Skip to content
2000
Volume 32, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

This study aimed to formulate and evaluate dimenhydrinate (DMH) as fast-disintegrating tablets (FDTs) complexed with β-cyclodextrin (β-CD) to enhance its solubility, dissolution profile, and pharmacological performance.

Methods

A DMH:β-CD inclusion complex was prepared at a 1:1 molar ratio using the kneading method. Characterization was performed through phase solubility studies, FTIR analysis, molecular docking, and dissolution testing. FDTs were developed using various superdisintegrants and assessed for quality attributes of a tablet, including hardness, friability, wetting time, water absorption ratio, and drug content.

Results

Phase solubility and FTIR analyses confirmed the formation of a stable DMH:β-CD complex. Molecular docking indicated a binding affinity of -4.2 kcal/mol between β-CD and diphenhydramine. Among the FDT formulations, CP3 containing 9% crospovidone showed the best performance, with a disintegration time of 4.3 seconds and the highest drug release rate. pharmacological tests demonstrated enhanced sedative and antiemetic activities of the optimized FDTs compared to conventional DMH formulations.

Discussion

The findings suggest that cyclodextrin-based complexation combined with orodispersible tablet technology can significantly enhance DMH's pharmacological efficacy and patient compliance. However, additional investigations on long-term stability, pharmacokinetics, and clinical scalability are warranted.

Conclusion

The DMH:β-CD FDTs developed in this study offer promising improvements in solubility, dissolution, and therapeutic performance, indicating their potential for better clinical outcomes and patient acceptability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128398157250610113637
2025-06-13
2025-12-08
Loading full text...

Full text loading...

References

  1. KaurM. MittalA. GulatiM. SharmaD. KumarR. Formulation and in vitro evaluation of fast dissolving tablets of febuxostat using co-processed excipients.Recent Pat. Drug Deliv. Formul.2020141486210.2174/1872211314666191224121044 31884935
    [Google Scholar]
  2. EisaA.M. El-MegrabN.A. El-NahasH.M. Formulation and evaluation of fast dissolving tablets of haloperidol solid dispersion.Saudi Pharm. J.202230111589160210.1016/j.jsps.2022.09.002 36465849
    [Google Scholar]
  3. MiehlkeS. LucendoA.J. StraumannA. Jan BredenoordA. AttwoodS. Orodispersible budesonide tablets for the treatment of eosinophilic esophagitis: A review of the latest evidence.Therap. Adv. Gastroenterol.202013175628482092728210.1177/1756284820927282 32565912
    [Google Scholar]
  4. VladR.A. AntonoaeaP. TodoranN. Development and evaluation of cannabidiol orodispersible tablets using a 23-factorial design.Pharmaceutics2022147146710.3390/pharmaceutics14071467 35890362
    [Google Scholar]
  5. MahesparanV.A. Bin Abd RazakF.S. MingL.C. UddinA.H. SarkerM.Z.I. BinL.K. Comparison of disintegrant-addition methods on the compounding of orodispersible tablets.Int. J. Pharm. Compd.2020242148155 32196477
    [Google Scholar]
  6. WiedeyR. KokottM. BreitkreutzJ. Orodispersible tablets for pediatric drug delivery: Current challenges and recent advances.Expert Opin. Drug Deliv.202118121873189010.1080/17425247.2021.2011856 34822316
    [Google Scholar]
  7. KokottM. LuraA. BreitkreutzJ. WiedeyR. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets.Eur. J. Pharm. Biopharm.202116812213010.1016/j.ejpb.2021.08.016 34474110
    [Google Scholar]
  8. Hernández-GarcíaL. Rojas-HernándezA. GalanoA. Mangiferin/] β-cyclodextrin complex: Determination of the Inclusion constant in aqueous solution by Higuchi-Connors method and molecular absorption and photoluminescence UV spectroscopies at pH 3.4.Chem. Zvesti202276117123713210.1007/s11696‑022‑02381‑z
    [Google Scholar]
  9. RasoolB.K. GareebR.H. FahmyS.A. RasoolA.A. Meloxicam β-cyclodextrin transdermal gel: Physicochemical characterization and in vitro dissolution and diffusion studies.Curr. Drug Deliv.20118438139110.2174/156720111795767942 21453259
    [Google Scholar]
  10. GidwaniB. VyasA. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs.BioMed Res. Int.2015201511510.1155/2015/198268 26582104
    [Google Scholar]
  11. Dimenhydrinate.2021Available from: https://go.drugbank.com/drugs/DB00985
  12. HalpertA. OlmsteadM.C. BeningerR.J. Mechanisms and abuse liability of the anti-histamine dimenhydrinate.Neurosci. Biobehav. Rev.2002261616710.1016/S0149‑7634(01)00038‑0 11835984
    [Google Scholar]
  13. Abdul RasoolB.K. SalmoH.M. Development and clinical evaluation of clotrimazole-β-cyclodextrin eyedrops for the treatment of fungal keratitis.AAPS PharmSciTech201213388388910.1208/s12249‑012‑9813‑4 22696223
    [Google Scholar]
  14. LoftssonT. DuchêneD. Cyclodextrins and their pharmaceutical applications.Int. J. Pharm.20073291-211110.1016/j.ijpharm.2006.10.044 17137734
    [Google Scholar]
  15. ConceicaoJ. AdeoyeO. Cabral-MarquesH.M. LoboJ.M.S. Cyclodextrins as drug carriers in pharmaceutical technology: The state of the art.Curr. Pharm. Des.201824131405143310.2174/1381612824666171218125431 29256342
    [Google Scholar]
  16. AliI.S.M. SajadU.A. Abdul RasoolB.K. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies.PLoS One2024196030390010.1371/journal.pone.0303900 38843120
    [Google Scholar]
  17. HiguchiT.K. ConnorsA. Phase-solubility techniques.Adv Anal Chem Instrum19654117212
    [Google Scholar]
  18. MarinhoY.Y.M. Preparation, physicochemical characterization, docking, and antiarrhythmic effect of d-limonene and d-limonene hydroxypropyl-β-cyclodextrin complex.J. Drug Deliv. Sci. Technol.20227110335010.1016/j.jddst.2022.103350
    [Google Scholar]
  19. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  20. RasoolB.K. FahmyS.A. GaleelO.W. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations.Pak. J. Pharm. Sci.2012254815822 23009999
    [Google Scholar]
  21. TakedaH. TsujiM. MatsumiyaT. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice.Eur. J. Pharmacol.19983501212910.1016/S0014‑2999(98)00223‑4 9683010
    [Google Scholar]
  22. NallamadanJ. KalusalingamA. NatarajanC. Evaluation of anti-emetic activity of Syzygium aromaticum extracts in chick and rat models of emesis.J Res Pharm20242841231124310.29228/jrp.804
    [Google Scholar]
  23. SareenS. JosephL. MathewG. Improvement in solubility of poor water-soluble drugs by solid dispersion.Int. J. Pharm. Investig.201221121710.4103/2230‑973X.96921 23071955
    [Google Scholar]
  24. ChoursiyaA. PanditD. Formulation and evaluation of fast dissolving tablets of lansoprazole by solubility enhancement technique.Curr Res Pharma Sci2021112546410.24092/CRPS.2021.110203
    [Google Scholar]
  25. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  26. OliveiraA.E.M.F.M. SoaresD.C. TakahashiJ.A. RamaldesG.A. de PaulaJ.R. BaraM.T.F. Anti-tumor efficiency of perillyl alcohol/β-cyclodextrin inclusion complexes in a Sarcoma S180-induced mice model.Anticancer Drugs201526993194210.1097/CAD.0000000000000250 26181229
    [Google Scholar]
  27. AgarwalR. SmithJ.C. Speed vs. accuracy: Effect on ligand pose accuracy of varying box size and exhaustiveness in AutoDock Vina.Mol. Inform.2023422220018810.1002/minf.202200188 36262028
    [Google Scholar]
  28. PatelD.M. PatelN.M. PatelM.R. Comparative evaluation of superdisintegrants for design of fast dissolving tablets of prochlorperazine maleate.Int. J. Pharm. Pharm. Sci.2009115058
    [Google Scholar]
  29. SharmaV. PathakK. Evaluation of the superdisintegrant functionality of polacrilin potassium in orodispersible tablets using meloxicam as a model drug.Asian J. Pharm. Sci.201164235242
    [Google Scholar]
  30. RaviK. RamaswamyP. Influence of excipients on the powder characteristics and the flow properties of solid dispersion formulations.Int. J. Pharm. Sci. Res.20178289189910.13040/IJPSR.0975‑8232.8(2).891‑99
    [Google Scholar]
  31. SathishkumarT. PatelR. Formulation and evaluation of fast-disintegrating tablets: A review.Pharm. Dev. Technol.201924785086410.1080/10837450.2019.1614073
    [Google Scholar]
  32. GhoshT. ChoudhuryP.K. Crospovidone as a superdisintegrant: A comprehensive review on its use in tablet formulation.Int. J. Pharm. Sci. Res.2017872760276710.13040/IJPSR.0975‑8232.8(7).2760‑67
    [Google Scholar]
  33. JainS. ChawlaR. Evaluation of crospovidone as a superdisintegrant in fast-disintegrating tablets for the treatment of acute migraine.J. Adv. Pharm. Technol. Res.20167313113710.4103/2231‑4040.191439
    [Google Scholar]
  34. United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary USP 43-NF 38. Chapter <905> Uniformity of Dosage Units.Rockville (MD)United States Pharmacopeial Convention;2020
    [Google Scholar]
  35. Dissolution testing of immediate release solid oral dosage forms.2018Available from: https://www.fda.gov/media/70936/download
  36. AhmedS. ZahidA. AbidiS. MeerS. Anti-emetic activity of] four species of Genus Cassia in chicks.IOSR J. Pharm.20122338038410.9790/3013‑0230380384
    [Google Scholar]
  37. BhandariS.V. GaikwadP.S. Evaluation of antiemetic activity of domperidone and its β-cyclodextrin complex in animal models.Int. J. Pharm. Sci. Res.2013431167117210.13040/IJPSR.0975‑8232.4(3).1167‑72
    [Google Scholar]
  38. KhalifaA.L.Z.M. Abdul RasoolB.K. Optimized mucoadhesive coated niosomes as a sustained oral delivery system of famotidine.AAPS PharmSciTech20171883064307510.1208/s12249‑017‑0780‑7 28516414
    [Google Scholar]
  39. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH).Stability Testing of New Drug Substances and Products Q1A(R2).GenevaICH2003
    [Google Scholar]
  40. QiuY. ChenY. ZhangG.G.Z. LiuL. PorterW. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice.2nd EdBostonAcademic Press2016
    [Google Scholar]
  41. PinhoE. SoaresC. HenriquesM. OliveiraR. SantosJ. Cyclodextrin-based inclusion complexes for delivery of active molecules: An updated review on the state of the art and future challenges.Int. J. Pharm.20144681-225827110.1016/j.ijpharm.2014.04.067 24746415
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128398157250610113637
Loading
/content/journals/cpd/10.2174/0113816128398157250610113637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test