Skip to content
2000
Volume 32, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory condition of the joints and a leading cause of global disability. However, the use of current anti-inflammatory treatments is often limited by serious side effects and multi-organ toxicity, necessitating the exploration of safer alternatives.

Objective

This study aims to investigate the anti-rheumatic potential of natural compounds of as small-molecule inhibitors of PTGS2.

Methods

The therapeutic potential of was evaluated through antioxidant and anti-inflammatory assays. Gas chromatography-mass spectrometry (GC-MS) was used to identify its constituents. ADMET profiling (absorption, distribution, metabolism, excretion, and toxicity), network pharmacology, and molecular dynamics simulation were employed to uncover the active compounds against PTGS2 for RA treatment.

Results

extract contained significant phenolic (18.2 ± 0.008 mg GAE/g DW) and flavonoid (27.57 ± 0.03 mg RE/g DW) content. GC-MS yielded 288 compounds of which four passed the toxicity parameters. Protein-protein interaction analysis revealed 10 RA-related targets, with PTGS2 emerging as the most prominent one. Molecular docking and simulations revealed that compound-2 [2-Benzo [1,3] dioxol-5-yl-8-methoxy-3-nitro-2H-chromene] and compound-4 [alpha-hydroxy-N-[2-methoxyphenyl]-benzene propanamide] binds strongly with PTGS2 (-7.7 kcal/mol and -7.9 kcal/mol, respectively) predicting its stable interaction.

Conclusion

compounds present a significant potential as PTGS2 inhibitors, warranting further and investigations to confirm their therapeutic efficacy against RA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128370525250407164738
2025-07-09
2025-12-16
Loading full text...

Full text loading...

References

  1. HasanA.A. KhudhurH.R. HameedA.K. Rheumatic autoimmune diseases (focus on RA): Prevalence, types, causes and diagnosis.Karbala J Pharm Sci2022120243
    [Google Scholar]
  2. AkramM. DaniyalM. SultanaS. Traditional and modern management strategies for rheumatoid arthritis.Clin. Chim. Acta202151214215510.1016/j.cca.2020.11.003 33186593
    [Google Scholar]
  3. JalilS.F. ArshadM. BhattiA. Rheumatoid arthritis: What have we learned about the causing factors?Pak. J. Pharm. Sci.2016292629645 27087104
    [Google Scholar]
  4. HoxhaM. A systematic review on the role of eicosanoid pathways in rheumatoid arthritis.Adv. Med. Sci.2018631222910.1016/j.advms.2017.06.004 28818745
    [Google Scholar]
  5. LowinT. ApitzM. AndersS. StraubR.H. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner.Arthritis Res. Ther.201517132110.1186/s13075‑015‑0845‑5 26567045
    [Google Scholar]
  6. AkhterS. IrfanH.M Alamgeer, Jahan S, Shahzad M, Latif MB. Nerolidol: A potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model.Inflammopharmacology202230253754810.1007/s10787‑022‑00930‑2 35212850
    [Google Scholar]
  7. HungL.F. LaiJ.H. LinL.C. Retinoid acid inhibits IL-1-induced iNOS, COX-2 and chemokine production in human chondrocytes.Immunol. Invest.200837767569310.1080/08820130802307237 18821215
    [Google Scholar]
  8. BaeS.C. CorzilliusM. KuntzK.M. LiangM.H. Cost-effectiveness of low dose corticosteroids versus non-steroidal anti-inflammatory drugs and COX-2 specific inhibitors in the long-term treatment of rheumatoid arthritis.Br. J. Rheumatol.2003421465310.1093/rheumatology/keg029 12509612
    [Google Scholar]
  9. ChaeH.J. ChaeS.W. ReedJ.C. KimH.R. Salicylate regulates COX-2 expression through ERK and subsequent NF-kappaB activation in osteoblasts.Immunopharmacol. Immunotoxicol.2004261759110.1081/IPH‑120029946 15106733
    [Google Scholar]
  10. YoonH.Y. LeeE.G. LeeH. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs.Int. J. Mol. Med.201332497197710.3892/ijmm.2013.1468 23934131
    [Google Scholar]
  11. MaY. HongF.F. YangS.L. Role of prostaglandins in rheumatoid arthritis.Clin. Exp. Rheumatol.202139116217210.55563/clinexprheumatol/1jlh15 32828139
    [Google Scholar]
  12. SmolenJ.S. AletahaD. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges.Nat. Rev. Rheumatol.201511527628910.1038/nrrheum.2015.8 25687177
    [Google Scholar]
  13. MassalskaM. MaslinskiW. CiechomskaM. Small molecule inhibitors in the treatment of rheumatoid arthritis and beyond: Latest updates and potential strategy for fighting COVID-19.Cells202098187610.3390/cells9081876 32796683
    [Google Scholar]
  14. RehmanS. BhattiA. JohnP. Computational analysis to investigate the anti-rheumatic potential of plant-based small molecule inhibitor targeting tumor necrosis factor α.Front. Pharmacol.202314112720110.3389/fphar.2023.1127201 36825150
    [Google Scholar]
  15. WangY. ChenS. DuK. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis.J. Ethnopharmacol.202127911436810.1016/j.jep.2021.114368 34197960
    [Google Scholar]
  16. Pourhabibi-ZarandiF. Shojaei-ZarghaniS. RafrafM. Curcumin and rheumatoid arthritis: A systematic review of literature.Int. J. Clin. Pract.20217510e1428010.1111/ijcp.14280 33914984
    [Google Scholar]
  17. ShengS. WangX. LiuX. The role of resveratrol on rheumatoid arthritis: From bench to bedside.Front. Pharmacol.20221382967710.3389/fphar.2022.829677 36105210
    [Google Scholar]
  18. ChengL. ChenJ. RongX. Mechanism of emodin in the treatment of rheumatoid arthritis.Evid. Based Complement. Alternat. Med.20222022111610.1155/2022/9482570 36225183
    [Google Scholar]
  19. LeJ. JiH. ZhouX. Pharmacology, toxicology, and metabolism of sennoside A, A medicinal plant-derived natural compound.Front. Pharmacol.20211271458610.3389/fphar.2021.714586 34764866
    [Google Scholar]
  20. SinghA. Molina-GarciaP. HussainS. Efficacy and safety of colchicine for the treatment of osteoarthritis: A systematic review and meta-analysis of intervention trials.Clin. Rheumatol.202342388990210.1007/s10067‑022‑06402‑w 36224305
    [Google Scholar]
  21. BanjiD. BanjiO.J.F. RashidaS. AlshahraniS. AlqahtaniS.S. Bioavailability, anti-inflammatory and anti-arthritic effect of acetyl keto boswellic acid and its combination with methotrexate in an arthritic animal model.J. Ethnopharmacol.202229211520010.1016/j.jep.2022.115200 35306043
    [Google Scholar]
  22. KciukM. GargA. RohillaM. ChaudharyR. DhankharS. DhimanS. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis-comprehensive review.Antioxidants202413777510.3390/antiox13070775
    [Google Scholar]
  23. AhmedS.I. HayatM.Q. TahirM. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl.BMC Complement. Altern. Med.201616146010.1186/s12906‑016‑1443‑z 27835979
    [Google Scholar]
  24. BameriZ. Amini-BoroujeniN. SaeidiS. BaziS. Antibacterial activity of Cassia angustifolia extract against some human pathogenic bacteria.J. Nov. Appl. Sci.2013211584586
    [Google Scholar]
  25. MitchellJ.M. MengsU. McPhersonS. An oral carcinogenicity and toxicity study of senna (Tinnevelly senna fruits) in the rat.Arch. Toxicol.2006801344410.1007/s00204‑005‑0021‑9 16205914
    [Google Scholar]
  26. AmaladhasT.P. SivagamiS. DeviT.A. AnanthiN. Priya VelammalS. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia.Adv Nat Sci: Nanosci Nanotechnol20123404500610.1088/2043‑6262/3/4/045006
    [Google Scholar]
  27. SilvaC.R. MonteiroM.R. RochaH.M. Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays.Toxicol. In Vitro 200822121221810.1016/j.tiv.2007.07.008 17826029
    [Google Scholar]
  28. KumarA. GuptaA.K. SiddiquiS. SiddiquiM.H. JnaneshaA.C. LalR.K. An assessment, prospects, and obstacles of industrially important medicinal crop Indian Senna (Cassia angustifolia Vahl.): A review.Ind. Crops Prod.202218711547210.1016/j.indcrop.2022.115472
    [Google Scholar]
  29. AryaR. Yield of Cassia angustifolia in combination with different tree species in a silvi-herbal trial under hot arid conditions in India.Bioresour. Technol.200386216516910.1016/S0960‑8524(02)00150‑5 12653282
    [Google Scholar]
  30. LalRK ChanotiyaCS KumarA The prospects and potential of the horticultural and pharmacological medicinal herb senna (Cassia angustifolia Vahl.): A review.Technol Hortic202331.10.48130/TIH‑2023‑0020
    [Google Scholar]
  31. AggarwalB.B. PrasadS. ReuterS. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach.Curr. Drug Targets201112111595165310.2174/138945011798109464 21561421
    [Google Scholar]
  32. SaleemS. KhanR. KazmiI. AfzalM. Medicinal plants in the treatment of arthritis.Plant Hum Heal Pharmacol Ther Uses20193101137
    [Google Scholar]
  33. GrivasC. Non-native herbal Materia Medica in Greek texts of the Roman period.J Hist Med Med Humanit2018302531578
    [Google Scholar]
  34. ScholarP.G. Cassia fistula: A comprehensive analysis of its phytochemical constituents and pharmacological Activities.JETIR2024
    [Google Scholar]
  35. WahabM. BhattiA. JohnP. Evaluation of antidiabetic activity of biogenic silver nanoparticles using Thymus serpyllum on streptozotocin-induced diabetic BALB/c Mice.Polymers20221415313810.3390/polym14153138 35956652
    [Google Scholar]
  36. AhmedS. JohnP. ParachaR.Z. BhattiA. GumaM. Docking and molecular dynamics study to identify novel phytobiologics from Dracaena trifasciata against metabolic reprogramming in rheumatoid arthritis.Life2022128114810.3390/life12081148 36013327
    [Google Scholar]
  37. Molina-CortésA. Sánchez-MottaT. Tobar-TosseF. QuimbayaM. Spectrophotometric estimation of total phenolic content and antioxidant capacity of molasses and vinasses generated from the sugarcane industry.Waste Biomass Valoriz.20201173453346310.1007/s12649‑019‑00690‑1
    [Google Scholar]
  38. AryalS. BaniyaM.K. DanekhuK. KunwarP. GurungR. KoiralaN. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal.Plants2019849610.3390/plants8040096 30978964
    [Google Scholar]
  39. FernandoC.D. SoysaP. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts.MethodsX2015228329110.1016/j.mex.2015.05.001 26285798
    [Google Scholar]
  40. MizushimaY. KobayashiM. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins.J. Pharm. Pharmacol.196820316917310.1111/j.2042‑7158.1968.tb09718.x 4385045
    [Google Scholar]
  41. YangH. LouC. SunL. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  42. KnoxC. WilsonM. KlingerC.M. DrugBank 6.0: the DrugBank knowledgebase for 2024.Nucleic Acids Res.202452D1D1265D127510.1093/nar/gkad976 37953279
    [Google Scholar]
  43. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  44. DennisG.Jr ShermanB.T. HosackD.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345310.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  45. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_18
    [Google Scholar]
  46. RoseP.W. PrlićA. AltunkayaA. BiC. BradleyA.R. ChristieC.H. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information.Nucleic Acids Res.201645D271D281
    [Google Scholar]
  47. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  48. AbbasiH. SharifM. JohnP. BhattiA. HayatM.Q. MansoorQ. Phytochemical, cytoprotective profiling, and anti-inflammatory potential of Colchicum luteum in rheumatoid arthritis: An experimental and simulation study.Nutrients20241623402010.3390/nu16234020 39683414
    [Google Scholar]
  49. SharifM. JohnP. BhattiA. ParachaR.Z. MajeedA. Evaluation of the inhibitory mechanism of Pennisetum glaucum (pearl millet) bioactive compounds for rheumatoid arthritis: An in vitro and computational approach.Front. Pharmacol.202415148879010.3389/fphar.2024.1488790 39640488
    [Google Scholar]
  50. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  51. MittalV. SharmaA. Beyond pharmaceuticals: Harnessing the potential of plant-based compounds for anti-inflammatory therapy.Recent Adv. Inflamm. Allergy Drug Discov.20241829010710.2174/0127722708292961240508110207 39404108
    [Google Scholar]
  52. PrasadM. JoshiD. NarendraK. SatyaA.K. Assessment of phytochemical evaluation and in-vitro antimicrobial activity of Cassia angustifolia.Int. J. Pharmacogn. Phytochem. Res.201682305312
    [Google Scholar]
  53. BehlT. UpadhyayT. SinghS. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis.Molecules20212621657010.3390/molecules26216570 34770980
    [Google Scholar]
  54. ChojnackaK. LewandowskaU. Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway.Food Rev. Int.20233985459547810.1080/87559129.2022.2071936
    [Google Scholar]
  55. StojanovicA. VeselinovicM. DraginicN. RankovicM. AndjicM. BradicJ. Research article the influence of menopause and inflammation on redox status and bone mineral density in patients with rheumatoid arthritis.Heart Fail.2021911
    [Google Scholar]
  56. ClarkD.E. PickettS.D. Computational methods for the prediction of ‘drug-likeness’.Drug Discov. Today200052495810.1016/S1359‑6446(99)01451‑8 10652455
    [Google Scholar]
  57. SabeV.T. NtombelaT. JhambaL.A. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  58. VarelaM.T. AmaralM. RomanelliM.M. de Castro LevattiE.V. TemponeA.G. FernandesJ.P.S. Optimization of physicochemical properties is a strategy to improve drug-likeness associated with activity: Novel active and selective compounds against Trypanosoma cruzi.Eur. J. Pharm. Sci.202217110611410.1016/j.ejps.2021.106114 34986415
    [Google Scholar]
  59. ZubairM.F. AjibadeS.O. LawalA.Z. YusufS.A. BabalolaJ.B. MukadamA.A. GC-MS analysis, antioxidant and antimicrobial properties of Eclipta prostrata leaves.IJCBS2017112543
    [Google Scholar]
  60. OyeyemiI.T. AdewoleK.E. GyebiG.A. In silico prediction of the possible antidiabetic and anti-inflammatory targets of Nymphaea lotus -derived phytochemicals and mechanistic insights by molecular dynamics simulations.J. Biomol. Struct. Dyn.20234121122251224110.1080/07391102.2023.2166591 36645154
    [Google Scholar]
  61. BeckerR. PederickJ.L. DawesE.G. BruningJ.B. AbellA.D. Structure-guided design and synthesis of ATP-competitive N-acyl-substituted sulfamide d-alanine-d-alanine ligase inhibitors.Bioorg. Med. Chem.20239611750910.1016/j.bmc.2023.117509 37948922
    [Google Scholar]
  62. HuangH.Y. PinusS. ZhangX. Integration of computational and experimental techniques for the discovery of SARS-CoV-2 PLpro covalent inhibitors.ChemRxiv202310.26434/chemrxiv‑2023‑r0v7t
    [Google Scholar]
  63. CroffordL.J. The role of COX-2 in rheumatoid arthritis synovial tissues.Arthritis Res.20001Suppl. 1S3010.1186/ar44
    [Google Scholar]
  64. NiuQ. GaoJ. WangL. LiuJ. ZhangL. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis.Front. Immunol.202213103405010.3389/fimmu.2022.1034050 36466887
    [Google Scholar]
  65. ChenJ.Q. SzodorayP. ZeherM. Toll-like receptor pathways in autoimmune diseases.Clin. Rev. Allergy Immunol.201650111710.1007/s12016‑015‑8473‑z 25687121
    [Google Scholar]
  66. KimK.W. KimH.R. KimB.M. ChoM.L. LeeS.H. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis.Am. J. Pathol.2015185113011302410.1016/j.ajpath.2015.07.017 26362732
    [Google Scholar]
  67. PundoleX. Suarez-AlmazorM.E. Cancer and rheumatoid arthritis.Rheum. Dis. Clin. North Am.202046344546210.1016/j.rdc.2020.05.003 32631599
    [Google Scholar]
  68. DongL. MalkowskiM.G. Defining the conformational ensembles associated with ligand binding to cyclooxygenase-2.Biochemistry202362213134314410.1021/acs.biochem.3c00341 37852627
    [Google Scholar]
  69. El-NassanH.B. HalimP.A. El-DashY.S. Design and synthesis of novel ibuprofen derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents: Evaluation of PGE2, TNF-α, IL-6 and histopathological study.Med. Chem.202218442744310.2174/1573406417666210809162636 34370644
    [Google Scholar]
  70. AliA. WaniA.B. MallaB.A. Network pharmacology integrated molecular docking and dynamics to elucidate saffron compounds targeting human COX-2 protein.Medicina (Kaunas)20235912205810.3390/medicina59122058 38138161
    [Google Scholar]
  71. RudrapalM. EltayebW.A. RakshitG. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies.Sci. Rep.2023131865610.1038/s41598‑023‑35161‑0 37244921
    [Google Scholar]
  72. MoussaN. HassanA. GharaghaniS. Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors.Heliyon202174e0660510.1016/j.heliyon.2021.e06605 33889764
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128370525250407164738
Loading
/content/journals/cpd/10.2174/0113816128370525250407164738
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test