Skip to content
2000
image of Design, Molecular Docking, In Vitro and In Vivo Evaluation of Dimenhydrinate-Cyclodextrin Complex for Fast-Disintegrating Tablet

Abstract

Introduction

This study aimed to formulate and evaluate dimenhydrinate (DMH) as fast-disintegrating tablets (FDTs) complexed with β-cyclodextrin (β-CD) to enhance its solubility, dissolution profile, and pharmacological performance.

Methods

A DMH:β-CD inclusion complex was prepared at a 1:1 molar ratio using the kneading method. Characterization was performed through phase solubility studies, FTIR analysis, molecular docking, and dissolution testing. FDTs were developed using various superdisintegrants and assessed for quality attributes of a tablet, including hardness, friability, wetting time, water absorption ratio, and drug content.

Results

Phase solubility and FTIR analyses confirmed the formation of a stable DMH:β-CD complex. Molecular docking indicated a binding affinity of -4.2 kcal/mol between β-CD and diphenhydramine. Among the FDT formulations, CP3 containing 9% crospovidone showed the best performance, with a disintegration time of 4.3 seconds and the highest drug release rate. pharmacological tests demonstrated enhanced sedative and antiemetic activities of the optimized FDTs compared to conventional DMH formulations.

Discussion

The findings suggest that cyclodextrin-based complexation combined with orodispersible tablet technology can significantly enhance DMH's pharmacological efficacy and patient compliance. However, additional investigations on long-term stability, pharmacokinetics, and clinical scalability are warranted.

Conclusion

The DMH:β-CD FDTs developed in this study offer promising improvements in solubility, dissolution, and therapeutic performance, indicating their potential for better clinical outcomes and patient acceptability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128398157250610113637
2025-06-13
2025-10-27
Loading full text...

Full text loading...

References

  1. Kaur M. Mittal A. Gulati M. Sharma D. Kumar R. Formulation and in vitro evaluation of fast dissolving tablets of febuxostat using co-processed excipients. Recent Pat. Drug Deliv. Formul. 2020 14 1 48 62 10.2174/1872211314666191224121044 31884935
    [Google Scholar]
  2. Eisa A.M. El-Megrab N.A. El-Nahas H.M. Formulation and evaluation of fast dissolving tablets of haloperidol solid dispersion. Saudi Pharm. J. 2022 30 11 1589 1602 10.1016/j.jsps.2022.09.002 36465849
    [Google Scholar]
  3. Miehlke S. Lucendo A.J. Straumann A. Jan Bredenoord A. Attwood S. Orodispersible budesonide tablets for the treatment of eosinophilic esophagitis: A review of the latest evidence. Therap. Adv. Gastroenterol. 2020 13 1756284820927282 10.1177/1756284820927282 32565912
    [Google Scholar]
  4. Vlad R.A. Antonoaea P. Todoran N. Rédai E.M. Bîrsan M. Muntean D.L. Imre S. Hancu G. Farczádi L. Ciurba A. Development and evaluation of cannabidiol orodispersible tablets using a 23-factorial design. Pharmaceutics 2022 14 7 1467 10.3390/pharmaceutics14071467 35890362
    [Google Scholar]
  5. Mahesparan V.A. Bin Abd Razak F.S. Ming L.C. Uddin A.H. Sarker M.Z.I. Bin L.K. Comparison of Disintegrant-addition Methods on the Compounding of Orodispersible Tablets. Int. J. Pharm. Compd. 2020 24 2 148 155 32196477
    [Google Scholar]
  6. Wiedey R. Kokott M. Breitkreutz J. Orodispersible tablets for pediatric drug delivery: Current challenges and recent advances. Expert Opin. Drug Deliv. 2021 18 12 1873 1890 10.1080/17425247.2021.2011856 34822316
    [Google Scholar]
  7. Kokott M. Lura A. Breitkreutz J. Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur. J. Pharm. Biopharm. 2021 168 122 130 10.1016/j.ejpb.2021.08.016 34474110
    [Google Scholar]
  8. Hernández-García L. Rojas-Hernández A. Galano A. Mangiferin/β-cyclodextrin complex: Determination of the Inclusion constant in aqueous solution by Higuchi–Connors method and molecular absorption and photoluminescence UV spectroscopies at pH 3.4. Chem. Zvesti 2022 76 11 7123 7132 10.1007/s11696‑022‑02381‑z
    [Google Scholar]
  9. Rasool B.K. Gareeb R.H. Fahmy S.A. Rasool A.A. Meloxicam β-cyclodextrin transdermal gel: Physicochemical characterization and in vitro dissolution and diffusion studies. Curr. Drug Deliv. 2011 8 4 381 391 10.2174/156720111795767942 21453259
    [Google Scholar]
  10. Gidwani B. Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015 2015 1 15 10.1155/2015/198268 26582104
    [Google Scholar]
  11. Dimenhydrinate. 2021 Available from: https://go.drugbank.com/drugs/DB00985
  12. Halpert A. Olmstead M.C. Beninger R.J. Mechanisms and abuse liability of the anti-histamine dimenhydrinate. Neurosci. Biobehav. Rev. 2002 26 1 61 67 10.1016/S0149‑7634(01)00038‑0 11835984
    [Google Scholar]
  13. Abdul Rasool B.K. Salmo H.M. Development and clinical evaluation of clotrimazole-β-cyclodextrin eyedrops for the treatment of fungal keratitis. AAPS PharmSciTech 2012 13 3 883 889 10.1208/s12249‑012‑9813‑4 22696223
    [Google Scholar]
  14. Loftsson T. Duchêne D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007 329 1-2 1 11 10.1016/j.ijpharm.2006.10.044 17137734
    [Google Scholar]
  15. Conceicao J. Adeoye O. Cabral-Marques H.M. Lobo J.M.S. Cyclodextrins as drug carriers in pharmaceutical technology: The state of the art. Curr. Pharm. Des. 2018 24 13 1405 1433 10.2174/1381612824666171218125431 29256342
    [Google Scholar]
  16. Ali I.S.M. Sajad U.A. Abdul Rasool B.K. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies. PLoS One 2024 19 6 0303900 10.1371/journal.pone.0303900 38843120
    [Google Scholar]
  17. Higuchi T.K. Connors A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965 4 117 212
    [Google Scholar]
  18. Marinho YYM Preparation, physicochemical characterization, docking, and antiarrhythmic effect of d-limonene and d-limonene hydroxypropyl-β-cyclodextrin complex. J. Drug Deliv. Sci. Technol. 2022 71 103350 10.1016/j.jddst.2022.103350
    [Google Scholar]
  19. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  20. Rasool B.K. Fahmy S.A. Galeel O.W. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations. Pak. J. Pharm. Sci. 2012 25 4 815 822 23009999
    [Google Scholar]
  21. Takeda H. Tsuji M. Matsumiya T. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur. J. Pharmacol. 1998 350 1 21 29 10.1016/S0014‑2999(98)00223‑4 9683010
    [Google Scholar]
  22. Nallamadan J. Kalusalingam A. Natarajan C. Krishnan M. Pillai N.P. Ming L.C. Liew K.B. Abdullah A.D.I. Chooi W.H. Wen H. Evaluation of anti-emetic activity of Syzygium aromaticum extracts in chick and rat models of emesis. Journal of Research in Pharmacy 2024 28 4 1231 1243 10.29228/jrp.804
    [Google Scholar]
  23. Sareen S. Joseph L. Mathew G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig. 2012 2 1 12 17 10.4103/2230‑973X.96921 23071955
    [Google Scholar]
  24. Choursiya A. Pandit D. Formulation and Evaluation of fast dissolving tablets of Lansoprazole by Solubility Enhancement Technique. Curr. Res. Pharma. Sci. 2021 11 2 54 64 10.24092/CRPS.2021.110203
    [Google Scholar]
  25. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  26. Oliveira A.E.M.F.M. Soares D.C. Takahashi J.A. Ramaldes G.A. de Paula J.R. Bara M.T.F. Anti-tumor efficiency of perillyl alcohol/β-cyclodextrin inclusion complexes in a Sarcoma S180-induced mice model. Anticancer Drugs 2015 26 9 931 942 10.1097/CAD.0000000000000250 26181229
    [Google Scholar]
  27. Agarwal R. Smith J.C. Speed vs accuracy: Effect on ligand pose accuracy of varying box size and exhaustiveness in AutoDock Vina. Mol. Inform. 2023 42 2 2200188 10.1002/minf.202200188 36262028
    [Google Scholar]
  28. Patel D.M. Patel N.M. Patel M.R. Comparative evaluation of superdisintegrants for design of fast dissolving tablets of prochlorperazine maleate. Int. J. Pharm. Pharm. Sci. 2009 1 1 50 58
    [Google Scholar]
  29. Sharma V. Pathak K. Evaluation of the superdisintegrant functionality of polacrilin potassium in orodispersible tablets using meloxicam as a model drug. Asian J Pharm Sci. 2011 6 4 235 242
    [Google Scholar]
  30. Ravi K. Ramaswamy P. Influence of excipients on the powder characteristics and the flow properties of solid dispersion formulations. Int. J. Pharm. Sci. Res. 2017 8 2 891 899 10.13040/IJPSR.0975‑8232.8(2).891‑99
    [Google Scholar]
  31. Sathishkumar T. Patel R. Formulation and evaluation of fast-disintegrating tablets: A review. Pharm. Dev. Technol. 2019 24 7 850 864 10.1080/10837450.2019.1614073
    [Google Scholar]
  32. Ghosh T. Choudhury P.K. Crospovidone as a superdisintegrant: A comprehensive review on its use in tablet formulation. Int. J. Pharm. Sci. Res. 2017 8 7 2760 2767 10.13040/IJPSR.0975‑8232.8(7).2760‑67
    [Google Scholar]
  33. Jain S. Chawla R. Evaluation of crospovidone as a superdisintegrant in fast-disintegrating tablets for the treatment of acute migraine. J. Adv. Pharm. Technol. Res. 2016 7 3 131 137 10.4103/2231‑4040.191439
    [Google Scholar]
  34. United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary USP 43-NF 38. Chapter (905) Uniformity of Dosage Units. Rockville, MD: United States Pharmacopeial Convention 2020
    [Google Scholar]
  35. Dissolution testing of immediate release solid oral dosage forms. 2018 Available from: https://www.fda.gov/media/70936/download
  36. Ahmed S. Zahid A. Abidi S. Meer S. Anti-emetic activity of four species of Genus Cassia in chicks. IOSR J. Pharm. 2012 2 3 380 384 10.9790/3013‑0230380384
    [Google Scholar]
  37. Bhandari S.V. Gaikwad P.S. Evaluation of antiemetic activity of domperidone and its β-cyclodextrin complex in animal models. Int. J. Pharm. Sci. Res. 2013 4 3 1167 1172 10.13040/IJPSR.0975‑8232.4(3).1167‑72
    [Google Scholar]
  38. Khalifa A.L.Z.M. Abdul Rasool B.K. Optimized mucoadhesive coated niosomes as a sustained oral delivery system of famotidine. AAPS PharmSciTech 2017 18 8 3064 3075 10.1208/s12249‑017‑0780‑7 28516414
    [Google Scholar]
  39. International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). Stability testing of new drug substances and products Q1A(R2). Geneva ICH 2003
    [Google Scholar]
  40. Qiu Y. Chen Y. Zhang G.G.Z. Liu L. Porter W. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. 2nd Ed Boston Academic Press 2016
    [Google Scholar]
  41. Pinho E. Soares C. Henriques M. Oliveira R. Santos J. Cyclodextrin-based inclusion complexes for delivery of active molecules: An updated review on the state of the art and future challenges. Int. J. Pharm. 2014 468 1-2 258 271 10.1016/j.ijpharm.2014.04.067 24746415
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128398157250610113637
Loading
/content/journals/cpd/10.2174/0113816128398157250610113637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test