinane.2024.111509
    [Google Scholar]
  59. Luo J. Chen S. Min S. Peng L. Reevaluation and update on efficacy and safety of neostigmine for reversal of neuromuscular blockade. Ther. Clin. Risk Manag. 2018 14 2397 2406 10.2147/TCRM.S179420 30573962
    [Google Scholar]
  60. Alsuhebani M. Sims T. Hansen J.K. Hakim M. Walia H. Miller R. Tumin D. Tobias J.D. Heart rate changes following the administration of sugammadex in children: A prospective, observational study. J. Anesth. 2020 34 2 238 242 10.1007/s00540‑019‑02729‑y 31980926
    [Google Scholar]
  61. Bhavani S.S. Severe bradycardia and asystole after sugammadex. Br. J. Anaesth. 2018 121 1 95 96 10.1016/j.bja.2018.02.036 29935601
    [Google Scholar]
  62. Boo K.Y. Park S.H. Park S.K. Na C. Kim H.J. Cardiac arrest due to coronary vasospasm after sugammadex administration: A case report-. Korean J. Anesthesiol. 2023 76 1 72 76 10.4097/kja.22335 35978452
    [Google Scholar]
  63. Wu T.S. Tseng W.C. Lai H.C. Huang Y.H. Wu Z.F. Sugammadex and laryngospasm. J. Clin. Anesth. 2019 56 52 10.1016/j.jclinane.2019.01.043 30690311
    [Google Scholar]
  64. Curtis R. Lomax S. Patel B. Use of Sugammadex in a ‘can’t intubate, can’t ventilate’ situation. Br. J. Anaesth. 2012 108 4 612 614 10.1093/bja/aer494 22287458
    [Google Scholar]
  65. Komasawa N. Nishihara I. Minami T. Relationship between timing of sugammadex administration and development of laryngospasm during recovery from anaesthesia when using supraglottic devices. Eur. J. Anaesthesiol. 2016 33 9 691 692 10.1097/EJA.0000000000000454 27007330
    [Google Scholar]
  66. Dirkmann D. Britten M.W. Pauling H. Weidle J. Volbracht L. Görlinger K. Peters J. Anticoagulant effect of Sugammadex. Anesthesiology 2016 124 6 1277 1285 10.1097/ALN.0000000000001076 26950705
    [Google Scholar]
  67. Lee I.O. Kim Y.S. Chang H.W. Kim H. Lim B.G. Lee M. In vitro investigation of the effects of exogenous Sugammadex on coagulation in orthopedic surgical patients. BMC Anesthesiol. 2018 18 1 56 10.1186/s12871‑018‑0519‑3 29793426
    [Google Scholar]
  68. Kang W.S. Lim H. Kim B.S. Lee Y. Hahm K.D. Kim S.H. Assessment of the effects of Sugammadex on coagulation profiles using thromboelastographic parameters. Sci. Rep. 2020 10 1 11179 10.1038/s41598‑020‑68164‑2 32636444
    [Google Scholar]
  69. Hancı V. Kiraz H.A. Ömür D. Ekin S. Uyan B. Yurtlu B.S. Precipitation in Gallipoli: Sugammadex / amiodarone & sugammadex / dobutamine & sugammadex / protamine. Braz. J. Anesthesiol. 2013 63 1 163 164 10.1016/j.bjane.2012.06.004
    [Google Scholar]
  70. Et T. Topal A. Erol A. Tavlan A. Kılıçaslan A. Tuncer Uzun S. The effects of Sugammadex on progesterone levels in pregnant rats. Balkan Med. J. 2015 32 2 203 207 10.5152/balkanmedj.2015.15502 26167346
    [Google Scholar]
  71. Gunduz Gul G. Ozer A.B. Demirel I. Aksu A. Erhan O.L. The effect of sugammadex on steroid hormones: A randomized clinical study. J. Clin. Anesth. 2016 34 62 67 10.1016/j.jclinane.2016.03.039 27687347
    [Google Scholar]
  72. Devoy T. Hunter M. Smith N.A. A prospective observational study of the effects of sugammadex on peri-operative oestrogen and progesterone levels in women who take hormonal contraception. Anaesthesia 2023 78 2 180 187 10.1111/anae.15902 36336462
    [Google Scholar]
  73. Yasukawa T. Kaneki M. Yasuhara S. Lee S.L. Martyn J.A.J. Steroidal nondepolarizing muscle relaxants do not simulate the effects of glucocorticoids on glucocorticoid receptor-mediated transcription in cultured skeletal muscle cells. Anesthesiology 2004 100 6 1615 1619 10.1097/00000542‑200406000‑00041 15166588
    [Google Scholar]
  74. Koo C.H. Hwang J.Y. Min S.W. Ryu J.H. A meta-analysis on the effect of dexamethasone on the Sugammadex reversal of Rocuronium-induced neuromuscular block. j. clin. Med. 2020 9 4 1240 32344687
    [Google Scholar]
  75. Ozbilgin S. Yurtlu D.A. Küçükoztaş B. Kamacı G. Korkut S. Yurtlu B.S. Ensari Güneli M. Hancı V. Günerli A. Evaluation of the effectiveness of Sugammadex for Digoxin intoxication: An experimental study. Cardiovasc. Toxicol. 2018 18 5 400 406 10.1007/s12012‑018‑9450‑6 29549524
    [Google Scholar]
  76. Cameron K.S. Clark J.K. Cooper A. Fielding L. Palin R. Rutherford S.J. Zhang M.Q. Modified gamma-cyclodextrins and their rocuronium complexes. Org. Lett. 2002 4 20 3403 3406 10.1021/ol020126w 12323029
    [Google Scholar]
  77. Bom A. Hope F. Rutherford S. Thomson K. Preclinical pharmacology of sugammadex. J. Crit. Care 2009 24 1 29 35 10.1016/j.jcrc.2008.10.010 19272536
    [Google Scholar]
  78. de Boer H.D. van Egmond J. van de Pol F. Bom A. Driessen J.J. Booij L.H. Time course of action of sugammadex (Org 25969) on rocuronium-induced block in the Rhesus monkey, using a simple model of equilibration of complex formation. Br. J. Anaesth. 2006 97 5 681 686 10.1093/bja/ael240 17018564
    [Google Scholar]
  79. Staals L.M. de Boer H.D. van Egmond J. Hope F. van de Pol F. Bom A.H. Driessen J.J. Booij L.H. Reversal of rocuronium-induced neuromuscular block by sugammadex is independent of renal perfusion in anesthetized cats. J. Anesth. 2011 25 2 241 246 10.1007/s00540‑010‑1090‑3 21225291
    [Google Scholar]
  80. Kim W.Y. Kim Y.H. Lee J.Y. Kim J.H. Min T.J. Evaluation of the toxicity of Sugammadex in Zebrafish Larvae. J. Korean Med. Sci. 2020 35 9 e51 10.3346/jkms.2020.35.e51 32141248
    [Google Scholar]
  81. Yeşiltaş S. Orhon Z.N. Cakır H. Dogru M. Çelik M.G. Does Sugammadex suppress allergic inflammation due to rocuronium in animal model of rat? Allergol. Immunopathol. (Madr.) 2021 49 3 91 99 10.15586/aei.v49i3.8 33938193
    [Google Scholar]
  82. Bostan H. Kalkan Y. Tomak Y. Tumkaya L. Altuner D. Yılmaz A. Erdivanli B. Bedir R. Reversal of rocuronium-induced neuromuscular block with sugammadex and resulting histopathological effects in rat kidneys. Ren. Fail. 2011 33 10 1019 1024 10.3109/0886022X.2011.618972 22013936
    [Google Scholar]
  83. Xiaobing L. Yan J. Wangping Z. Rufang Z. Jia L. Rong W. Effects of sugammadex on postoperative respiratory management in children with congenital heart disease: a randomized controlled study. Biomed. Pharmacother. 2020 127 110180 10.1016/j.biopha.2020.110180 32353822
    [Google Scholar]
  84. Yan P. Wu X. Cai F. Chen Y. Huang Y. Li G. Lai K. Efficacy and safety of sugammadex in anesthesia of cardiac surgery: A retrospective study. J. Clin. Anesth. 2020 65 109845 10.1016/j.jclinane.2020.109845 32464476
    [Google Scholar]
  85. Ozmete O. Dardag E. Civi S. Reversal of rocuronium induced neuromuscular block with sugammadex in patients under 2 years of age. A series of 280 cases. Ann Ital Chir. 2023 94 612 616 38131376
    [Google Scholar]
  86. Wang A. Tsivitis A. Ma S. Jin Z. Al Bizri E. Moore R. The safety and efficacy of sugammadex for reversing neuromuscular blockade in younger children and infants. Expert Opin. Drug Saf. 2024 23 7 845 853 10.1080/14740338.2024.2373906 38938223
    [Google Scholar]
  87. Samba S.N. Daklallah Y. Brown S.E.S. Colquhoun D.A. Modi Z.J. Nause-Osthoff R. Sugammadex use in pediatric patients with stage IV-V chronic kidney disease in a quaternary referral hospital: a case series. BMC Anesthesiol. 2024 24 1 206 38858678
    [Google Scholar]
  88. Togioka B.M. Yanez D. Aziz M.F. Higgins J.R. Tekkali P. Treggiari M.M. Randomised controlled trial of sugammadex or neostigmine for reversal of neuromuscular block on the incidence of pulmonary complications in older adults undergoing prolonged surgery. Br. J. Anaesth. 2020 124 5 553 561 10.1016/j.bja.2020.01.016 32139135
    [Google Scholar]
  89. Muramatsu T. Isono S. Ishikawa T. Nozaki-Taguchi N. Okazaki J. Kitamura Y. Murakami N. Sato Y. Differences of recovery from rocuronium-induced deep paralysis in response to small doses of sugammadex between elderly and nonelderly patients. Anesthesiology 2018 129 5 901 911 10.1097/ALN.0000000000002412 30199419
    [Google Scholar]
  90. Togioka B.M. Schenning K.J. Optimizing reversal of neuromuscular block in older adults: Sugammadex or Neostigmine. Drugs Aging 2022 39 10 749 761 10.1007/s40266‑022‑00969‑4 35934764
    [Google Scholar]
  91. Torres S.M. Duarte D.F. Glória A.S. Reis C. Moreira J.F. Cunha S. Gomes L.L. Dahlem C. Sugammadex administration in pregnant patients undergoing non-obstetric surgery: A case series. Braz. J. Anesthesiol. 2022 72 4 525 528 10.1016/j.bjane.2021.07.034 34411637
    [Google Scholar]
  92. Gaston I.N. Lange E.M.S. Farrer J.R. Toledo P. Sugammadex use for reversal in nonobstetric surgery during pregnancy: A reexamination of the evidence. Anesth. Analg. 2023 136 6 1217 1219 10.1213/ANE.0000000000006442 37205805
    [Google Scholar]
  93. Richardson M.G. Raymond B.L. Sugammadex administration in pregnant women and in women of reproductive potential: A narrative review. Anesth. Analg. 2020 130 6 1628 1637 10.1213/ANE.0000000000004305 31283616
    [Google Scholar]
  94. Yılmaz R. Uzun S.T. Reisli R. Sugammadex for Cesarean in a patient with multiple sclerosis. Sisli Etfal Hastan. Tip Bul. 2019 53 2 195 198 10.14744/SEMB.2017.07108 32377082
    [Google Scholar]
  95. Chun H.R. Chung J. Kim N.S. Kim A.J. Kim S. Kang K.S. Incomplete recovery from rocuronium-induced muscle relaxation in patients with amyotrophic lateral sclerosis using sugammadex. Medicine (Baltimore) 2020 99 3 e18867 10.1097/MD.0000000000018867 32011508
    [Google Scholar]
  96. Schneider A. Tramèr M.R. Keli-Barcelos G. Elia N. Sugammadex and neuromuscular disease: A systematic review with assessment of reporting quality and content validity. Br. J. Anaesth. 2024 133 4 752 758 10.1016/j.bja.2024.05.015 38997841
    [Google Scholar]
  97. Deana C. Barbariol F. D’Incà S. Pompei L. Rocca G.D. SUGAMMADEX versus neostigmine after ROCURONIUM continuous infusion in patients undergoing liver transplantation. BMC Anesthesiol. 2020 20 1 70 10.1186/s12871‑020‑00986‑z 32213163
    [Google Scholar]
  98. Adams D.R. Tollinche L.E. Yeoh C.B. Artman J. Mehta M. Phillips D. Fischer G.W. Quinlan J.J. Sakai T. Short-term safety and effectiveness of sugammadex for surgical patients with end-stage renal disease: A two-centre retrospective study. Anaesthesia 2020 75 3 348 352 31721151
    [Google Scholar]
  99. Paredes S. Porter S.B. Porter I.E. II Renew J.R. Sugammadex use in patients with end-stage renal disease: A historical cohort study. Can. J. Anaesth. 2020 67 12 1789 1797 10.1007/s12630‑020‑01812‑3 32949009
    [Google Scholar]
  100. Colquhoun D.A. Kumar S. Jewell E. Mentz G. Bickett-Hickok R. Kheterpal S. Use of neuromuscular blocking and antagonism agents across the spectrum of renal impairment undergoing major inpatient surgery: A single-center retrospective observational cohort study. Anesthesiology 2024 141 3 602 607 10.1097/ALN.0000000000005079 39136482
    [Google Scholar]
  101. Horrow J.C. Li W. Blobner M. Lombard J. Speek M. DeAngelis M. Herring W.J. Actual versus ideal body weight dosing of sugammadex in morbidly obese patients offers faster reversal of rocuronium- or vecuronium-induced deep or moderate neuromuscular block: a randomized clinical trial. BMC Anesthesiol. 2021 21 1 62 10.1186/s12871‑021‑01278‑w 33639839
    [Google Scholar]
  102. Lu I.C. Wu S.H. Chang P.Y. Ho P.Y. Huang T.Y. Lin Y.C. Kamani D. Randolph G.W. Dionigi G. Chiang F.Y. Wu C.W. Precision neuromuscular block management for neural monitoring during thyroid surgery. J. Invest. Surg. 2021 34 12 1389 1396 10.1080/08941939.2020.1805055 32791867
    [Google Scholar]
  103. Kim J. Kim D. Kim I. Jeong J.S. Changes in bispectral index and patient state index during sugammadex reversal of neuromuscular blockade under steady-state sevoflurane anesthesia. Sci. Rep. 2023 13 1 4030 10.1038/s41598‑023‑31025‑9 36899105
    [Google Scholar]
  104. Le Guen M. Roussel C. Chazot T. Dumont G.A. Liu N. Fischler M. Reversal of neuromuscular blockade with sugammadex during continuous administration of anaesthetic agents: A double-blind randomised crossover study using the bispectral index. Anaesthesia 2020 75 5 583 590 10.1111/anae.14897 31808151
    [Google Scholar]
  105. Li L. Jiang Y. Zhang W. Sugammadex for fast-track surgery in children undergoing cardiac surgery: A randomized controlled study. J. Cardiothorac. Vasc. Anesth. 2021 35 5 1388 1392 10.1053/j.jvca.2020.08.069 32962936
    [Google Scholar]
  106. Li B. Zhou L. Huang H. Effect of sugammadex on the recovery profiles of cardiac patients undergoing non-cardiac surgery. Chin. Med. J. (Engl.) 2021 134 19 2391 2392 10.1097/CM9.0000000000001599 34224405
    [Google Scholar]
  107. Tan J. He J. Wang L. Fang J. Li P. Song Z. Bian Q. Analysis of the association of sugammadex with the length of hospital stay in patients undergoing abdominal surgery: a retrospective study. BMC Anesthesiol. 2023 23 1 32 10.1186/s12871‑023‑01979‑4 36698080
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128379883250616051732
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test