Skip to content
2000
image of Integrated Network Pharmacology and Molecular Modeling Approach for Potential PTGS2 Inhibitors against Rheumatoid Arthritis

Abstract

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory condition of the joints and a leading cause of global disability. However, the use of current anti-inflammatory treatments is often limited by serious side effects and multi-organ toxicity, necessitating the exploration of safer alternatives.

Objective

This study aims to investigate the anti-rheumatic potential of natural compounds of as small-molecule inhibitors of PTGS2.

Methods

The therapeutic potential of was evaluated through antioxidant and anti-inflammatory assays. Gas chromatography-mass spectrometry (GC-MS) was used to identify its constituents. ADMET profiling (absorption, distribution, metabolism, excretion, and toxicity), network pharmacology, and molecular dynamics simulation were employed to uncover the active compounds against PTGS2 for RA treatment.

Results

extract contained significant phenolic (18.2 ± 0.008 mg GAE/g DW) and flavonoid (27.57 ± 0.03 mg RE/g DW) content. GC-MS yielded 288 compounds of which four passed the toxicity parameters. Protein-protein interaction analysis revealed 10 RA-related targets, with PTGS2 emerging as the most prominent one. Molecular docking and simulations revealed that compound-2 [2-Benzo [1,3] dioxol-5-yl-8-methoxy-3-nitro-2H-chromene] and compound-4 [alpha-hydroxy-N-[2-methoxyphenyl]-benzene propanamide] binds strongly with PTGS2 (-7.7 kcal/mol and -7.9 kcal/mol, respectively) predicting its stable interaction.

Conclusion

compounds present a significant potential as PTGS2 inhibitors, warranting further and investigations to confirm their therapeutic efficacy against RA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128370525250407164738
2025-07-09
2025-09-10
Loading full text...

Full text loading...

References

  1. Hasan AA Khudhur HR Hameed AK Rheumatic autoimmune diseases (focus on RA): Prevalence, types, causes and diagnosis. Karbala. J. Pharm. Sci. 2022 1 20 243
    [Google Scholar]
  2. Akram M. Daniyal M. Sultana S. Owais A. Akhtar N. Zahid R. Said F. Bouyahya A. Ponomarev E. Ali Shariat M. Thiruvengadam M. Traditional and modern management strategies for rheumatoid arthritis. Clin. Chim. Acta 2021 512 142 155 10.1016/j.cca.2020.11.003 33186593
    [Google Scholar]
  3. Jalil S.F. Arshad M. Bhatti A. Ahmad J. Akbar F. Ali S. John P. Rheumatoid arthritis: What have we learned about the causing factors? Pak. J. Pharm. Sci. 2016 29 2 629 645 27087104
    [Google Scholar]
  4. Hoxha M. A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Adv. Med. Sci. 2018 63 1 22 29 10.1016/j.advms.2017.06.004 28818745
    [Google Scholar]
  5. Lowin T. Apitz M. Anders S. Straub R.H. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res. Ther. 2015 17 1 321 10.1186/s13075‑015‑0845‑5 26567045
    [Google Scholar]
  6. Akhter S. Irfan H.M. Alamgeer Jahan S. Shahzad M. Latif M.B. Nerolidol: A potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 2022 30 2 537 548 10.1007/s10787‑022‑00930‑2 35212850
    [Google Scholar]
  7. Hung L.F. Lai J.H. Lin L.C. Wang S.J. Hou T.Y. Chang D.M. Liang C.C.T. Ho L.J. Retinoid acid inhibits IL-1-induced iNOS, COX-2 and chemokine production in human chondrocytes. Immunol. Invest. 2008 37 7 675 693 10.1080/08820130802307237 18821215
    [Google Scholar]
  8. Bae S.C. Corzillius M. Kuntz K.M. Liang M.H. Cost-effectiveness of low dose corticosteroids versus non-steroidal anti-inflammatory drugs and COX-2 specific inhibitors in the long-term treatment of rheumatoid arthritis. Br. J. Rheumatol. 2003 42 1 46 53 10.1093/rheumatology/keg029 12509612
    [Google Scholar]
  9. Chae H.J. Chae S.W. Reed J.C. Kim H.R. Salicylate regulates COX-2 expression through ERK and subsequent NF-kappaB activation in osteoblasts. Immunopharmacol. Immunotoxicol. 2004 26 1 75 91 10.1081/IPH‑120029946 15106733
    [Google Scholar]
  10. Yoon H.Y. Lee E.G. Lee H. Cho I.J. Choi Y.J. Sung M.S. Yoo H.G. Yoo W.H. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int. J. Mol. Med. 2013 32 4 971 977 10.3892/ijmm.2013.1468 23934131
    [Google Scholar]
  11. Ma Y. Hong F.F. Yang S.L. Role of prostaglandins in rheumatoid arthritis. Clin. Exp. Rheumatol. 2021 39 1 162 172 10.55563/clinexprheumatol/1jlh15 32828139
    [Google Scholar]
  12. Smolen J.S. Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat. Rev. Rheumatol. 2015 11 5 276 289 10.1038/nrrheum.2015.8 25687177
    [Google Scholar]
  13. Massalska M. Maslinski W. Ciechomska M. Small molecule inhibitors in the treatment of rheumatoid arthritis and beyond: Latest updates and potential strategy for fighting COVID-19. Cells 2020 9 8 1876 10.3390/cells9081876 32796683
    [Google Scholar]
  14. Rehman S. Bhatti A. John P. Computational analysis to investigate the anti-rheumatic potential of plant-based small molecule inhibitor targeting tumor necrosis factor α. Front. Pharmacol. 2023 14 1127201 10.3389/fphar.2023.1127201 36825150
    [Google Scholar]
  15. Wang Y. Chen S. Du K. Liang C. Wang S. Owusu Boadi E. Li J. Pang X. He J. Chang Y. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021 279 114368 10.1016/j.jep.2021.114368 34197960
    [Google Scholar]
  16. Pourhabibi-Zarandi F. Shojaei-Zarghani S. Rafraf M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int. J. Clin. Pract. 2021 75 10 e14280 10.1111/ijcp.14280 33914984
    [Google Scholar]
  17. Sheng S. Wang X. Liu X. Hu X. Shao Y. Wang G. Mao D. Li C. Chen B. Chen X. The role of resveratrol on rheumatoid arthritis: From bench to bedside. Front. Pharmacol. 2022 13 829677 10.3389/fphar.2022.829677 36105210
    [Google Scholar]
  18. Cheng L. Chen J. Rong X. Mechanism of emodin in the treatment of rheumatoid arthritis. Evid. Based Complement. Alternat. Med. 2022 2022 1 1 16 10.1155/2022/9482570 36225183
    [Google Scholar]
  19. Le J. Ji H. Zhou X. Wei X. Chen Y. Fu Y. Ma Y. Han Q. Sun Y. Gao Y. Wu H. Pharmacology, toxicology, and metabolism of sennoside A, A medicinal plant-derived natural compound. Front. Pharmacol. 2021 12 714586 10.3389/fphar.2021.714586 34764866
    [Google Scholar]
  20. Singh A. Molina-Garcia P. Hussain S. Paul A. Das S.K. Leung Y.Y. Hill C.L. Danda D. Samuels J. Antony B. Efficacy and safety of colchicine for the treatment of osteoarthritis: A systematic review and meta-analysis of intervention trials. Clin. Rheumatol. 2023 42 3 889 902 10.1007/s10067‑022‑06402‑w 36224305
    [Google Scholar]
  21. Banji D. Banji O.J.F. Rashida S. Alshahrani S. Alqahtani S.S. Bioavailability, anti-inflammatory and anti-arthritic effect of Acetyl Keto Boswellic acid and its combination with methotrexate in an arthritic animal model. J. Ethnopharmacol. 2022 292 115200 10.1016/j.jep.2022.115200 35306043
    [Google Scholar]
  22. Kciuk M Garg A Rohilla M Chaudhary R Dhankhar S Dhiman S Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis-comprehensive review. Antioxidants 2024 13 7 775 10.3390/antiox13070775
    [Google Scholar]
  23. Ahmed S.I. Hayat M.Q. Tahir M. Mansoor Q. Ismail M. Keck K. Bates R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med. 2016 16 1 460 10.1186/s12906‑016‑1443‑z 27835979
    [Google Scholar]
  24. Bameri Z. Amini-Boroujeni N. Saeidi S. Bazi S. Antibacterial activity of Cassia angustifolia extract against some human pathogenic bacteria. J. Nov. Appl. Sci. 2013 2 11 584 586
    [Google Scholar]
  25. Mitchell J.M. Mengs U. McPherson S. Zijlstra J. Dettmar P. Gregson R. Tigner J.C. An oral carcinogenicity and toxicity study of senna (Tinnevelly senna fruits) in the rat. Arch. Toxicol. 2006 80 1 34 44 10.1007/s00204‑005‑0021‑9 16205914
    [Google Scholar]
  26. Amaladhas T. Sivagami S. Devi TA. Ananthi N. Priya Velammal S. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv. Nat. Sci: Nanosci. Nanotechnol 2012 3 4 045006 10.1088/2043‑6262/3/4/045006
    [Google Scholar]
  27. Silva C.R. Monteiro M.R. Rocha H.M. Ribeiro A.F. Caldeira-de-Araujo A. Leitão A.C. Bezerra R.J.A.C. Pádula M. Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays. Toxicol. in vitro 2008 22 1 212 218 10.1016/j.tiv.2007.07.008 17826029
    [Google Scholar]
  28. Kumar A. Gupta A.K. Siddiqui S. Siddiqui M.H. Jnanesha A.C. Lal R.K. An assessment, prospects, and obstacles of industrially important medicinal crop Indian Senna (Cassia angustifolia Vahl.): A review. Ind. Crops Prod. 2022 187 115472 10.1016/j.indcrop.2022.115472
    [Google Scholar]
  29. Arya R. Yield of Cassia angustifolia in combination with different tree species in a silvi-herbal trial under hot arid conditions in India. Bioresour. Technol. 2003 86 2 165 169 10.1016/S0960‑8524(02)00150‑5 12653282
    [Google Scholar]
  30. Lal RK Chanotiya CS Kumar A The prospects and potential of the horticultural and pharmacological medicinal herb senna (Cassia angustifolia Vahl.): A review. Technol Hortic 2023 3 1 10.48130/TIH‑2023‑0020
    [Google Scholar]
  31. Aggarwal B.B. Prasad S. Reuter S. Kannappan R. Yadev V.R. Park B. Kim J.H. Gupta S.C. Phromnoi K. Sundaram C. Prasad S. Chaturvedi M.M. Sung B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 2011 12 11 1595 1653 10.2174/138945011798109464 21561421
    [Google Scholar]
  32. Saleem S. Khan R. Kazmi I. Afzal M. Medicinal plants in the treatment of arthritis. Plant Hum Heal. Pharmacol Ther Uses 2019 3 101 137
    [Google Scholar]
  33. Grivas C. Non-native herbal Materia Medica in Greek texts of the Roman period. J. Hist. Med. Med. Humanit. 2018 30 2 531 578
    [Google Scholar]
  34. Scholar PG Cassia fistula: A comprehensive analysis of its phytochemical constituents and pharmacological Activities. JETIR 2024
    [Google Scholar]
  35. Wahab M. Bhatti A. John P. Evaluation of antidiabetic activity of biogenic silver nanoparticles using Thymus serpyllum on streptozotocin-induced diabetic BALB/c Mice. Polymers 2022 14 15 3138 10.3390/polym14153138 35956652
    [Google Scholar]
  36. Ahmed S. John P. Paracha R.Z. Bhatti A. Guma M. Docking and molecular dynamics study to identify novel phytobiologics from Dracaena trifasciata against metabolic reprogramming in rheumatoid arthritis. Life 2022 12 8 1148 10.3390/life12081148 36013327
    [Google Scholar]
  37. Molina-Cortés A. Sánchez-Motta T. Tobar-Tosse F. Quimbaya M. Spectrophotometric estimation of total phenolic content and antioxidant capacity of molasses and vinasses generated from the sugarcane industry. Waste Biomass Valoriz. 2020 11 7 3453 3463 10.1007/s12649‑019‑00690‑1
    [Google Scholar]
  38. Aryal S. Baniya M.K. Danekhu K. Kunwar P. Gurung R. Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019 8 4 96 10.3390/plants8040096 30978964
    [Google Scholar]
  39. Fernando C.D. Soysa P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015 2 283 291 10.1016/j.mex.2015.05.001 26285798
    [Google Scholar]
  40. Mizushima Y. Kobayashi M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 1968 20 3 169 173 10.1111/j.2042‑7158.1968.tb09718.x 4385045
    [Google Scholar]
  41. Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  42. Knox C. Wilson M. Klinger C.M. Franklin M. Oler E. Wilson A. Pon A. Cox J. Chin N.E.L. Strawbridge S.A. Garcia-Patino M. Kruger R. Sivakumaran A. Sanford S. Doshi R. Khetarpal N. Fatokun O. Doucet D. Zubkowski A. Rayat D.Y. Jackson H. Harford K. Anjum A. Zakir M. Wang F. Tian S. Lee B. Liigand J. Peters H. Wang R.Q.R. Nguyen T. So D. Sharp M. da Silva R. Gabriel C. Scantlebury J. Jasinski M. Ackerman D. Jewison T. Sajed T. Gautam V. Wishart D.S. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024 52 D1 D1265 D1275 10.1093/nar/gkad976 37953279
    [Google Scholar]
  43. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  44. Dennis G. Jr Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 P3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  45. Kohl M Wiese S Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods. Mol. Biol. 2011 696 291 303 10.1007/978‑1‑60761‑987‑1_18
    [Google Scholar]
  46. Rose P.W. Prlić A. Altunkaya A. Bi C. Bradley A.R. Christie C.H. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016 45 D271 D281
    [Google Scholar]
  47. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  48. Abbasi H. Sharif M. John P. Bhatti A. Hayat M.Q. Mansoor Q. Phytochemical, cytoprotective profiling, and anti-inflammatory potential of Colchicum luteum in rheumatoid arthritis: An experimental and simulation study. Nutrients 2024 16 23 4020 10.3390/nu16234020 39683414
    [Google Scholar]
  49. Sharif M. John P. Bhatti A. Paracha R.Z. Majeed A. Evaluation of the inhibitory mechanism of Pennisetum glaucum (pearl millet) bioactive compounds for rheumatoid arthritis: An in vitro and computational approach. Front. Pharmacol. 2024 15 1488790 10.3389/fphar.2024.1488790 39640488
    [Google Scholar]
  50. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  51. Mittal V. Sharma A. Beyond pharmaceuticals: Harnessing the potential of plant-based compounds for anti-inflammatory therapy. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 2 90 107 10.2174/0127722708292961240508110207 39404108
    [Google Scholar]
  52. Prasad M.. Joshi D. Narendra K. Satya A.K. Assessment of phytochemical evaluation and in-vitro antimicrobial activity of Cassia angustifolia. Int. J. Pharmacogn. Phytochem. Res. 2016 8 2 305 312
    [Google Scholar]
  53. Behl T. Upadhyay T. Singh S. Chigurupati S. Alsubayiel A.M. Mani V. Vargas-De-La-Cruz C. Uivarosan D. Bustea C. Sava C. Stoicescu M. Radu A.F. Bungau S.G. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules 2021 26 21 6570 10.3390/molecules26216570 34770980
    [Google Scholar]
  54. Chojnacka K. Lewandowska U. Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway. Food Rev. Int. 2023 39 8 5459 5478 10.1080/87559129.2022.2071936
    [Google Scholar]
  55. Stojanovic A. Veselinovic M. Draginic N. Rankovic M. Andjic M. Bradic J. Research article the influence of menopause and inflammation on redox status and bone mineral density in patients with rheumatoid arthritis. Heart Fail. 2021 9 11
    [Google Scholar]
  56. Clark D.E. Pickett S.D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 2000 5 2 49 58 10.1016/S1359‑6446(99)01451‑8 10652455
    [Google Scholar]
  57. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  58. Varela M.T. Amaral M. Romanelli M.M. de Castro Levatti E.V. Tempone A.G. Fernandes J.P.S. Optimization of physicochemical properties is a strategy to improve drug-likeness associated with activity: Novel active and selective compounds against Trypanosoma cruzi. Eur. J. Pharm. Sci. 2022 171 106114 10.1016/j.ejps.2021.106114 34986415
    [Google Scholar]
  59. Zubair M.F. Ajibade S.O. Lawal A.Z. Yusuf S.A. Babalola J.B. Mukadam A.A. GC-MS analysis, antioxidant and antimicrobial properties of Eclipta prostrata leaves. IJCBS 2017 11 25 43
    [Google Scholar]
  60. Oyeyemi I.T. Adewole K.E. Gyebi G.A. In silico prediction of the possible antidiabetic and anti-inflammatory targets of Nymphaea lotus -derived phytochemicals and mechanistic insights by molecular dynamics simulations. J. Biomol. Struct. Dyn. 2023 41 21 12225 12241 10.1080/07391102.2023.2166591 36645154
    [Google Scholar]
  61. Becker R. Pederick J.L. Dawes E.G. Bruning J.B. Abell A.D. Structure-guided design and synthesis of ATP-competitive N-acyl-substituted sulfamide d-alanine-d-alanine ligase inhibitors. Bioorg. Med. Chem. 2023 96 117509 10.1016/j.bmc.2023.117509 37948922
    [Google Scholar]
  62. Huang H.Y. Pinus S. Zhang X. Integration of computational and experimental techniques for the discovery of SARS-CoV-2 PLpro covalent inhibitors ChemRxiv 2023 10.26434/chemrxiv‑2023‑r0v7t
    [Google Scholar]
  63. Crofford L.J. The role of COX-2 in rheumatoid arthritis synovial tissues. Arthritis Res. 2000 1 Suppl. 1 S30 10.1186/ar44
    [Google Scholar]
  64. Niu Q. Gao J. Wang L. Liu J. Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front. Immunol. 2022 13 1034050 10.3389/fimmu.2022.1034050 36466887
    [Google Scholar]
  65. Chen J.Q. Szodoray P. Zeher M. Toll-like receptor pathways in autoimmune diseases. Clin. Rev. Allergy Immunol. 2016 50 1 1 17 10.1007/s12016‑015‑8473‑z 25687121
    [Google Scholar]
  66. Kim K.W. Kim H.R. Kim B.M. Cho M.L. Lee S.H. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am. J. Pathol. 2015 185 11 3011 3024 10.1016/j.ajpath.2015.07.017 26362732
    [Google Scholar]
  67. Pundole X. Suarez-Almazor M.E. Cancer and rheumatoid arthritis. Rheum. Dis. Clin. North Am. 2020 46 3 445 462 10.1016/j.rdc.2020.05.003 32631599
    [Google Scholar]
  68. Dong L. Malkowski M.G. Defining the conformational ensembles associated with ligand binding to cyclooxygenase-2. Biochemistry 2023 62 21 3134 3144 10.1021/acs.biochem.3c00341 37852627
    [Google Scholar]
  69. El-Nassan H.B. Halim P.A. El-Dash Y.S. Design and synthesis of novel ibuprofen derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents: Evaluation of PGE2, TNF-α, IL-6 and histopathological study. Med. Chem. 2022 18 4 427 443 10.2174/1573406417666210809162636 34370644
    [Google Scholar]
  70. Ali A. Wani A.B. Malla B.A. Poyya J. Dar N.J. Ali F. Ahmad S.B. Rehman M.U. Nadeem A. Network pharmacology integrated molecular docking and dynamics to elucidate saffron compounds targeting human COX-2 protein. Medicina (Kaunas) 2023 59 12 2058 10.3390/medicina59122058 38138161
    [Google Scholar]
  71. Rudrapal M. Eltayeb W.A. Rakshit G. El-Arabey A.A. Khan J. Aldosari S.M. Alshehri B. Abdalla M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci. Rep. 2023 13 1 8656 10.1038/s41598‑023‑35161‑0 37244921
    [Google Scholar]
  72. Moussa N. Hassan A. Gharaghani S. Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors. Heliyon 2021 7 4 e06605 10.1016/j.heliyon.2021.e06605 33889764
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128370525250407164738
Loading
/content/journals/cpd/10.2174/0113816128370525250407164738
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test