CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Volume 24, Issue 6, 2025
Volume 24, Issue 6, 2025
-
-
User-Centered Design of Neuroprosthetics: Advancements and Limitations
Authors: Yara Badr, Nour AlSawaftah and Ghaleb A. HusseiniNeurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system. This review paper explores the evolution of neuroprosthetics, categorizing devices into sensory and motor neuroprosthetics and emphasizing their significance in addressing specific challenges. The discussion section delves into long-term challenges in clinical practice, encompassing device durability, ethical considerations, and issues of accessibility and affordability. Furthermore, the paper proposes potential solutions with a specific focus on enhancing sensory experiences and the importance of user-friendly interfaces. In conclusion, this paper offers a comprehensive overview of the current state of neuroprosthetics, outlining future research and development directions to guide advancements in the field.
-
-
-
Epigenetic Threads of Neurodegeneration: TFAM’s Intricate Role in Mitochondrial Transcription
There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM. TFAM's non-specific DNA binding activity demonstrates its involvement in the control of mitochondrial DNA (mtDNA) transcription. The role of TFAM in controlling packing, stability, and replication when assessing the quantity of the mitochondrial genome is well recognised. Despite mounting evidence linking lower mtDNA copy numbers to various age-related diseases, the correlation between TFAM abundance and neurodegenerative disease remains insufficient. This review delves into the link between neurodegeneration and mitochondrial dysfunction caused by oxidative stress. Additionally, the article will go into detail about how TFAM controls mitochondrial transcription, which is responsible for encoding key components of the oxidative phosphorylation (OXPHOS) system.
-
-
-
Beyond Dopamine: Novel Therapeutic Pathways for Parkinson's Disease Through Receptor Signaling
Authors: Rashmi Bhushan, Falguni Goel and Shamsher SinghParkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60. The medication L-dopa, which is now on the market, merely relieves symptoms and has several negative effects. In this article, we highlight the therapeutic potential of glucagon-like peptide-1, adenosine A2A, and cannabinoid receptors as attractive targets for enhancing neuroprotection and reducing a variety of motor and non-motor symptoms. Recent research has widened knowledge of new therapeutic targets and detailed cellular mechanisms, providing invaluable insights into the essential roles of cannabinoid receptors, adenosine A2A receptors, and glucagon-like peptide-1 receptors in PD pathogenesis and unique opportunities for drug development for mankind globally.
-
-
-
Establishment and Validation of the Diagnostic Value of Oligodendrocyte- related Genes in Alzheimer's Disease
Authors: Chen Li, Yan Chen, Yinhui Yao and Yazhen ShangBackgroundAD is a demyelinating disease. Myelin damage initiates the pathological process of AD, resulting in abnormal synaptic function and cognitive decline. The myelin sheath formed by oligodendrocytes (OL) is a crucial component of white matter. Investigating AD from the perspective of OL may offer novel diagnostic and therapeutic perspectives.
ObjectivesThis study aimed to analyze the association between OL-related genes and Alzheimer's disease (AD) using bioinformatics and verify this association via molecular biology experiments.
MethodsThe AD datasets were acquired from the Gene Expression Omnibus (GEO) database of NCBI. Consensus clustering was employed to determine the subtypes of AD, followed by evaluating the clinical characteristics of these subtypes. Subsequently, immune infiltration analysis of relevant genes and Weighted Gene Co-expression Network Analysis (WGCNA) were conducted to identify modules and hub genes associated with AD progression. The intersection of genes obtained was analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. To narrow down the scope and identify OL-related genes with diagnostic potential, three machine learning algorithms were utilized. In addition, the eXtreme Sum (XSum) algorithm was used to screen small molecule drug candidates based on the connectivity map (CMAP) database. Finally, these identified genes were validated using Real-time fluorescence quantitative PCR (RT-qPCR).
ResultsAmong the three subtypes of AD, Cluster A and Cluster C exhibited increased levels of Braak and neurofibrillary tangles compared to Cluster B. The proportion of females was greater than that of males among the three subclasses of AD. There were no significant differences in age among the three subclasses, but significant differences in gene expression existed. Through WGCNA analysis, 108 genes were identified. Among these, 16 genes were identified as shared genes by the least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machines (SVM) algorithms, and logistic regression further determined 11 genes. The establishment of a nomogram demonstrated the significance of these 11 genes in AD. The “XSum” algorithm revealed five drugs with therapeutic potential for AD. RT-qPCR analysis revealed the upregulation and downregulation of the highlighted genes. According to this study, 11 genes related to OL were also found to be associated with immune cell infiltration in AD patients. These genes demonstrated potential diagnostic value for AD. Additionally, we screened five small molecular drugs that exhibit potential therapeutic effects on AD.
ConclusionThis research provides a new perspective for personalized clinical management and treatment of AD.
-
-
-
Heavy and Chronic Cannabis Addiction does not Impact Motor Function: A BOLD-fMRI Study
ObjectiveThe goal of this to demonstrate the impact of heavy and chronic cannabis use on brain potential functional control, reorganization, and plasticity in the cortical area.
Methods23 cannabis users were convened in 3 groups of users. The first group included 11 volunteers with an average of 15 joins/day; the second group included 6 volunteers with an average of 1.5 joins/day; the third group included 6 volunteers with an average of 2.8 joins/week. Besides, 6 healthy volunteers in the control group, All healthy and cannabis users underwent identical brain BOLD-fMRI assessments of their motor function. Besides, neuropsychological and full biological assessments were achieved.
ResultsBOLD-fMRI maps of motor areas were obtained, including quantitative evaluation of the activations in the motor area. A statistical analysis of various groups was achieved.
ConclusionGroups of chronic cannabis addiction of varying level of use were setup. Namely heavy, moderate and low users groups; doses have been shown to have systematically equivalent effects on the control of brain motor function. Indeed, the BOLD-fMRI shows a remarkable sensitivity to brain plasticity and reorganization of the functional motor control of the studied cortical area, and such variation was not shown. Specific elucidation of the effect of cannabis effect in this unique function should clarify further protective pharmacological effects. This might illuminate the use of neuronal resources to prepare processes for pharmacological use and pharmaceutical forms. This suggests exploring any potential cannabis pharmaceutical form in diseases involving motor impairments.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less